1
|
Feng S, Lou K, Luo C, Zou J, Zou X, Zhang G. Obesity-Related Cross-Talk between Prostate Cancer and Peripheral Fat: Potential Role of Exosomes. Cancers (Basel) 2022; 14:5077. [PMID: 36291860 PMCID: PMC9600017 DOI: 10.3390/cancers14205077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms of obesity-induced cancer progression have been extensively explored because of the significant increase in obesity and obesity-related diseases worldwide. Studies have shown that obesity is associated with certain features of prostate cancer. In particular, bioactive factors released from periprostatic adipose tissues mediate the bidirectional communication between periprostatic adipose tissue and prostate cancer. Moreover, recent studies have shown that extracellular vesicles have a role in the relationship between tumor peripheral adipose tissue and cancer progression. Therefore, it is necessary to investigate the feedback mechanisms between prostate cancer and periglandular adipose and the role of exosomes as mediators of signal exchange to understand obesity as a risk factor for prostate cancer. This review summarizes the two-way communication between prostate cancer and periglandular adipose and discusses the potential role of exosomes as a cross-talk and the prospect of using adipose tissue as a means to obtain exosomes in vitro. Therefore, this review may provide new directions for the treatment of obesity to suppress prostate cancer.
Collapse
Affiliation(s)
- Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Cong Luo
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou 341000, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou 341000, China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou 341000, China
| |
Collapse
|
2
|
Nishi K, Fu W, Kiyama R. Novel estrogen-responsive genes (ERGs) for the evaluation of estrogenic activity. PLoS One 2022; 17:e0273164. [PMID: 35976950 PMCID: PMC9385026 DOI: 10.1371/journal.pone.0273164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Estrogen action is mediated by various genes, including estrogen-responsive genes (ERGs). ERGs have been used as reporter-genes and markers for gene expression. Gene expression profiling using a set of ERGs has been used to examine statistically reliable transcriptomic assays such as DNA microarray assays and RNA sequencing (RNA-seq). However, the quality of ERGs has not been extensively examined. Here, we obtained a set of 300 ERGs that were newly identified by six sets of RNA-seq data from estrogen-treated and control human breast cancer MCF-7 cells. The ERGs exhibited statistical stability, which was based on the coefficient of variation (CV) analysis, correlation analysis, and examination of the functional association with estrogen action using database searches. A set of the top 30 genes based on CV ranking were further evaluated quantitatively by RT-PCR and qualitatively by a functional analysis using the GO and KEGG databases and by a mechanistic analysis to classify ERα/β-dependent or ER-independent types of transcriptional regulation. The 30 ERGs were characterized according to (1) the enzymes, such as metabolic enzymes, proteases, and protein kinases, (2) the genes with specific cell functions, such as cell-signaling mediators, tumor-suppressors, and the roles in breast cancer, (3) the association with transcriptional regulation, and (4) estrogen-responsiveness. Therefore, the ERGs identified here represent various cell functions and cell signaling pathways, including estrogen signaling, and thus, may be useful to evaluate estrogenic activity.
Collapse
Affiliation(s)
- Kentaro Nishi
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Wenqiang Fu
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Ryoiti Kiyama
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
3
|
Ku HC, Cheng CF. Role of adipocyte browning in prostate and breast tumor microenvironment. Tzu Chi Med J 2022; 34:359-366. [PMID: 36578640 PMCID: PMC9791856 DOI: 10.4103/tcmj.tcmj_62_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PC) and breast cancer (BC) are the most common cancers in men and women, respectively, in developed countries. The increased incidence of PC and BC largely reflects an increase in the prevalence of obesity and metabolic syndrome. In pathological conditions involving the development and progression of PC and BC, adipose tissue plays an important role via paracrine and endocrine signaling. The increase in the amount of local adipose tissue, specifically periprostatic adipose tissue, may be a key contributor to the PC pathobiology. Similarly, breast adipose tissue secretion affects various aspects of BC by influencing tumor progression, angiogenesis, metastasis, and microenvironment. In this context, the role of white adipose tissue (WAT) has been extensively studied. However, the influence of browning of the WAT on the development and progression of PC and BC is unclear and has received less attention. In this review, we highlight that adipose tissue plays a vital role in the regulation of the tumor microenvironment in PC or BC and highlight the probable underlying mechanisms linking adipose tissue with PC or BC. We further discuss whether the browning of WAT could be a therapeutic strategy for the treatment of PC and BC.
Collapse
Affiliation(s)
- Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan,Department of Pediatrics, School of Medicine, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Ching-Feng Cheng, Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Road, Xindian District, New Taipei, Taiwan. E-mail:
| |
Collapse
|
4
|
Xia Z, Xiao J, Chen Q. Solving the Puzzle: What Is the Role of Progestogens in Neovascularization? Biomolecules 2021; 11:1686. [PMID: 34827682 PMCID: PMC8615949 DOI: 10.3390/biom11111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Ovarian sex steroids can modulate new vessel formation and development, and the clarification of the underlying mechanism will provide insight into neovascularization-related physiological changes and pathological conditions. Unlike estrogen, which mainly promotes neovascularization through activating classic post-receptor signaling pathways, progesterone (P4) regulates a variety of downstream factors with angiogenic or antiangiogenic effects, exerting various influences on neovascularization. Furthermore, diverse progestins, the synthetic progesterone receptor (PR) agonists structurally related to P4, have been used in numerous studies, which could contribute to unequal actions. As a result, there have been many conflicting observations in the past, making it difficult for researchers to define the exact role of progestogens (PR agonists including naturally occurring P4 and synthetic progestins). This review summarizes available evidence for progestogen-mediated neovascularization under physiological and pathological circumstances, and attempts to elaborate their functional characteristics and regulatory patterns from a comprehensive perspective.
Collapse
Affiliation(s)
| | | | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha 410008, China; (Z.X.); (J.X.)
| |
Collapse
|
5
|
Kikuyama T, Susa T, Tamamori-Adachi M, Iizuka M, Akimoto M, Okinaga H, Fujigaki Y, Uchida S, Shibata S, Okazaki T. 25(OH)D 3 stimulates the expression of vitamin D target genes in renal tubular cells when Cyp27b1 is abrogated. J Steroid Biochem Mol Biol 2020; 199:105593. [PMID: 31945466 DOI: 10.1016/j.jsbmb.2020.105593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Abstract
Recently, it was reported that 25(OH)D3 (25D3) has physiological bioactivity in certain tissues derived from Cyp27b1 knockout mice. To investigate the function of 25D3 in the kidney as an informational crossroad of various calciotropic substances, we employed the CRISPR-Cas9 system to knock out Cyp27b1 in the mouse renal distal tubular mDCT cell line. Unlike the previously reported mice in which Cyp27b1 was targeted systemically, Cyp27b1 knockout mDCT cells did not produce any measurable 1α,25(OH)2D3 (1,25D3) after 25D3 administration. As was seen with treatment of Cyp27b1 knockout mDCT cells with ≥10-8 M of 1,25D3, the administration of 10-7 M of 25D3 translocated the vitamin D3 receptor (VDR) into the nucleus and promoted the expression of the representative 1,25D3-responsive gene Cyp24a1. The exhaustive target gene profiles of 25D3 were similar to those of 1,25D3. Subsequently, we confirmed that 25D3 induced the expression of the calcium reabsorption-related gene calbindin-D9K, in a way similar to 1,25D3. We also found that 1,25D3 and 25D3 induced the expression of the megalin gene. A chromatin immunoprecipitation assay identified two vitamin D response elements in the upstream region of the megalin gene that seemed to contribute to its expression. Together, we surmise that the ability of 25D3 to stimulate VDR target genes may provide a novel perspective for its role in certain tissues.
Collapse
Affiliation(s)
- Takahiro Kikuyama
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takao Susa
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan.
| | | | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Miho Akimoto
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshihide Fujigaki
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shunya Uchida
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Without 1α-hydroxylation, the gene expression profile of 25(OH)D 3 treatment overlaps deeply with that of 1,25(OH) 2D 3 in prostate cancer cells. Sci Rep 2018; 8:9024. [PMID: 29899561 PMCID: PMC5998076 DOI: 10.1038/s41598-018-27441-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
Recently, the antiproliferative action of 1,25(OH)2D3 (1,25D3), an active metabolite of vitamin D3, in the management of prostate cancer has been argued rigorously. In this study, we found that at a physiological concentration, 25(OH)D3 (25D3), the precursor of 1,25D3 and an inactive form of vitamin D because of its much weaker binding activity to the vitamin D receptor (VDR) compared with 1,25D3, had a gene expression profile similar to that of 1,25D3 in prostate cancer LNCaP cells. By immunocytochemistry, western blotting, and CYP27B1 and/or VDR knockdown by small interfering RNAs, we found that 10−7 M 25D3, which is within its uppermost physiological concentration in the bloodstream, induced VDR nuclear import and robustly activated its target genes in the virtual absence of CYP27B1 expression. Comprehensive microarray analyses verified 25D3 bioactivity, and we found that 25D3 target gene profiles largely matched those of 1,25D3, while the presence a small subset of 25D3- or 1,25D3-specific target genes was not excluded. These results indicated that 25D3 shares bioactivity with 1,25D3 without conversion to the latter. Metallothionein 2A was identified as a 1,25D3-specific repressive target gene, which might be a prerequisite for 1,25D3, but not 25D3, to exert its anti-proliferative action in LNCaP cells.
Collapse
|
7
|
Nassar ZD, Aref AT, Miladinovic D, Mah CY, Raj GV, Hoy AJ, Butler LM. Peri‐prostatic adipose tissue: the metabolic microenvironment of prostate cancer. BJU Int 2018; 121 Suppl 3:9-21. [DOI: 10.1111/bju.14173] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zeyad D. Nassar
- University of Adelaide Medical School Adelaide SA Australia
- Freemasons Foundation Centre for Men's Health Adelaide SA Australia
- South Australian Health and Medical Research Institute Adelaide SA Australia
| | - Adel T. Aref
- University of Adelaide Medical School Adelaide SA Australia
- Freemasons Foundation Centre for Men's Health Adelaide SA Australia
- South Australian Health and Medical Research Institute Adelaide SA Australia
| | - Dushan Miladinovic
- Discipline of Physiology School of Medical Sciences and Bosch Institute Charles Perkins Centre University of Sydney Sydney NSWAustralia
| | - Chui Yan Mah
- University of Adelaide Medical School Adelaide SA Australia
- Freemasons Foundation Centre for Men's Health Adelaide SA Australia
- South Australian Health and Medical Research Institute Adelaide SA Australia
| | - Ganesh V. Raj
- Departments of Urology and Pharmacology UT Southwestern Medical Center at Dallas Dallas TX USA
| | - Andrew J. Hoy
- Discipline of Physiology School of Medical Sciences and Bosch Institute Charles Perkins Centre University of Sydney Sydney NSWAustralia
| | - Lisa M. Butler
- University of Adelaide Medical School Adelaide SA Australia
- Freemasons Foundation Centre for Men's Health Adelaide SA Australia
- South Australian Health and Medical Research Institute Adelaide SA Australia
| |
Collapse
|
8
|
Di Lorenzo M, Forte M, Valiante S, Laforgia V, De Falco M. Interference of dibutylphthalate on human prostate cell viability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:565-573. [PMID: 28918339 DOI: 10.1016/j.ecoenv.2017.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Dibutylphthalate (DBP) is an environmental pollutant widely used as plasticizer in a variety of industrial applications worldwide. This agent can be found in personal-care products, children's toy, pharmaceuticals, food products. Exposure to DBP can occur via ingestion and inhalation as well as intravenous or skin contact. DBP belongs to the family of endocrine disrupting chemicals (EDCs) and its effects on reproductive system were demonstrated both in vivo and in vitro. In the present study we evaluated the effects of DBP on human prostate adenocarcinoma epithelial cells (LNCaP) in order to highlight xenoestrogens influence on human prostate. Moreover, we have compared DBP effects with 17β-estradiol action in order to investigate possible mimetical behaviour. We have assessed the effects of both compounds on the cell viability. After then, we have evaluated the expression of genes and proteins involved in cell cycle regulation. Furthermore, we have observed the expression and the cell localization of estrogen (ERs) and androgen (AR) receptors. In conclusion, we have demonstrated that DBP interacts with estrogen hormonal receptor pathway but differently from E2. DBP alters the normal gland physiology and it is involved in the deregulation of prostate cell cycle.
Collapse
Affiliation(s)
| | | | - Salvatore Valiante
- Department of Biology, University Federico II of Naples, Naples, Italy; National Institute of Biostructures and Biosystems (INBB), INBB, Rome, Italy.
| | - Vincenza Laforgia
- Department of Biology, University Federico II of Naples, Naples, Italy; National Institute of Biostructures and Biosystems (INBB), INBB, Rome, Italy.
| | - Maria De Falco
- Department of Biology, University Federico II of Naples, Naples, Italy; National Institute of Biostructures and Biosystems (INBB), INBB, Rome, Italy.
| |
Collapse
|
9
|
Detection of ESR1 mutations in plasma and tumors from metastatic breast cancer patients using next-generation sequencing. Breast Cancer Res Treat 2017; 163:231-240. [PMID: 28283903 DOI: 10.1007/s10549-017-4190-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE Liquid biopsy using digital PCR (dPCR) has been widely used for the screening of ESR1 mutations, since they are frequently identified in the hotspot. However, dPCR is limited to the known mutations. Therefore, we aimed to analyze the utility of next-generation sequencing (NGS) to discover novel ESR1 mutations. METHODS Whole exon sequencing of the ESR1 gene using NGS was performed in 16 primary and 47 recurrent tumor samples and 38 plasma samples from hormone receptor-positive metastatic breast cancer patients. Functional analyses were then performed for the novel mutations we detected. RESULTS We identified no mutations in primary tumors and six mutations in five recurrent tumors, including three types of known mutations (Y537C, Y537N, and D538G) and two novel mutations (E279V and G557R). We also identified seven mutations in five plasma samples, including three types of known mutations (S463P, Y537S, and D538G) and one mutation not reported in COSMIC database (L536H). All nine patients with ESR1 mutations were treated with aromatase inhibitors (AIs) prior to sampling, and the mutations were frequently detected in patients who received AI treatments in the metastatic setting. Among the three novel mutations (E279V, L536H, and G557R), L536H, but not E279V and G557R, showed ligand-independent activity. All three mutant proteins showed nuclear localization and had no relation with non-genomic ER pathways. CONCLUSIONS Although the molecular mechanisms of the E279V and G557R mutations remain unclear, our data suggest the utility of NGS as a liquid biopsy for metastatic breast cancer patients and the potential to identify novel ESR1 mutations.
Collapse
|
10
|
IIZUKA M, SUSA T, TAMAMORI-ADACHI M, OKINAGA H, OKAZAKI T. Intrinsic ubiquitin E3 ligase activity of histone acetyltransferase Hbo1 for estrogen receptor α. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:498-510. [PMID: 28769019 PMCID: PMC5713178 DOI: 10.2183/pjab.93.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Estrogen receptors (ER) are important transcription factors to relay signals from estrogen and to regulate proliferation of some of breast cancers. The cycling of estrogen-induced DNA binding and ubiquitin-linked proteolysis of ER potentiates ER-mediated transcription. Indeed, several transcriptional coactivators for ER-dependent transcription ubiquitinate ER. Histone acetyltransferase (HAT) Hbo1/KAT7/MYST2, involved in global histone acetylation, DNA replication, transcription, and cellular proliferation, promotes proteasome-dependent degradation of ERα through ubiquitination. However, molecular mechanism for ubiquitination of ERα by Hbo1 is unknown. Here we report the intrinsic ubiquitin E3 ligase activity of Hbo1 toward the ERα. The ligand, estradiol-17β, inhibited E3 ligase activity of Hbo1 for ERα in vitro, whereas hyperactive ERα mutants from metastatic breast cancers resistant to hormonal therapy, were better substrates for ERα ubiquitination by Hbo1. Hbo1 knock-down caused increase in ERα expression. Hbo1 is another ERα coactivator that ubiquitinates ERα.
Collapse
Affiliation(s)
- Masayoshi IIZUKA
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Takao SUSA
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | | | - Hiroko OKINAGA
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Tomoki OKAZAKI
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Liu Y, Guo H, Zhang Y, Tang W. Feasible oxidation of 17β-estradiol using persulfate activated by Bi2WO6/Fe3O4 under visible light irradiation. RSC Adv 2016. [DOI: 10.1039/c6ra18391c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bismuth tungstate magnetic composites (BTMCs, Bi2WO6/Fe3O4) were synthesized by a template-free hydrothermal process.
Collapse
Affiliation(s)
- Yang Liu
- College of Architecture and Environment
- Sichuan University
- Chengdu 610065
- China
| | - Hongguang Guo
- College of Architecture and Environment
- Sichuan University
- Chengdu 610065
- China
- National Engineering Laboratory for Clean Technology of Leather Manufacture
| | - Yongli Zhang
- College of Architecture and Environment
- Sichuan University
- Chengdu 610065
- China
| | - Weihong Tang
- College of Architecture and Environment
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|