1
|
Wang J, Deng G, Wang S, Li S, Song P, Lin K, Xu X, He Z. Enhancing regenerative medicine: the crucial role of stem cell therapy. Front Neurosci 2024; 18:1269577. [PMID: 38389789 PMCID: PMC10881826 DOI: 10.3389/fnins.2024.1269577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Stem cells offer new therapeutic avenues for the repair and replacement of damaged tissues and organs owing to their self-renewal and multipotent differentiation capabilities. In this paper, we conduct a systematic review of the characteristics of various types of stem cells and offer insights into their potential applications in both cellular and cell-free therapies. In addition, we provide a comprehensive summary of the technical routes of stem cell therapy and discuss in detail current challenges, including safety issues and differentiation control. Although some issues remain, stem cell therapy demonstrates excellent potential in the field of regenerative medicine and provides novel tactics and methodologies for managing a wider spectrum of illnesses and traumas.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kun Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Yang Y, Li S, Sun X, Zhang L, Chen M, Fu H. CCN1 secreted by human adipose-derived stem cells enhances wound healing and promotes angiogenesis through activating the AKT signalling pathway. Int Wound J 2023; 20:1667-1677. [PMID: 36541685 PMCID: PMC10088821 DOI: 10.1111/iwj.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
The study aimed to explore the role of cellular communication network factor 1 (CCN1) an extracellular matrix protein in hADSC-treated wound healing. Immunofluorescence and enzyme-linked immunosorbent assays (ELISA) were used to demonstrate the secretion of CCN1 by hADSCs, isolated from human fat tissue. We investigated the role of CCN1 in wound healing by knockdown of CCN1 expression in hADSCs using CCN1 siRNA. Conditioned medium of hADSCs or hADSCs with CCN1 knocked down (hADSC-CMCCN1↓ ) was collected. After treatment with plain DMEM/F12, hADSC-CM, hADSC-CMCCN1↓ , or recombinant human CCN1 (rhCCN1), the wound healing abilities of human umbilical vascular endothelial cells (HUVECs) were assayed, and the AKT, also known as protein kinase B (PKB), signalling pathway was detected using western blotting. Next, we created full-thickness skin wounds on the backs of the mice and different treatments were applied to the wound surface. Wound size was measured using a digital camera on days 0-10, and evaluated. H&E and immunohistochemical staining were performed, and laser Doppler perfusion imaging was used to evaluate blood perfusion. The wound model and wound-healing assay showed that the hADSCs-CM and rhCCN1 groups had enhanced wound healing compared to the hADSCs-CMCCN1↓ group. Further, CCN1 and hADSCs-CM promoted the proliferation and migration of HUVECs through the AKT signalling pathway. We concluded that CCN1 secreted by hADSCs enhances wound healing and promotes angiogenesis by activating the AKT signalling pathway. CCN1 plays a vital role in the regulation of hADSCs-CM during wound healing.
Collapse
Affiliation(s)
- Yi Yang
- Senior Department of Burns and Plastic SurgeryThe Fourth Medical Center of PLA General HospitalBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Shiyi Li
- Senior Department of Burns and Plastic SurgeryThe Fourth Medical Center of PLA General HospitalBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Xuer Sun
- Senior Department of Burns and Plastic SurgeryThe Fourth Medical Center of PLA General HospitalBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Lixia Zhang
- Senior Department of Burns and Plastic SurgeryThe Fourth Medical Center of PLA General HospitalBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Minliang Chen
- Senior Department of Burns and Plastic SurgeryThe Fourth Medical Center of PLA General HospitalBeijingChina
| | - Huijuan Fu
- Senior Department of Burns and Plastic SurgeryThe Fourth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
3
|
Wang M, Wang G, Pang X, Ma J, Yuan J, Pan Y, Fu Y, Laher I, Li S. MOTS-c repairs myocardial damage by inhibiting the CCN1/ERK1/2/EGR1 pathway in diabetic rats. Front Nutr 2023; 9:1060684. [PMID: 36687680 PMCID: PMC9846618 DOI: 10.3389/fnut.2022.1060684] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Cardiac structure remodeling and dysfunction are common complications of diabetes, often leading to serious cardiovascular events. MOTS-c, a mitochondria-derived peptide, regulates metabolic homeostasis by accelerating glucose uptake and improving insulin sensitivity. Plasma levels of MOTS-c are decreased in patients with diabetes. MOTS-c can improve vascular endothelial function, making it a novel therapeutic target for the cardiovascular complications of diabetes. We investigated the effects of MOTS-c on cardiac structure and function and analyzed transcriptomic characteristics in diabetic rats. Our results indicate that treatment with MOTS-c for 8-week repaired myocardial mitochondrial damage and preserved cardiac systolic and diastolic function. Transcriptomic analysis revealed that MOTS-c altered 47 disease causing genes. Functional enrichment analysis indicated MOTS-c attenuated diabetic heart disease involved apoptosis, immunoregulation, angiogenesis and fatty acid metabolism. Moreover, MOTS-c reduced myocardial apoptosis by downregulating CCN1 genes and thereby inhibiting the activation of ERK1/2 and the expression of its downstream EGR1 gene. Our findings identify potential therapeutic targets for the treatment of T2D and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Gangqiang Wang
- Physical Education Section, Chengdu Textile College, Chengdu, China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jinghan Yuan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China,*Correspondence: Shunchang Li,
| |
Collapse
|
4
|
Marinkovic M, Dai Q, Gonzalez AO, Tran ON, Block TJ, Harris SE, Salmon AB, Yeh CK, Dean DD, Chen XD. Matrix-bound Cyr61/CCN1 is required to retain the properties of the bone marrow mesenchymal stem cell niche but is depleted with aging. Matrix Biol 2022; 111:108-132. [PMID: 35752272 PMCID: PMC10069241 DOI: 10.1016/j.matbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Previously, we showed that extracellular matrices (ECMs), produced ex vivo by various types of stromal cells, direct bone marrow mesenchymal stem cells (BM-MSCs) in a tissue-specific manner and recapitulate physiologic changes characteristic of the aging microenvironment. In particular, BM-MSCs obtained from elderly donors and cultured on ECM produced by young BM stromal cells showed improved quantity, quality and osteogenic differentiation. In the present study, we searched for matrix components that are required for a functional BM-MSC niche by comparing ECMs produced by BM stromal cells from "young" (≤25 y/o) versus "elderly" (≥60 y/o) donors. With increasing donor age, ECM fibrillar organization and mechanical integrity deteriorated, along with the ability to promote BM-MSC proliferation and responsiveness to growth factors. Proteomic analyses revealed that the matricellular protein, Cyr61/CCN1, was present in young, but undetectable in elderly, BM-ECM. To assess the role of Cyr61 in the BM-MSC niche, we used genetic methods to down-regulate the incorporation of Cyr61 during production of young ECM and up-regulate its incorporation in elderly ECM. The results showed that Cyr61-depleted young ECM lost the ability to promote BM-MSC proliferation and growth factor responsiveness. However, up-regulating the incorporation of Cyr61 during synthesis of elderly ECM restored its ability to support BM-MSC responsiveness to osteogenic factors such as BMP-2 and IGF-1. We next examined aging bone and compared bone mineral density and Cyr61 content of L4-L5 vertebral bodies in "young" (9-11 m/o) and "elderly" (21-33 m/o) mice. Our analyses showed that low bone mineral density was associated with decreased amounts of Cyr61 in osseous tissue of elderly versus young mice. Our results strongly demonstrate a novel role for ECM-bound Cyr61 in the BM-MSC niche, where it is responsible for retention of BM-MSC proliferation and growth factor responsiveness, while depletion of Cyr61 from the BM niche contributes to an aging-related dysregulation of BM-MSCs. Our results also suggest new potential therapeutic targets for treating age-related bone loss by restoring specific ECM components to the stem cell niche.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States
| | - Qiuxia Dai
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Aaron O Gonzalez
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Travis J Block
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Stephen E Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, TX 78229, United States
| | - Adam B Salmon
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, United States
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, United States
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States.
| |
Collapse
|
5
|
Kim JY, Park S, Oh SY, Nam YH, Choi YM, Choi Y, Kim HY, Jung SY, Kim HS, Jo I, Jung SC. Density-Dependent Differentiation of Tonsil-Derived Mesenchymal Stem Cells into Parathyroid-Hormone-Releasing Cells. Int J Mol Sci 2022; 23:ijms23020715. [PMID: 35054901 PMCID: PMC8775366 DOI: 10.3390/ijms23020715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into endoderm lineages, especially parathyroid-hormone (PTH)-releasing cells. We have previously reported that tonsil-derived MSC (T-MSC) can differentiate into PTH-releasing cells (T-MSC-PTHCs), which restored the parathyroid functions in parathyroidectomy (PTX) rats. In this study, we demonstrate quality optimization by standardizing the differentiation rate for a better clinical application of T-MSC-PTHCs to overcome donor-dependent variation of T-MSCs. Quantitation results of PTH mRNA copy number in the differentiated cells and the PTH concentration in the conditioned medium confirmed that the differentiation efficiency largely varied depending on the cells from each donor. In addition, the differentiation rate of the cells from all the donors greatly improved when differentiation was started at a high cell density (100% confluence). The large-scale expression profiling of T-MSC-PTHCs by RNA sequencing indicated that those genes involved in exiting the differentiation and the cell cycle were the major pathways for the differentiation of T-MSC-PTHCs. Furthermore, the implantation of the T-MSC-PTHCs, which were differentiated at a high cell density embedded in hyaluronic acid, resulted in a higher serum PTH in the PTX model. This standardized efficiency of differentiation into PTHC was achieved by initiating differentiation at a high cell density. Our findings provide a potential solution to overcome the limitations due to donor-dependent variation by establishing a standardized differentiation protocol for the clinical application of T-MSC therapy in treating hypoparathyroidism.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.Y.K.); (S.P.); (Y.H.N.); (Y.C.)
| | - Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.Y.K.); (S.P.); (Y.H.N.); (Y.C.)
| | - Se-Young Oh
- Departments of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.-Y.O.); (Y.M.C.); (I.J.)
| | - Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.Y.K.); (S.P.); (Y.H.N.); (Y.C.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Korea
| | - Young Min Choi
- Departments of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.-Y.O.); (Y.M.C.); (I.J.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Korea
| | - Yeonzi Choi
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.Y.K.); (S.P.); (Y.H.N.); (Y.C.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Korea
| | - Ha Yeong Kim
- Departments of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (H.Y.K.); (S.Y.J.); (H.S.K.)
| | - Soo Yeon Jung
- Departments of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (H.Y.K.); (S.Y.J.); (H.S.K.)
| | - Han Su Kim
- Departments of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (H.Y.K.); (S.Y.J.); (H.S.K.)
| | - Inho Jo
- Departments of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.-Y.O.); (Y.M.C.); (I.J.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Korea
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.Y.K.); (S.P.); (Y.H.N.); (Y.C.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Korea
- Correspondence: ; Tel.: +82-2-6986-6199
| |
Collapse
|
6
|
Cyr61 Alleviates Cholangitis by Inhibiting Cytotoxic Effects of CD8 + T Cells on Biliary Epithelial Cells. Curr Med Sci 2021; 41:1205-1213. [PMID: 34787784 DOI: 10.1007/s11596-021-2458-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/11/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Primary biliary cholangitis (PBC) is a chronic progressive cholestatic liver disease. In recent years, researchers have found that cysteine-rich angiogenic inducer 61 (Cyr61, also known as CCN1) has a potential role in reducing portal inflammation in patients with PBC. This study aimed to explore the relationship between Cyr61 and PBC to provide new ideas and an experimental basis for the clinical treatment of PBC. METHODS After induction of the overexpression of Cyr61 in a mouse model of PBC using recombinant adenovirus, hematoxylin and eosin staining and pathological scores were used to indicate intrahepatic inflammation and bile duct damage. Real-time PCR was used to detect changes in inflammation-related cytokines in the liver. To further study the mechanism, we assessed whether Cyr61 protects bile duct epithelial cells from cytotoxic effects. RESULTS Serum and hepatic Cyr61 levels were increased in the murine model of PBC. Overexpression of Cyr61 alleviated hepatic inflammation and bile duct injury in vivo. Cyr61 inhibited the cytotoxic effects of CD8+ T cells by acting on biliary epithelial cells (BECs) in vitro. CONCLUSION Our results provide novel insight into the pathogenesis of PBC and suggest that Cyr61 plays a dominant role in the cytotoxic effects on BECs in PBC. Consequently, therapeutic strategies targeting Cyr61 could be a potent therapy for PBC.
Collapse
|
7
|
Li Y, Fan S, Xia W, Qiao B, Huang K, Zhou J, Liang M. MiR-181b suppresses angiogenesis by directly targeting cellular communication network factor 1. J Transl Med 2021; 101:1026-1035. [PMID: 33875791 DOI: 10.1038/s41374-021-00596-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/08/2022] Open
Abstract
Angiogenesis is essential for various physiological and pathological processes. Previous studies have shown that miRNAs play an important role in blood vessel development and angiogenesis. Recent studies have suggested that miR-181b might be involved in the regulation of angiogenesis in tumors. However, whether miR-181b plays a role in angiogenesis in nontumor diseases is unclear. We found that miR-181b expression was downregulated in hypoxia-stimulated primary human umbilical vein endothelial cells (HUVECs) and a mouse hindlimb ischemia (HLI) model. Gain- and loss-of-function studies showed that a miR-181b mimic inhibited HUVEC migration and tube formation in vitro, and a miR-181b inhibitor had the opposite effects. In vivo, agomir-181b suppressed perfusion recovery in the HLI model and capillary density in a Matrigel plug assay, while perfusion recovery and capillary density were increased by injection of antagomir-181b. Mechanistically, we showed with a reporter assay that cellular communication network factor 1 (CCN1) was a direct target of miR-181b. Moreover, miR-181b suppressed angiogenesis at least in part by targeting CCN1 to inhibit the AMPK signaling pathway. Our research suggests that miR-181b suppresses angiogenesis by directly targeting CCN1, which provides new clues for pro-angiogenic treatment strategies.
Collapse
Affiliation(s)
- Yue Li
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siyuan Fan
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weichang Xia
- Affiliated Renhe Hospital to China Three Gorges University, Yichang City, China
| | - Baoru Qiao
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jingqun Zhou
- Affiliated Renhe Hospital to China Three Gorges University, Yichang City, China.
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Kwon SS, Kim H, Shin SJ, Lee SY. Optimization of tenocyte lineage-related factors from tonsil-derived mesenchymal stem cells using response surface methodology. J Orthop Surg Res 2020; 15:109. [PMID: 32183870 PMCID: PMC7079471 DOI: 10.1186/s13018-020-01623-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In order to optimize the tenogenic differentiation of mesenchymal stem cells (MSCs), researchers should consider various factors. However, this requires testing numerous experimental settings, which is costly and time-consuming. We aimed to assess the differential effects of transforming growth factor beta-3 (TGF-β3) on the tenogenesis of tonsil-derived MSCs (T-MSCs) and bone marrow-derived MSCs (BM-MSCs) using response surface methodology (RSM). METHODS Bone marrow and tonsillar tissue were collected from four patients; mononuclear cells were separated and treated with 5 or 10 ng/mL of TGF-β3. A full factorial experimental design with a categorical factor of 0 was employed to study the effect of tension based on T-MSCs. Eighty-four trials were fitted with RSM and then used to obtain mathematical prediction models. RESULTS Exposure of T-MSCs and BM-MSCs to TGF-β3 increased the expression of scleraxis (SCX), tenomodulin (TNMD), decorin, collagen I, and tenascin C. Expression of most of these factors reached a maximum after 2-3 days of treatment. The model predicted that the values of the tenocyte lineage-related factors assessed would be significantly increased at 2.5 days of culture with 2.7 ng/mL of TGF-β3 for T-MSCs and at 2.3 days of culture regardless of TGF-β3 concentration for BM-MSCs. CONCLUSIONS This study demonstrated that the RSM prediction of the culture time necessary for the tenogenic differentiation of T-MSCs and BM-MSCs under TGF-β3 stimulation was similar to the experimentally determined time of peak expression of tenocyte-related mRNAs, suggesting the potential of using the RSM approach for optimization of the culture protocol for tenogenesis of MSCs.
Collapse
Affiliation(s)
- Soon-Sun Kwon
- Department of Mathematics, College of Natural Sciences, Ajou University, Suwon, Gyeonggi, Korea
| | - Hyang Kim
- Department of Orthopaedic Surgery, Ewha Womans University Seoul Hospital, Seoul, Korea.,Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Sang-Jin Shin
- Department of Orthopaedic Surgery, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Seung Yeol Lee
- Division of Mechanical & Biomedical Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea. .,Department of Orthopaedic Surgery, Myongji Hospital, Hanyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Oh SY, Choi DH, Jin YM, Yu Y, Kim HY, Kim G, Park YS, Jo I. Optimization of Microenvironments Inducing Differentiation of Tonsil-Derived Mesenchymal Stem Cells into Endothelial Cell-Like Cells. Tissue Eng Regen Med 2019; 16:631-643. [PMID: 31824825 DOI: 10.1007/s13770-019-00221-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Background Stem cell engineering is appealing consideration for regenerating damaged endothelial cells (ECs) because stem cells can differentiate into EC-like cells. In this study, we demonstrate that tonsil-derived mesenchymal stem cells (TMSCs) can differentiate into EC-like cells under optimal physiochemical microenvironments. Methods TMSCs were preconditioned with Dulbecco's Modified Eagle Medium (DMEM) or EC growth medium (EGM) for 4 days and then replating them on Matrigel to observe the formation of a capillary-like network under light microscope. Microarray, quantitative real time polymerase chain reaction, Western blotting and immunofluorescence analyses were used to evaluate the expression of gene and protein of EC-related markers. Results Preconditioning TMSCs in EGM for 4 days and then replating them on Matrigel induced the formation of a capillary-like network in 3 h, but TMSCs preconditioned with DMEM did not form such a network. Genome analyses confirmed that EGM preconditioning significantly affected the expression of genes related to angiogenesis, blood vessel morphogenesis and development, and vascular development. Western blot analyses revealed that EGM preconditioning with gelatin coating induced the expression of endothelial nitric oxide synthase (eNOS), a mature EC-specific marker, as well as phosphorylated Akt at serine 473, a signaling molecule related to eNOS activation. Gelatin-coating during EGM preconditioning further enhanced the stability of the capillary-like network, and also resulted in the network more closely resembled to those observed in human umbilical vein endothelial cells. Conclusion This study suggests that under specific conditions, i.e., EGM preconditioning with gelatin coating for 4 days followed by Matrigel, TMSCs could be a source of generating endothelial cells for treating vascular dysfunction.
Collapse
Affiliation(s)
- Se-Young Oh
- 1Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea.,2Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Da Hyeon Choi
- 3School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644 Republic of Korea
| | - Yoon Mi Jin
- 1Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea.,2Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Yeonsil Yu
- 1Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea.,2Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Ha Yeong Kim
- 1Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea.,2Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea.,4Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Gyungah Kim
- 1Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea.,2Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Yoon Shin Park
- 3School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644 Republic of Korea
| | - Inho Jo
- 1Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea.,2Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| |
Collapse
|
10
|
You Y, Wen DG, Gong JP, Liu ZJ. Research Status of Mesenchymal Stem Cells in Liver Transplantation. Cell Transplant 2019; 28:1490-1506. [PMID: 31512503 PMCID: PMC6923564 DOI: 10.1177/0963689719874786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver transplantation has been deemed the best choice for end-stage liver disease
patients but immune rejection after surgery is still a serious problem. Patients have to
take immunosuppressive drugs for a long time after liver transplantation, and this often
leads to many side effects. Mesenchymal stem cells (MSCs) gradually became of interest to
researchers because of their powerful immunomodulatory effects. In the past, a large
number of in vitro and in vivo studies have demonstrated the great potential of MSCs for
participation in posttransplant immunomodulation. In addition, MSCs also have properties
that may potentially benefit patients undergoing liver transplantation. This article aims
to provide an overview of the current understanding of the immunomodulation achieved by
the application of MSCs in liver transplantation, to discuss the problems that may be
encountered when using MSCs in clinical practice, and to describe some of the underlying
capabilities of MSCs in liver transplantation. Cell–cell contact, soluble molecules, and
exosomes have been suggested to be critical approaches to MSCs’ immunoregulation in vitro;
however, the exact mechanism, especially in vivo, is still unclear. In recent years, the
clinical safety of MSCs has been proven by a series of clinical trials. The obstacles to
the clinical application of MSCs are decreasing, but large sample clinical trials
involving MSCs are still needed to further study their clinical effects.
Collapse
Affiliation(s)
- Yu You
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Di-Guang Wen
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Jian-Ping Gong
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| | - Zuo-Jin Liu
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
11
|
da Cunha BR, Domingos C, Stefanini ACB, Henrique T, Polachini GM, Castelo-Branco P, Tajara EH. Cellular Interactions in the Tumor Microenvironment: The Role of Secretome. J Cancer 2019; 10:4574-4587. [PMID: 31528221 PMCID: PMC6746126 DOI: 10.7150/jca.21780] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/25/2019] [Indexed: 02/06/2023] Open
Abstract
Over the past years, it has become evident that cancer initiation and progression depends on several components of the tumor microenvironment, including inflammatory and immune cells, fibroblasts, endothelial cells, adipocytes, and extracellular matrix. These components of the tumor microenvironment and the neoplastic cells interact with each other providing pro and antitumor signals. The tumor-stroma communication occurs directly between cells or via a variety of molecules secreted, such as growth factors, cytokines, chemokines and microRNAs. This secretome, which derives not only from tumor cells but also from cancer-associated stromal cells, is an important source of key regulators of the tumorigenic process. Their screening and characterization could provide useful biomarkers to improve cancer diagnosis, prognosis, and monitoring of treatment responses.
Collapse
Affiliation(s)
- Bianca Rodrigues da Cunha
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Célia Domingos
- Department of Biomedical Sciences and Medicine, University of Algarve, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Ana Carolina Buzzo Stefanini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Giovana Mussi Polachini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Pedro Castelo-Branco
- Department of Biomedical Sciences and Medicine, University of Algarve, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Gambelas, Faro, Portugal
| | - Eloiza Helena Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| |
Collapse
|
12
|
Zhang L, Virgous C, Si H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J Nutr Biochem 2019; 69:19-30. [DOI: 10.1016/j.jnutbio.2019.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022]
|
13
|
Tsou PS, Khanna D, Sawalha AH. Identification of Cysteine-Rich Angiogenic Inducer 61 as a Potential Antifibrotic and Proangiogenic Mediator in Scleroderma. Arthritis Rheumatol 2019; 71:1350-1359. [PMID: 30884213 DOI: 10.1002/art.40890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/12/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We previously identified CYR61 as a histone deacetylase 5 (HDAC-5)-repressed gene in systemic sclerosis (SSc; scleroderma) endothelial cells (ECs). When overexpressed, cysteine-rich angiogenic inducer 61 (CYR-61) promoted angiogenesis in SSc ECs. This study was undertaken to examine the role of CYR-61 in fibrosis and determine the mechanisms involved in CYR-61-mediated angiogenesis in SSc. METHODS Dermal ECs and fibroblasts were isolated from biopsy specimens from healthy subjects and patients with SSc. CYR-61 level was determined by quantitative polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. CYR-61 was overexpressed using a CYR61 vector or knocked down using small interfering RNA, and functional and mechanistic studies were then conducted in fibroblasts and ECs. RESULTS Lower CYR61 messenger RNA levels were observed in dermal fibroblasts and ECs from SSc patients than in those from healthy controls. In SSc fibroblasts, overexpression of CYR-61 led to significant reduction in the expression of profibrotic genes, including COL1A1 (P = 0.002) and ACTA2 (P = 0.04), and an increase in the expression of matrix-degrading genes, including MMP1 (P = 0.002) and MMP3 (P =0.004), and proangiogenic VEGF (P = 0.03). The antifibrotic effect of CYR-61 was further demonstrated by delay in wound healing, inhibition of gel contraction, inactivation of the transforming growth factor β pathway, and early superoxide production associated with senescence in SSc fibroblasts. In SSc ECs, overexpression of CYR-61 led to increased production of vascular endothelial cell growth factor. The proangiogenic effects of CYR-61 were mediated by signaling through αvβ3 receptors and downstream activation of AMP-activated protein kinase, AKT, and the endothelial cell nitric oxide synthase/nitric oxide pathway system. CONCLUSION CYR-61, which is epigenetically regulated by HDAC-5, is a potent antifibrotic and proangiogenic mediator in SSc. Therapeutic intervention to promote CYR-61 activity or increase CYR-61 levels might be of benefit in SSc.
Collapse
|
14
|
Chen W, Xia P, Wang H, Tu J, Liang X, Zhang X, Li L. The endothelial tip-stalk cell selection and shuffling during angiogenesis. J Cell Commun Signal 2019; 13:291-301. [PMID: 30903604 DOI: 10.1007/s12079-019-00511-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis is a critical, fine-tuned, multi-staged biological process. Tip-stalk cell selection and shuffling are the building blocks of sprouting angiogenesis. Accumulated evidences show that tip-stalk cell selection and shuffling are regulated by a variety of physical, chemical and biological factors, especially the interaction among multiple genes, their products and environments. The classic Notch-VEGFR, Slit-Robo, ECM-binding integrin, semaphorin and CCN family play important roles in tip-stalk cell selection and shuffling. In this review, we outline the progress and prospect in the mechanism and the roles of the various molecules and related signaling pathways in endothelial tip-stalk cell selection and shuffling. In the future, the regulators of tip-stalk cell selection and shuffling would be the potential markers and targets for angiogenesis.
Collapse
Affiliation(s)
- Wenqi Chen
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Xia
- Department of Anesthesia, Jilin Provincial People's Hospital, Changchun, China
| | - Heping Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Jihao Tu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xinyue Liang
- The First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- The First Hospital of Jilin University, Changchun, China. .,Institute of Immunology, Jilin University, Changchun, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
15
|
Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism. Proc Natl Acad Sci U S A 2018; 115:E11128-E11137. [PMID: 30385632 DOI: 10.1073/pnas.1814044115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS), the most common primary bone tumor, is highly metastatic with high chemotherapeutic resistance and poor survival rates. Using induced pluripotent stem cells (iPSCs) generated from Li-Fraumeni syndrome (LFS) patients, we investigate an oncogenic role of secreted frizzled-related protein 2 (SFRP2) in p53 mutation-associated OS development. Interestingly, we find that high SFRP2 expression in OS patient samples correlates with poor survival. Systems-level analyses identified that expression of SFRP2 increases during LFS OS development and can induce angiogenesis. Ectopic SFRP2 overexpression in normal osteoblast precursors is sufficient to suppress normal osteoblast differentiation and to promote OS phenotypes through induction of oncogenic molecules such as FOXM1 and CYR61 in a β-catenin-independent manner. Conversely, inhibition of SFRP2, FOXM1, or CYR61 represses the tumorigenic potential. In summary, these findings demonstrate the oncogenic role of SFRP2 in the development of p53 mutation-associated OS and that inhibition of SFRP2 is a potential therapeutic strategy.
Collapse
|
16
|
Park S, Jung N, Myung S, Choi Y, Chung KW, Choi BO, Jung SC. Differentiation of Human Tonsil-Derived Mesenchymal Stem Cells into Schwann-Like Cells Improves Neuromuscular Function in a Mouse Model of Charcot-Marie-Tooth Disease Type 1A. Int J Mol Sci 2018; 19:ijms19082393. [PMID: 30110925 PMCID: PMC6121309 DOI: 10.3390/ijms19082393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 01/18/2023] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited motor and sensory neuropathy, and is caused by duplication of PMP22, alterations of which are a characteristic feature of demyelination. The clinical phenotype of CMT1A is determined by the degree of axonal loss, and patients suffer from progressive muscle weakness and impaired sensation. Therefore, we investigated the potential of Schwann-like cells differentiated from human tonsil-derived stem cells (T-MSCs) for use in neuromuscular regeneration in trembler-J (Tr-J) mice, a model of CMT1A. After differentiation, we confirmed the increased expression of Schwann cell (SC) markers, including glial fibrillary acidic protein (GFAP), nerve growth factor receptor (NGFR), S100 calcium-binding protein B (S100B), glial cell-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF), which suggests the differentiation of T-MSCs into SCs (T-MSC-SCs). To test their functional efficiency, the T-MSC-SCs were transplanted into the caudal thigh muscle of Tr-J mice. Recipients’ improved locomotive activity on a rotarod test, and their sciatic function index, which suggests that transplanted T-MSC-SCs ameliorated demyelination and atrophy of nerve and muscle in Tr-J mice. Histological and molecular analyses showed the possibility of in situ remyelination by T-MSC-SCs transplantation. These findings demonstrate that the transplantation of heterologous T-MSC-SCs induced neuromuscular regeneration in mice and suggest they could be useful for the therapeutic treatment of patients with CMT1A disease.
Collapse
Affiliation(s)
- Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07985, Korea.
| | - Namhee Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07985, Korea.
| | - Seoha Myung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07985, Korea.
| | - Yoonyoung Choi
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07985, Korea.
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea.
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07985, Korea.
| |
Collapse
|
17
|
Huang YT, Lan Q, Lorusso G, Duffey N, Rüegg C. The matricellular protein CYR61 promotes breast cancer lung metastasis by facilitating tumor cell extravasation and suppressing anoikis. Oncotarget 2018; 8:9200-9215. [PMID: 27911269 PMCID: PMC5354725 DOI: 10.18632/oncotarget.13677] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/19/2016] [Indexed: 12/22/2022] Open
Abstract
Matricellular proteins play multiple roles in primary tumor growth, local invasion and tumor angiogenesis. However, their contribution to metastasis and the putative mechanisms involved are less well characterized. In ER-negative human breast cancer, elevated expression levels of the matricellular protein Cysteine-rich angiogenic inducer 61 (CYR61) are associated with more aggressive progression. Here, we investigated the role of CYR61 in breast cancer lung metastasis using the triple negative human breast cancer cell lines MDA-MB-231 and SUM159. Silencing of CYR61 significantly decreased lung metastasis from tumors orthotopically implanted in pre-irradiated or naive mammary tissue and upon tail vein injection. Constitutive CYR61 silencing impaired cancer cell extravasation to the lung during the first 24 hours after tail vein injection. In contrast, CYR61 inducible silencing starting 24 hours after cancer cell injection had no impact on lung metastasis formation. In vitro experiments revealed that CYR61 silencing decreased cancer cell transendothelial migration and motility, reduced CYR61 levels present at the cell surface and sensitized cancer cells to anoikis. Furthermore, we demonstrate that CYR61-dependent cell survival under non-adhesive conditions relied, at least partially, on β1 integrin ligation and AMPKα signaling while it was independent of AKT, FAK and ERK1/2 activation. Our data provide the first evidence that CYR61 promotes breast cancer lung metastasis by facilitating tumor cell extravasation and protecting from anoikis during initial seeding to the lung. The uncovered CYR61-β1 integrin-AMPKα axis may serve as a potential therapeutic target to prevent breast cancer metastasis to the lung.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.,National Center for Competence in Research (NCCR), Molecular Oncology, Swiss Institute for Experimental Cancer Research (ISREC)-Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Qiang Lan
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.,National Center for Competence in Research (NCCR), Molecular Oncology, Swiss Institute for Experimental Cancer Research (ISREC)-Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Girieca Lorusso
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.,National Center for Competence in Research (NCCR), Molecular Oncology, Swiss Institute for Experimental Cancer Research (ISREC)-Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nathalie Duffey
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.,National Center for Competence in Research (NCCR), Molecular Oncology, Swiss Institute for Experimental Cancer Research (ISREC)-Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
18
|
Park S, Choi Y, Kwak G, Hong YB, Jung N, Kim J, Choi BO, Jung SC. Application of differentiated human tonsil-derived stem cells to trembler-J mice. Muscle Nerve 2017; 57:478-486. [PMID: 28796340 DOI: 10.1002/mus.25763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) can differentiate into various cell types. METHODS In this study we investigated the potential of human tonsil-derived MSCs (T-MSCs) for neuromuscular regeneration in trembler-J (Tr-J) mice, a model for Charcot-Marie-Tooth disease type 1A (CMT1A). RESULTS T-MSCs differentiated toward skeletal myocytes with increased expression of skeletal muscle-related markers (including troponin I type 1, and myogenin), and the formation of myotubes in vitro. In-situ transplantation of T-MSC-derived myocytes (T-MSC myocytes) into the gastrocnemius muscle in Tr-J mice enhanced motor function, with recovery of compound muscle action potential amplitudes. Morphology of the sciatic nerve and skeletal muscle recovered without the formation of teratomas, and the expression levels of nerve growth factor and glial-cell-line-derived neurotrophic factor were increased significantly in T-MSC myocytes compared with T-MSCs in vitro. DISCUSSION Transplantation of T-MSC myocytes could enable neuromuscular regeneration in patients with CMT1A. Muscle Nerve 57: 478-486, 2018.
Collapse
Affiliation(s)
- Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, 1071 Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Yoonyoung Choi
- Department of Biochemistry, College of Medicine, Ewha Womans University, 1071 Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Geon Kwak
- Department of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Young Bin Hong
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Namhee Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, 1071 Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Jieun Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, 1071 Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, 1071 Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| |
Collapse
|
19
|
Hsiao YC, Chu LJ, Chen JT, Yeh TS, Yu JS. Proteomic profiling of the cancer cell secretome: informing clinical research. Expert Rev Proteomics 2017; 14:737-756. [PMID: 28695748 DOI: 10.1080/14789450.2017.1353913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cancer represents one of the major causes of human deaths. Identification of proteins as biomarkers for early detection of cancer and therapeutic targets for cancer treatment are important issues in precision medicine. Secretome of cancer cells represents the collection of proteins secreted or shed from cancer cells. Proteomic profiling of the cancer cell secretome has been proven to be a convenient and efficient way to discover cancer biomarker and/or therapeutic targets. Areas covered: There have been numerous reviews describing the history and application of secretome analysis in cancer biomarker/therapeutic target research. The present review focuses on the technological advancement for profiling low-molecular-mass proteins in secretome, the latest information regarding the new candidate biomarkers and molecular mechanisms discovered on the basis of cancer cell secretome analysis, as well as the previously discovered candidate biomarkers that enter into clinical trials. Expert commentary: Current technologies for protein sample preparation/separation and MS-based protein identification have allowed in-depth analysis of cancer cell secretome. Future efforts should focus on the comprehensiveness of cancer cell secretome, meta-analysis of different secretome datasets and integrated analysis via combining other omics datasets, as well as the incorporation of MS-based biomarker verification pipeline into both preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Yung-Chin Hsiao
- a Molecular Medicine Research Center , Chang Gung University , Taoyuan , Taiwan.,b Liver Research Center , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Lichieh Julie Chu
- a Molecular Medicine Research Center , Chang Gung University , Taoyuan , Taiwan.,b Liver Research Center , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Jeng-Ting Chen
- c Department of Surgery , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Ta-Sen Yeh
- c Department of Surgery , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Jau-Song Yu
- a Molecular Medicine Research Center , Chang Gung University , Taoyuan , Taiwan.,b Liver Research Center , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan.,d Department of Cell and Molecular Biology , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| |
Collapse
|
20
|
Yu Y, Lee SY, Yang EJ, Kim HY, Jo I, Shin SJ. Expression of tenocyte lineage-related factors from tonsil-derived mesenchymal stem cells. Tissue Eng Regen Med 2016; 13:162-170. [PMID: 30603396 DOI: 10.1007/s13770-016-9134-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 01/11/2023] Open
Abstract
Human palatine tonsil-derived mesenchymal stem cells (TMSCs) are known to be a new source of progenitor cells. Using waste tissue after tonsillectomy as a cell provider can be the biggest benefit of TMSCs, compared with other stem cells. The purpose of this study was to investigate tenogenic differentiation of TMSCs and to access the differential effects of transforming growth factor beta 3 (TGF-β3) on the tenogenesis of TMSCs. Human tonsil was obtained after tonsillectomy. Using a cytometric analysis, we were able to find that the TMSCs had typical mesenchymal stem cell markers: positive for CD73, CD90, and CD105, and negative for CD14, CD34, and CD45. Using TGF-β3, the expressions of tenocyte-specific genes and proteins, such as collagen type 1 (COL1), tenomodulin (TNMD), and scleraxis (SCX), were measured by a quantitative polymerase chain reaction (PCR), immunofluorescence staining, immunohistochemistry and Western blot analyses. Quantitative PCR assay showed that TGF-β3 significantly increased the expressions of tenocyte lineage marker genes, including COL1, TNMD, and SCX, at a 3-day treatment, compared with control. However, these increases were not found at long-term exposures (7 or 10 days), except that TNMD expression was maintained at 50 ng/mL at a 7-day exposure to TGF-β3. Like genes, the protein expression levels of COL1, TNMD, and SCX were also induced in TGF-β3-treated TMSCs in a 3-day treatment, which were maintained for 10 days, as evidenced by immunofluorescence staining, immunohistochemistry and Western blot analyses. This study demonstrated that TMSCs in tenogenic stimulation with TGF-β3 have a high tenogenic differentiation potential.
Collapse
Affiliation(s)
- Yeonsil Yu
- 1Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Korea.,3Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Korea
| | - Seung Yeol Lee
- 2Department of Orthopaedic Surgery, School of Medicine, Ewha Womans University, Seoul, Korea.,3Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Korea
| | - Eun-Ji Yang
- 2Department of Orthopaedic Surgery, School of Medicine, Ewha Womans University, Seoul, Korea.,3Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Korea
| | - Ha Yeong Kim
- 1Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Korea.,3Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Korea
| | - Inho Jo
- 1Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Korea.,3Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Korea
| | - Sang-Jin Shin
- 2Department of Orthopaedic Surgery, School of Medicine, Ewha Womans University, Seoul, Korea.,3Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
21
|
Park S, Choi Y, Jung N, Yu Y, Ryu KH, Kim HS, Jo I, Choi BO, Jung SC. Myogenic differentiation potential of human tonsil-derived mesenchymal stem cells and their potential for use to promote skeletal muscle regeneration. Int J Mol Med 2016; 37:1209-20. [PMID: 27035161 PMCID: PMC4829138 DOI: 10.3892/ijmm.2016.2536] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/11/2016] [Indexed: 12/13/2022] Open
Abstract
Stem cells are regarded as an important source of cells which may be used to promote the regeneration of skeletal muscle (SKM) which has been damaged due to defects in the organization of muscle tissue caused by congenital diseases, trauma or tumor removal. In particular, mesenchymal stem cells (MSCs), which require less invasive harvesting techniques, represent a valuable source of cells for stem cell therapy. In the present study, we demonstrated that human tonsil-derived MSCs (T-MSCs) may differentiate into myogenic cells in vitro and that the transplantation of myoblasts and myocytes generated from human T-MSCs mediates the recovery of muscle function in vivo. In order to induce myogenic differentiation, the T-MSC-derived spheres were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F-12 (DMEM/F-12) supplemented with 1 ng/ml transforming growth factor-β, non-essential amino acids and insulin-transferrin-selenium for 4 days followed by culture in myogenic induction medium [low-glucose DMEM containing 2% fetal bovine serum (FBS) and 10 ng/ml insulin-like growth factor 1 (IGF1)] for 14 days. The T-MSCs sequentially differentiated into myoblasts and skeletal myocytes, as evidenced by the increased expression of skeletal myogenesis-related markers [including α-actinin, troponin I type 1 (TNNI1) and myogenin] and the formation of myotubes in vitro. The in situ transplantation of T-MSCs into mice with a partial myectomy of the right gastrocnemius muscle enhanced muscle function, as demonstrated by gait assessment (footprint analysis), and restored the shape of SKM without forming teratomas. Thus, T-MSCs may differentiate into myogenic cells and effectively regenerate SKM following injury. These results demonstrate the therapeutic potential of T-MSCs to promote SKM regeneration following injury.
Collapse
Affiliation(s)
- Saeyoung Park
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Yoonyoung Choi
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Namhee Jung
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Yeonsil Yu
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| |
Collapse
|
22
|
Zhang F, Zhang Z, Sun D, Dong S, Xu J, Dai F. Periostin: A Downstream Mediator of EphB4-Induced Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:7241829. [PMID: 26788070 PMCID: PMC4695675 DOI: 10.1155/2016/7241829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/05/2015] [Accepted: 08/24/2015] [Indexed: 01/06/2023] Open
Abstract
Erythropoietin-producing hepatocyte B4 (EphB4) has been reported to be a key molecular switch in the regulation of bone homeostasis, but the underlying mechanism remains poorly understood. In this study, we investigated the role of EphB4 in regulating the expression of periostin (POSTN) within bone marrow-derived mesenchymal stem cells (MSCs) and assessed its effect and molecular mechanism of osteogenic induction in vitro. Treatment with ephrinB2-FC significantly increased the expression of POSTN in MSCs, and the inhibition of EphB4 could abrogate this effect. In addition, osteogenic markers were upregulated especially in MSCs overexpressing EphB4. To elucidate the underlying mechanism of cross talk between EphB4 and the Wnt pathway, we detected the change in protein expression of phosphorylated-glycogen synthase kinase 3β-serine 9 (p-GSK-3β-Ser9) and β-catenin, as well as the osteogenic markers Runx2 and COL1. The results showed that GSK-3β activation and osteogenic marker expression levels were downregulated by ephrinB2-FC treatment, but these effects were inhibited by blocking integrin αvβ3 in MSCs. Our findings demonstrate that EphB4 can promote osteogenic differentiation of MSCs via upregulation of POSTN expression. It not only helps to reveal the interaction mechanism between EphB4 and Wnt pathway but also brings a better understanding of EphB4/ephrinB2 signaling in bone homeostasis.
Collapse
Affiliation(s)
- Fei Zhang
- National & Regional United Engineering Laboratory of Tissue Engineering, Third Military Medical University, Chongqing 400038, China
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zehua Zhang
- National & Regional United Engineering Laboratory of Tissue Engineering, Third Military Medical University, Chongqing 400038, China
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Dong Sun
- National & Regional United Engineering Laboratory of Tissue Engineering, Third Military Medical University, Chongqing 400038, China
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Shiwu Dong
- National & Regional United Engineering Laboratory of Tissue Engineering, Third Military Medical University, Chongqing 400038, China
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - Jianzhong Xu
- National & Regional United Engineering Laboratory of Tissue Engineering, Third Military Medical University, Chongqing 400038, China
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- *Jianzhong Xu: and
| | - Fei Dai
- National & Regional United Engineering Laboratory of Tissue Engineering, Third Military Medical University, Chongqing 400038, China
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- *Fei Dai:
| |
Collapse
|
23
|
Hwang S, Lee HJ, Kim G, Won KJ, Park YS, Jo I. CCN1 acutely increases nitric oxide production via integrin αvβ3-Akt-S6K-phosphorylation of endothelial nitric oxide synthase at the serine 1177 signaling axis. Free Radic Biol Med 2015; 89:229-40. [PMID: 26393424 DOI: 10.1016/j.freeradbiomed.2015.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 07/14/2015] [Accepted: 08/05/2015] [Indexed: 11/30/2022]
Abstract
Although CCN1 (also known as cysteine-rich, angiogenic inducer 61, CYR61) has been reported to promote angiogenesis and neovascularization in endothelial cells (ECs), its effects on endothelial nitric oxide (NO) production have never been studied. Using human umbilical vein ECs, we investigated whether and how CCN1 regulates NO production. CCN1 acutely increased NO production in a time- and dose-dependent manner, which was accompanied by increased phosphorylation of endothelial NO synthase (eNOS) at serine 1177 (eNOS-Ser(1177)), but not that of eNOS-Thr(495) or eNOS-Ser(114). The level of total eNOS expression was unaltered. Treatment with either LY294002, a selective inhibitor of phosphoinositide 3-kinase known as an upstream kinase of Akt, or H-89, an inhibitor of protein kinase A, mitogen- and stress-activated protein kinase 1, Rho-associated protein kinase 2, and ribosomal protein S6 kinase (S6K), inhibited CCN1-stimulated eNOS-Ser(1177) phosphorylation and subsequent NO production. Ectopic expression of small interfering RNA against Akt and S6K significantly inhibited the effects of CCN1. Consistently, CCN1 increased the phosphorylation of Akt-Ser(473) and S6K-Thr(389). However, CCN1 did not alter the expression or secretion of VEGF, a known downstream factor of CCN1 and a potential upstream factor of Akt-mediated eNOS-Ser(1177) phosphorylation. Furthermore, neutralization of integrin αvβ3 with corresponding antibody completely reversed all of the observed effects of CCN1. Moreover, CCN1 increased acetylcholine-induced relaxation in the rat aortas. Finally, we also found that CCN1-stimulated eNOS-Ser(1177) phosphorylation and NO production are true for other types of EC tested. In conclusion, CCN1 acutely increases NO production via activation of a signaling axis in integrin αvβ3-Akt-S6K-eNOS-Ser(1177) phosphorylation, suggesting an important role for CCN1 in vasodilation.
Collapse
Affiliation(s)
- Soojin Hwang
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Hyeon-Ju Lee
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Gyungah Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Kyung-Jong Won
- Department of Medical Science, School of Medicine, Konkuk University, Chungju 380-701, Republic of Korea
| | - Yoon Shin Park
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea.
| |
Collapse
|
24
|
Snow-Lisy DC, Diaz EC, Bury MI, Fuller NJ, Hannick JH, Ahmad N, Sharma AK. The Role of Genetically Modified Mesenchymal Stem Cells in Urinary Bladder Regeneration. PLoS One 2015; 10:e0138643. [PMID: 26398705 PMCID: PMC4580420 DOI: 10.1371/journal.pone.0138643] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023] Open
Abstract
Recent studies have demonstrated that mesenchymal stem cells (MSCs) combined with CD34+ hematopoietic/stem progenitor cells (HSPCs) can function as surrogate urinary bladder cells to synergistically promote multi-faceted bladder tissue regeneration. However, the molecular pathways governing these events are unknown. The pleiotropic effects of Wnt5a and Cyr61 are known to affect aspects of hematopoiesis, angiogenesis, and muscle and nerve regeneration. Within this study, the effects of Cyr61 and Wnt5a on bladder tissue regeneration were evaluated by grafting scaffolds containing modified human bone marrow derived MSCs. These cell lines were engineered to independently over-express Wnt5a or Cyr61, or to exhibit reduced expression of Cyr61 within the context of a nude rat bladder augmentation model. At 4 weeks post-surgery, data demonstrated increased vessel number (~250 vs ~109 vessels/mm2) and bladder smooth muscle content (~42% vs ~36%) in Cyr61OX (over-expressing) vs Cyr61KD (knock-down) groups. Muscle content decreased to ~25% at 10 weeks in Cyr61KD groups. Wnt5aOX resulted in high numbers of vessels and muscle content (~206 vessels/mm2 and ~51%, respectively) at 4 weeks. Over-expressing cell constructs resulted in peripheral nerve regeneration while Cyr61KD animals were devoid of peripheral nerve regeneration at 4 weeks. At 10 weeks post-grafting, peripheral nerve regeneration was at a minimal level for both Cyr61OX and Wnt5aOX cell lines. Blood vessel and bladder functionality were evident at both time-points in all animals. Results from this study indicate that MSC-based Cyr61OX and Wnt5aOX cell lines play pivotal roles with regards to increasing the levels of functional vasculature, influencing muscle regeneration, and the regeneration of peripheral nerves in a model of bladder augmentation. Wnt5aOX constructs closely approximated the outcomes previously observed with the co-transplantation of MSCs with CD34+ HSPCs and may be specifically targeted as an alternate means to achieve functional bladder regeneration.
Collapse
Affiliation(s)
- Devon C. Snow-Lisy
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL, United States of America
| | - Edward C. Diaz
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL, United States of America
| | - Matthew I. Bury
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL, United States of America
| | - Natalie J. Fuller
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL, United States of America
| | - Jessica H. Hannick
- Department of Urology, Loyola University Health System, Maywood, IL, United States of America
| | - Nida Ahmad
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL, United States of America
| | - Arun K. Sharma
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL, United States of America
- Northwestern University Feinberg School of Medicine, Department of Urology, Chicago, IL, United States of America
- Northwestern University, Simpson Querrey Institute for BioNanotechnology, Chicago, IL, United States of America
- Northwestern University, Department of Biomedical Engineering, Evanston, IL, United States of America
- * E-mail:
| |
Collapse
|
25
|
Wu F, Song H, Zhang Y, Zhang Y, Mu Q, Jiang M, Wang F, Zhang W, Li L, Li H, Wang Y, Zhang M, Li S, Yang L, Meng Y, Tang D. Irisin Induces Angiogenesis in Human Umbilical Vein Endothelial Cells In Vitro and in Zebrafish Embryos In Vivo via Activation of the ERK Signaling Pathway. PLoS One 2015; 10:e0134662. [PMID: 26241478 PMCID: PMC4524626 DOI: 10.1371/journal.pone.0134662] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/13/2015] [Indexed: 11/18/2022] Open
Abstract
As a link between exercise and metabolism, irisin is assumed to be involved in increased total body energy expenditure, reduced body weight, and increased insulin sensitivity. Although our recent evidence supported the contribution of irisin to vascular endothelial cell (ECs) proliferation and apoptosis, further research of irisin involvement in the angiogenesis of ECs was not conclusive. In the current study, it was found that irisin promoted Human Umbilical Vein Endothelial Cell (HUVEC) angiogenesis via increasing migration and tube formation, and attenuated chemically-induced intersegmental vessel (ISV) angiogenic impairment in transgenic TG (fli1: GFP) zebrafish. It was further demonstrated that expression of matrix metalloproteinase (MMP) 2 and 9 were also up-regulated in endothelial cells. We also found that irisin activated extracellular signal–related kinase (ERK) signaling pathways. Inhibition of ERK signaling by using U0126 decreased the pro-migration and pro-angiogenic effect of irisin on HUVEC. Also, U0126 inhibited the elevated expression of MMP-2 and MMP-9 when they were treated with irisin. In summary, these findings provided direct evidence that irisin may play a pivotal role in maintaining endothelium homeostasis by promoting endothelial cell angiogenesis via the ERK signaling pathway.
Collapse
Affiliation(s)
- Fei Wu
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Haibo Song
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Yuan Zhang
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Yuzhu Zhang
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Qian Mu
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Miao Jiang
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Fang Wang
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Wen Zhang
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Liang Li
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Huanjie Li
- Jinan Central Hospital Affiliated to Shandong University, Jinan, 250012, P.R. China
| | - Yunshan Wang
- Jinan Central Hospital Affiliated to Shandong University, Jinan, 250012, P.R. China
| | - Mingxiang Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Shiwu Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Lijun Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Yan Meng
- Department of Urology, The Second Hospital of Shandong University, Jinan, 250012, P.R. China
- * E-mail: (DT); (YM)
| | - Dongqi Tang
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan, 250012, P.R. China
- * E-mail: (DT); (YM)
| |
Collapse
|
26
|
Chang W, Kim R, Park SI, Jung YJ, Ham O, Lee J, Kim JH, Oh S, Lee MY, Kim J, Park MS, Chung YA, Hwang KC, Maeng LS. Enhanced Healing of Rat Calvarial Bone Defects with Hypoxic Conditioned Medium from Mesenchymal Stem Cells through Increased Endogenous Stem Cell Migration via Regulation of ICAM-1 Targeted-microRNA-221. Mol Cells 2015; 38:643-50. [PMID: 26062554 PMCID: PMC4507031 DOI: 10.14348/molcells.2015.0050] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 01/08/2023] Open
Abstract
The use of conditioned medium from mesenchymal stem cells may be a feasible approach for regeneration of bone defects through secretion of various components of mesenchymal stem cells such as cytokines, chemokines, and growth factors. Mesenchymal stem cells secrete and accumulate multiple factors in conditioned medium under specific physiological conditions. In this study, we investigated whether the conditioned medium collected under hypoxic condition could effectively influence bone regeneration through enhanced migration and adhesion of endogenous mesenchymal stem cells. Cell migration and adhesion abilities were increased through overexpression of intercellular adhesion molecule-1 in hypoxic conditioned medium treated group. Intercellular adhesion molecule-1 was upregulated by microRNA-221 in mesenchymal stem cells because microRNAs are key regulators of various biological functions via gene expression. To investigate the effects in vivo, evaluation of bone regeneration by computed tomography and histological assays revealed that osteogenesis was enhanced in the hypoxic conditioned medium group relative to the other groups. These results suggest that behavioral changes of endogenous mesenchymal stem cells through microRNA-221 targeted-intercellular adhesion molecule-1 expression under hypoxic conditions may be a potential treatment for patients with bone defects.
Collapse
Affiliation(s)
- Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735,
Korea
| | - Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735,
Korea
| | - Sang In Park
- Institute of Catholic Integrative Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, College of Medicine, Incheon 403-720,
Korea
| | - Yu Jin Jung
- EIT/LOFUS Research Center, International St. Mary’s Hospital, Catholic Kwandong University, Incheon 404-834,
Korea
| | - Onju Ham
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752,
Korea
| | - Jihyun Lee
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735,
Korea
| | - Ji Hyeong Kim
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735,
Korea
| | - Sekyung Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305,
USA
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu 702-701,
Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Moon-Seo Park
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735,
Korea
| | - Yong-An Chung
- Institute of Catholic Integrative Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, College of Medicine, Incheon 403-720,
Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon 210-701,
Korea
- Catholic Kwandong University International, St. Mary’s Hospital, Incheon 404-834,
Korea
| | - Lee-So Maeng
- Institute of Catholic Integrative Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, College of Medicine, Incheon 403-720,
Korea
| |
Collapse
|