1
|
Wang H, Li C, Zhu L, Liu Z, Li N, Zheng Z, Liang S, Yan J. Adiponectin attenuates H2O2-induced apoptosis in chicken skeletal myoblasts through the lysosomal-mitochondrial axis. In Vitro Cell Dev Biol Anim 2024; 60:805-814. [PMID: 38427138 DOI: 10.1007/s11626-024-00857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 03/02/2024]
Abstract
Adiponectin has previously been investigated for exerting its protective effect against myocardial injury through anti-apoptotic and anti-oxidative actions. Therefore, the present study aimed to investigate the nature and mechanism of adiponectin inhibition of H2O2-induced apoptosis in chicken skeletal myoblasts. Skeletal muscle satellite cells were differentiated and assigned into three groups. Group C was on the blank control group, group H was stimulated with the H2O2 (500 μmol/L, 4 h) alone group, group A + H was pre-treated with adiponectin (10 μg/mL, 24 h) and stimulated with the H2O2 (500 μmol/L, 4 h) group. Cytotoxicity inhibited by adiponectin was evaluated by the CCK-8 assay. The degree of apoptosis and oxidative damage was investigated by the TdT-mediated dUTP nick end labeling (TUNEL) and reactive oxygen species (ROS) staining assays. Oxidative stress was assessed by evaluating lipid peroxidation, superoxide dismutase, and reduced glutathione. Acridine orange (AO) staining detected lysosomal membrane permeability. The changes in mitochondrial membrane potential (MMP) were analyzed using 5,5,6,6'-tetrachloro-1,1,3,3-tetraethylimidacarbocyanine iodide (JC-1) dye under a fluorescence microscope. The lysosomal function, mitochondrial function, and apoptosis-related mRNA and protein expression levels were quantified by real-time quantitative PCR and western blot, respectively. The results suggested that adiponectin treatment attenuated H2O2-induced cytotoxicity and oxidative stress in skeletal myoblasts. Compared with H2O2 treatment, TUNEL and ROS staining demonstrated lower apoptosis upon adiponectin treatment. AO staining confirmed the amelioration of lysosomal membrane damage, and JC-1 staining revealed an increase in mitochondrial membrane potential after adiponectin treatment. At the molecular level, adiponectin treatment inhibited the expression of the lysosomal apoptotic factors cathepsin B, chymotrypsin B, and the mitochondrial apoptotic pathway cytochrome-c (cyt-c) and caspase-8; decreased the apoptotic marker gene Bax; and increased the expression of the anti-apoptotic marker gene Bcl-2. Adiponectin treatment attenuated H2O2-induced apoptosis in skeletal myoblasts, possibly by inhibiting oxidative stress and apoptosis through the lysosomal-mitochondrial axis.
Collapse
Affiliation(s)
- Han Wang
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chi Li
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Longbo Zhu
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengqun Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Ning Li
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Zi Zheng
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Shiyue Liang
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Jun Yan
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| |
Collapse
|
2
|
Jeong GH, Bak DH, Lee H, Cho JY, Kang SH, Chung BY, Park S, Bai HW. Anti-cancer effects of plant-derived Micromonospora sp. M2 against A549 and MCF-7 cell lines. Biosci Biotechnol Biochem 2024; 88:608-619. [PMID: 38573835 DOI: 10.1093/bbb/zbae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
The huge diversity of secondary bioactive metabolites, such as antibiotic and anticancer compounds produced by Micromonospora sp., makes it an attractive target for study. Here, we explored the anti-proliferative activities of Micromonospora sp. M2 extract (MBE) in relation to its pro-oxidative activities in A549 and MCF7 cell lines. Anti-proliferative effects were assessed by treating cells with MBE. We found that treatment with MBE decreased cell proliferation and increased intracellular reactive oxygen species, and that these observations were facilitated by the suppression of the PI3K-AKT pathway, alterations to the Bcl/Bad ratio, and increased caspase activity. These observations also demonstrated that MBE induced apoptotic cell death in cell lines. In addition, the phosphorylation of P38 and c-Jun N-terminal kinase (JNK) were upregulated following MBE treatment in both cell lines. Collectively, these results indicate that MBE acts as an anticancer agent via oxidative stress and JNK/mitogen-activated protein kinase pathway activation, enhancing apoptotic cell death in cell lines.
Collapse
Affiliation(s)
- Gyeong Han Jeong
- Research division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Republic of Korea
| | - Dong-Ho Bak
- Research division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Republic of Korea
| | - Hanui Lee
- Research division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Republic of Korea
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Science, Chonnam National University, Gwangju, Republic of Korea
| | - Ja Young Cho
- Bacteria Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, Republic of Korea
| | - Seong Hee Kang
- Research division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Republic of Korea
| | - Byung Yeoup Chung
- Research division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Republic of Korea
| | - Sanghwa Park
- Bacteria Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, Republic of Korea
| | - Hyoung-Woo Bai
- Research division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Republic of Korea
- Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
3
|
Manoharan S, Prajapati K, Perumal E. Natural bioactive compounds and FOXO3a in cancer therapeutics: An update. Fitoterapia 2024; 173:105807. [PMID: 38168566 DOI: 10.1016/j.fitote.2023.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Forkhead box protein 3a (FOXO3a) is a transcription factor that regulates various downstream targets upon its activation, leading to the upregulation of tumor suppressor and apoptotic pathways. Hence, targeting FOXO3a is an emerging strategy for cancer prevention and treatment. Recently, Natural Bioactive Compounds (NBCs) have been used in drug discovery for treating various disorders including cancer. Notably, several NBCs have been shown as potent FOXO3a activators. NBCs upregulate FOXO3a expressions through PI3K/Akt, MEK/ERK, AMPK, and IκB signaling pathways. FOXO3a promotes its anticancer effects by upregulating the levels of its downstream targets, including Bim, FasL, and Bax, leading to apoptosis. This review focuses on the dysregulation of FOXO3a in carcinogenesis and explores the potent FOXO3a activating NBCs for cancer prevention and treatment. Additionally, the review evaluates the safety and efficacy of NBCs. Looking ahead, NBCs are anticipated to become a cost-effective, potent, and safer therapeutic option for cancer, making them a focal point of research in the field of cancer prevention and treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Kunjkumar Prajapati
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India.
| |
Collapse
|
4
|
Yasir M, Park J, Chun W. EWS/FLI1 Characterization, Activation, Repression, Target Genes and Therapeutic Opportunities in Ewing Sarcoma. Int J Mol Sci 2023; 24:15173. [PMID: 37894854 PMCID: PMC10607184 DOI: 10.3390/ijms242015173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Despite their clonal origins, tumors eventually develop into complex communities made up of phenotypically different cell subpopulations, according to mounting evidence. Tumor cell-intrinsic programming and signals from geographically and temporally changing microenvironments both contribute to this variability. Furthermore, the mutational load is typically lacking in childhood malignancies of adult cancers, and they still exhibit high cellular heterogeneity levels largely mediated by epigenetic mechanisms. Ewing sarcomas represent highly aggressive malignancies affecting both bone and soft tissue, primarily afflicting adolescents. Unfortunately, the outlook for patients facing relapsed or metastatic disease is grim. These tumors are primarily fueled by a distinctive fusion event involving an FET protein and an ETS family transcription factor, with the most prevalent fusion being EWS/FLI1. Despite originating from a common driver mutation, Ewing sarcoma cells display significant variations in transcriptional activity, both within and among tumors. Recent research has pinpointed distinct fusion protein activities as a principal source of this heterogeneity, resulting in markedly diverse cellular phenotypes. In this review, we aim to characterize the role of the EWS/FLI fusion protein in Ewing sarcoma by exploring its general mechanism of activation and elucidating its implications for tumor heterogeneity. Additionally, we delve into potential therapeutic opportunities to target this aberrant fusion protein in the context of Ewing sarcoma treatment.
Collapse
Affiliation(s)
| | | | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
5
|
Cao G, Lin M, Gu W, Su Z, Duan Y, Song W, Liu H, Zhang F. The rules and regulatory mechanisms of FOXO3 on inflammation, metabolism, cell death and aging in hosts. Life Sci 2023:121877. [PMID: 37352918 DOI: 10.1016/j.lfs.2023.121877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The FOX family of transcription factors was originally identified in 1989, comprising the FOXA to FOXS subfamilies. FOXO3, a well-known member of the FOXO subfamily, is widely expressed in various human organs and tissues, with higher expression levels in the ovary, skeletal muscle, heart, and spleen. The biological effects of FOXO3 are mostly determined by its phosphorylation, which occurs in the nucleus or cytoplasm. Phosphorylation of FOXO3 in the nucleus can promote its translocation into the cytoplasm and inhibit its transcriptional activity. In contrast, phosphorylation of FOXO3 in the cytoplasm leads to its translocation into the nucleus and exerts regulatory effects on biological processes, such as inflammation, aerobic glycolysis, autophagy, apoptosis, oxidative stress, cell cycle arrest and DNA damage repair. Additionally, FOXO3 isoform 2 acts as an important suppressor of osteoclast differentiation. FOXO3 can also interfere with the development of various diseases, including inhibiting the proliferation and invasion of tumor cells, blocking the production of inflammatory factors in autoimmune diseases, and inhibiting β-amyloid deposition in Alzheimer's disease. Furthermore, FOXO3 slows down the aging process and exerts anti-aging effects by delaying telomere attrition, promoting cell self-renewal, and maintaining genomic stability. This review suggests that changes in the levels and post-translational modifications of FOXO3 protein can maintain organismal homeostasis and improve age-related diseases, thus counteracting aging. Moreover, this may indicate that alterations in FOXO3 protein levels are also crucial for longevity, offering new perspectives for therapeutic strategies targeting FOXO3.
Collapse
Affiliation(s)
- Guoding Cao
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Monan Lin
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Wei Gu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Zaiyu Su
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Yagan Duan
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Wuqi Song
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Hailiang Liu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| |
Collapse
|
6
|
Ishii K, Tamura T, Hatori K, Himi K, Nakamura T, Toyama Y, Miyata T, Takeichi O. Elevated Foxo3a and Fas-ligand expression in human periapical granulomas as a potential treatment target. Oral Dis 2023; 29:1128-1136. [PMID: 34674361 DOI: 10.1111/odi.14052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/12/2021] [Accepted: 10/12/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Periapical granuloma is a common periodontitis type involving chronic inflammation; however, the efficacy of current therapies is limited. Its molecular pathogenesis also remains obscure. Forkhead box transcription factor class o3a (Foxo3a) and Fas-ligand (FasL) are associated with chronic inflammation. Therefore, in this study, we aimed to clarify the roles of Foxo3a and FasL in periapical granuloma pathophysiology. SUBJECTS AND METHODS Periapical lesions were obtained from patients during endodontic surgery and tooth extraction; those diagnosed with periapical granulomas using haematoxylin and eosin staining were further analysed. Immunohistochemical analysis was performed for Foxo3a and FasL, and real-time polymerase chain reaction was performed for FOXO3A, FASL and interleukin (IL)-1β. Healthy gingival tissues were also examined as controls. RESULTS Neutrophils, lymphocytes and plasma cells in the periapical granulomas, but not healthy tissues, expressed Foxo3a. Dual-colour immunofluorescence imaging revealed Foxo3a and FasL co-expression in leukocytes. FOXO3A, FASL and IL-1β mRNA levels in healthy gingival tissues were significantly lower than those in the periapical granulomas. Additionally, FOXO3A and IL-1β expressions were negatively correlated. CONCLUSIONS Phosphorylated Foxo3a may reduce IL-1β release by inhibiting apoptosis through FasL in periapical periodontitis and prevent exacerbation. Thus, Foxo3a is a potential therapeutic agent for periapical periodontitis.
Collapse
Affiliation(s)
- Kae Ishii
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Takahito Tamura
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
- Nihon University Graduate School of Dentistry, Dental Research Center, Tokyo, Japan
| | - Keisuke Hatori
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
- Division of Advanced Dental Treatment, Dental Research Center, Tokyo, Japan
| | - Kazuma Himi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Takeshi Nakamura
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
- Nihon University Graduate School of Dentistry, Dental Research Center, Tokyo, Japan
| | - Yurika Toyama
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
- Nihon University Graduate School of Dentistry, Dental Research Center, Tokyo, Japan
| | - Taiki Miyata
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
- Nihon University Graduate School of Dentistry, Dental Research Center, Tokyo, Japan
| | - Osamu Takeichi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
- Division of Advanced Dental Treatment, Dental Research Center, Tokyo, Japan
| |
Collapse
|
7
|
Li LR, Song JL, Liu HQ, Chen C. Metabolic syndrome and thyroid Cancer: risk, prognosis, and mechanism. Discov Oncol 2023; 14:23. [PMID: 36811728 PMCID: PMC9947216 DOI: 10.1007/s12672-022-00599-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 02/24/2023] Open
Abstract
The increasing incidence of thyroid cancer (TC) cannot be fully explained by overdiagnosis. Metabolic syndrome (Met S) is highly prevalent due to the modern lifestyle, which can lead to the development of tumors. This review expounds on the relationship between Met S and TC risk, prognosis and its possible biological mechanism. Met S and its components were associated with an increased risk and aggressiveness of TC, and there were gender differences in most studies. Abnormal metabolism places the body in a state of chronic inflammation for a long time, and thyroid-stimulating hormones may initiate tumorigenesis. Insulin resistance has a central role assisted by adipokines, angiotensin II, and estrogen. Together, these factors contribute to the progression of TC. Therefore, direct predictors of metabolic disorders (e.g., central obesity, insulin resistance and apolipoprotein levels) are expected to become new markers for diagnosis and prognosis. cAMP, insulin-like growth factor axis, angiotensin II, and AMPK-related signaling pathways could provide new targets for TC treatment.
Collapse
Affiliation(s)
- Ling-Rui Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jieang Road, Wuchang District, Wuhan, 430060, Hubei, PR China
| | - Jun-Long Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jieang Road, Wuchang District, Wuhan, 430060, Hubei, PR China
| | - Han-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jieang Road, Wuchang District, Wuhan, 430060, Hubei, PR China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jieang Road, Wuchang District, Wuhan, 430060, Hubei, PR China.
| |
Collapse
|
8
|
Novel Anti-Cancer Products Targeting AMPK: Natural Herbal Medicine against Breast Cancer. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020740. [PMID: 36677797 PMCID: PMC9863744 DOI: 10.3390/molecules28020740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Breast cancer is a common cancer in women worldwide. The existing clinical treatment strategies have been able to limit the progression of breast cancer and cancer metastasis, but abnormal metabolism, immunosuppression, and multidrug resistance involving multiple regulators remain the major challenges for the treatment of breast cancer. Adenosine 5'-monophosphate (AMP)-Activated Protein Kinase (AMPK) can regulate metabolic reprogramming and reverse the "Warburg effect" via multiple metabolic signaling pathways in breast cancer. Previous studies suggest that the activation of AMPK suppresses the growth and metastasis of breast cancer cells, as well as stimulating the responses of immune cells. However, some other reports claim that the development and poor prognosis of breast cancer are related to the overexpression and aberrant activation of AMPK. Thus, the role of AMPK in the progression of breast cancer is still controversial. In this review, we summarize the current understanding of AMPK, particularly the comprehensive bidirectional functions of AMPK in cancer progression; discuss the pharmacological activators of AMPK and some specific molecules, including the natural products (including berberine, curcumin, (-)-epigallocatechin-3-gallate, ginsenosides, and paclitaxel) that influence the efficacy of these activators in cancer therapy; and elaborate the role of AMPK as a potential therapeutic target for the treatment of breast cancer.
Collapse
|
9
|
Tewari S, Vargas R, Reizes O. The impact of obesity and adipokines on breast and gynecologic malignancies. Ann N Y Acad Sci 2022; 1518:131-150. [PMID: 36302117 PMCID: PMC10092047 DOI: 10.1111/nyas.14916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The link between obesity and multiple disease comorbidities is well established. In 2003, Calle and colleagues presented the relationship between obesity and several cancer types, including breast, ovarian, and endometrial malignancies. Nearly, 20% of cancer-related deaths in females can be accounted for by obesity. Identifying obesity as a risk factor for cancer led to a focus on the role of fat-secreted cytokines, known as adipokines, on carcinogenesis and tumor progression. Early studies indicated that the adipokine leptin increases cell proliferation, invasion, and inhibition of apoptosis in multiple cancer types. As a greater appreciation of the obesity-cancer link has amassed, we now know that additional adipokines can impact tumorigenesis. A deeper understanding of the adipokine-activated signaling in cancer may identify new treatment strategies irrespective of obesity. Moreover, adipokines may serve as disease biomarkers, harnessing the potential of obesity-associated factors to serve as indicators of treatment response and disease prognosis. As studies investigating obesity and women's cancers continue to expand, it has become evident that breast, ovarian, and uterine cancers are distinctly impacted by adipokines. While complex, these distinct interactions may provide insight into cancer progression in these organs and new opportunities for targeted therapies. This review aims to organize and present the literature from the last 5 years investigating the mechanisms and implications of adipokine signaling in breast, endometrial, and ovarian cancers with a special focus on leptin and adiponectin.
Collapse
Affiliation(s)
- Surabhi Tewari
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roberto Vargas
- Department of Gynecologic Oncology, Women's Health Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Ofer Reizes
- Department of Gynecologic Oncology, Women's Health Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Lu X, Jin Y, Li D, Zhang J, Han J, Li Y. Multidisciplinary Progress in Obesity Research. Genes (Basel) 2022; 13:1772. [PMID: 36292657 PMCID: PMC9601416 DOI: 10.3390/genes13101772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Obesity is a chronic disease that endangers human health. In recent years, the phenomenon of obesity has become more and more common, and it has become a global epidemic. Obesity is closely associated with many adverse metabolic changes and diseases, such as insulin resistance, type 2 diabetes mellitus, coronary heart disease, nervous system diseases and some malignant tumors, which have caused a huge burden on the country's medical finance. In most countries of the world, the incidence of cancer caused by obesity is increasing year on year. Diabetes associated with obesity can lead to secondary neuropathy. How to treat obesity and its secondary diseases has become an urgent problem for patients, doctors and society. This article will summarize the multidisciplinary research on obesity and its complications.
Collapse
Affiliation(s)
- Xiaoqing Lu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Yuxin Jin
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Dexin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Jingxin Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Jingyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| |
Collapse
|
11
|
Fan W, Zhou W, Yan Q, Peng Y, Wang H, Kong C, Zhang B, Yu B, Chen L, Xue P. Upregulation of METTL14 contributes to trophoblast dysfunction by elevating FOXO3a expression in an m6A-dependent manner. Placenta 2022; 124:18-27. [DOI: 10.1016/j.placenta.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
|
12
|
The Pharmacological Mechanisms of Xiaochaihutang in Treating Breast Cancer Based on Network Pharmacology. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3900636. [PMID: 35350700 PMCID: PMC8926522 DOI: 10.1155/2022/3900636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
Background As a classic prescription in Chinese medicine treatment, Xiaochaihutang (XCHT) can improve the clinical effect and reduce serum tumor markers in patients with breast cancer (BC). However, there has not been any study to confirm the mechanism. We used bioinformatics analysis and network pharmacology to find the potential targets. Methods The differentially expressed genes (DEGs) of BC were identified from the Cancer Genome Atlas (TCGA) dataset. Then, we utilized weighted coexpression network analysis (WGCNA) with the same dataset. The target genes of BC were obtained by comparing genes of DEGs and in significant modules of WGCNA. Drug targets of XCHT from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database were intersected with the targets of BC. The protein-protein interaction (PPI) of the drug targets was analysed by using the STRING database. We utilized the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analysis (KEGG) enrichment analysis to identify the specific pathways and key target proteins. Receiver operator characteristic (ROC) curve was used as the verification of drug targets. Molecular docking was performed to visualize the patterns of interactions between the effective molecule and targeted protein. Results We obtained a set of 21 target genes, which mainly encode neurotransmitter receptors or related transporters, such as OPRD1, 5-HT2A, and so on. In addition, enrichment analyses of 21 target genes showed that they were mainly concentrated in pathways related to the nervous system. Molecular docking was performed on the target gene of BC. Six active compounds can enter the active pocket of target gene, namely, naringenin, beta-sitosterol, coumestrol, nuciferine, beta-sitosterol, and protopine, thereby exerting potential therapeutic effects in BC. Conclusions Our analysis shows that the mechanism of XCHT in the treatment of BC is mainly acting on the neurogenesis in the microenvironment of breast tumor tissue.
Collapse
|
13
|
Zhang Z, Du J, Shi H, Wang S, Yan Y, Xu Q, Zhou S, Zhao Z, Mu Y, Qian C, Zhao AZ, Cao S, Li F. Adiponectin suppresses tumor growth of nasopharyngeal carcinoma through activating AMPK signaling pathway. J Transl Med 2022; 20:89. [PMID: 35164782 PMCID: PMC8843017 DOI: 10.1186/s12967-022-03283-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Adiponectin is an adipocyte-secreted cytokine that enhances insulin sensitivity and attenuates inflammation. Although circulating adiponectin level is often inversely associated with several malignancies, its role in the development of nasopharyngeal carcinoma (NPC) remains unclear. Here, we investigated the clinical association between circulating adiponectin level and NPC, and examined the impact of adiponectin, as well as the underlying mechanisms, on NPC growth both in vitro and in vivo. METHODS The association between circulating adiponectin level and the risk of developing NPC was assessed in two different cohorts, including a hospital-based case-control study with 152 cases and 132 controls, and a nested case-control study with 71 cases and 142 controls within a community-based NPC screening cohort. Tumor xenograft model, cell proliferation and cycle assays were applied to confirm the effects of adiponectin on NPC growth in cultured cells and in xenograft models. We also investigated the underlying signaling mechanisms with various specific pharmacological inhibitors and biochemistry analysis. RESULTS High adiponectin levels were associated with a monotonic decreased trend of NPC risk among males in both the hospital-based case-control study and a nested case-control study. In vitro, recombinant human full-length adiponectin significantly inhibited NPC cell growth and arrested cell cycle, which were dependent on AMPK signaling pathway. The growth of xenograft of NPC tumor was sharply accelerated in the nude mice carrying genetic adiponectin deficiency. An adiponectin receptor agonist, AdipoRon, displayed strong anti-tumor activity in human xenograft models. CONCLUSIONS These findings demonstrated for the first time that circulating adiponectin is not only inversely associated with NPC, but also controls the development of NPC via AMPK signaling pathway. Stimulation of adiponectin function may become a novel therapeutic modality for NPC.
Collapse
Affiliation(s)
- Zongmeng Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No.100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Jinlin Du
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hui Shi
- Department of Pathology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No.100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yunjing Yan
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No.100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qihua Xu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No.100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No.100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No.100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No.100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Chaonan Qian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Allan Zijian Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No.100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Sumei Cao
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No.100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Gallo M, Adinolfi V, Barucca V, Prinzi N, Renzelli V, Barrea L, Di Giacinto P, Ruggeri RM, Sesti F, Arvat E, Baldelli R, Arvat E, Colao A, Isidori A, Lenzi A, Baldell R, Albertelli M, Attala D, Bianchi A, Di Sarno A, Feola T, Mazziotti G, Nervo A, Pozza C, Puliani G, Razzore P, Ramponi S, Ricciardi S, Rizza L, Rota F, Sbardella E, Zatelli MC. Expected and paradoxical effects of obesity on cancer treatment response. Rev Endocr Metab Disord 2021; 22:681-702. [PMID: 33025385 DOI: 10.1007/s11154-020-09597-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Obesity, whose prevalence is pandemic and continuing to increase, is a major preventable and modifiable risk factor for diabetes and cardiovascular diseases, as well as for cancer. Furthermore, epidemiological studies have shown that obesity is a negative independent prognostic factor for several oncological outcomes, including overall and cancer-specific survival, for several site-specific cancers as well as for all cancers combined. Yet, a recently growing body of evidence suggests that sometimes overweight and obesity may associate with better outcomes, and that immunotherapy may show improved response among obese patients compared with patients with a normal weight. The so-called 'obesity paradox' has been reported in several advanced cancer as well as in other diseases, albeit the mechanisms behind this unexpected relationship are still not clear. Aim of this review is to explore the expected as well as the paradoxical relationship between obesity and cancer prognosis, with a particular emphasis on the effects of cancer therapies in obese people.
Collapse
Affiliation(s)
- Marco Gallo
- Oncological Endocrinology Unit, Department of Medical Sciences, University of Turin, AOU Città della Salute e della Scienza di Torino, Via Genova, 3, 10126, Turin, Italy.
| | - Valerio Adinolfi
- Endocrinology and Diabetology Unit, ASL Verbano Cusio Ossola, Domodossola, Italy
| | - Viola Barucca
- Oncology Unit, Department of Oncology and Medical Specialities, AO San Camillo-Forlanini, Rome, Italy
| | - Natalie Prinzi
- ENETS Center of Excellence, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori Milano, Milan, Italy
| | - Valerio Renzelli
- Department of Experimental Medicine, AO S. Andrea, Sapienza University of Rome, Rome, Italy
| | - Luigi Barrea
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy
| | - Paola Di Giacinto
- Endocrinology Unit, Department of Oncology and Medical Specialities, AO San Camillo-Forlanini, Rome, Italy
| | - Rosaria Maddalena Ruggeri
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Messina, AOU Policlinico G. Martino, Messina, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emanuela Arvat
- Oncological Endocrinology Unit, Department of Medical Sciences, University of Turin, AOU Città della Salute e della Scienza di Torino, Via Genova, 3, 10126, Turin, Italy
| | - Roberto Baldelli
- Endocrinology Unit, Department of Oncology and Medical Specialities, AO San Camillo-Forlanini, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Harmine Hydrochloride Mediates the Induction of G2/M Cell Cycle Arrest in Breast Cancer Cells by Regulating the MAPKs and AKT/FOXO3a Signaling Pathways. Molecules 2021; 26:molecules26216714. [PMID: 34771123 PMCID: PMC8588485 DOI: 10.3390/molecules26216714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
Breast cancer (BC) is one of the most common causes of death among women worldwide. Recently, interest in novel approaches for BC has increased by developing new drugs derived from natural products with reduced side effects. This study aimed to treat BC cells with harmine hydrochloride (HMH) to identify its anticancer effects and mechanisms. HMH treatment suppressed cell growth, migration, invasion, and colony formation in MCF-7 and MDA-MB-231 cells, regardless of the hormone signaling. It also reduced the phosphorylation of PI3K, AKT, and mTOR and increased FOXO3a expression. Additionally, HMH treatment increased p38 phosphorylation in MCF-7 cells and activated c-Jun N-terminal kinase (JNK) phosphorylation in MDA-MB-231 cells in a dose-dependent manner, where activated p38 and JNK increased FOXO3a expression. Activated FOXO3a increased the expression of p53, p21, and their downstream proteins, including p-cdc25, p-cdc2, and cyclin B1, to induce G2/M cell cycle arrest. Furthermore, HMH inhibited the PI3K/AKT/mTOR pathway by significantly reducing p-AKT expression in combination with LY294002, an AKT inhibitor. These results indicate that mitogen-activated protein kinases (MAPKs) and AKT/FOXO3a signaling pathways mediate the induction of cell cycle arrest following HMH treatment. Therefore, HMH could be a potential active compound for anticancer bioactivity in BC cells.
Collapse
|
16
|
Abtahi SH, Mohammadi MH, Allahbakhshian Farsani M, Aghelan Z, Salari S. Evaluation of Sestrin 2, Adiponectin, AMPK, and mTOR Genes Expression in Acute Myeloid Leukemia Patients. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2860. [PMID: 34435062 PMCID: PMC8358177 DOI: 10.30498/ijb.2021.2860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: Effective treatment of acute myeloid leukemia (AML) is still controversial, therefore; a comprehensive understanding regarding the impaired cellular signaling pathways in AML can be useful
in designing new therapeutic approaches. Among signaling pathways involved in AML, the mammalian target of rapamycin (mTOR) signaling pathway is of particular importance.
While dysregulation of mTOR signaling has been reported in a wide range of patients with AML, but most studies have focused on mTOR downstream targets, and mTOR upstream targets have been overlooked. Objective: In this study, expression of mTOR genes and three upstream targets (5' adenosine monophosphate-activated protein kinase (AMPK, adiponectin, and sestrin 2)
involved in mTOR signaling was investigated. Materials and Methods: In this study, expression of mTOR, AMPK, sestrin 2, and adiponectin genes in 60 patients with AML were evaluated compared to those of 30 healthy individuals as controls
using the Real-Time polymerase chain reaction (Real-Time RT-PCR) method. Results: According to the results, there was a significant difference in the expression of all the studied genes in patients in comparison to the normal control group (P <0.05).
Expression of the mTOR gene was increased, while expression of AMPK, sestrin 2, and adiponectin genes was decreased in the patients with AML. Mean expression of the genes (2-ΔCt)
(AMPK, sestrin 2, adiponectin, and mTOR) was equal to 7.9, 3.2, 3.74, and 1.49 for controls and 6, 2.1, 2.83, and 2.64 for patients with AML, respectively. Conclusions: Given the decreased expression levels of sestrin 2, adiponectin, and AMPK genes as tumor inhibitors and the increased expression level of the mTOR gene as an oncogene in the
patients with AML in our study, it is thought that disruption of this pathway may be involved in leukemogenesis and can be considered as an effective factor in the progression of cancer.
Collapse
Affiliation(s)
- Seyed Hossein Abtahi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Mohammadi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,HSCT Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mehdi Allahbakhshian Farsani
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,HSCT Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Zahra Aghelan
- Department of Clinical Biochemistry, School of Medical Siences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sina Salari
- Department of Medical Oncology, Hematology and Bone Marrow Transplantation, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Network Pharmacology/Metabolomics-Based Validation of AMPK and PI3K/AKT Signaling Pathway as a Central Role of Shengqi Fuzheng Injection Regulation of Mitochondrial Dysfunction in Cancer-Related Fatigue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5556212. [PMID: 34326918 PMCID: PMC8302405 DOI: 10.1155/2021/5556212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/06/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022]
Abstract
Chinese herbal medicines have multiple targets and properties, and their use in multidisciplinary cancer therapies has consequently received increasing attention. Here, we have investigated the possible active ingredients associated with cancer-related fatigue (CRF) in the Shengqi Fuzheng Injection (SFI). In vitro cell models were used to measure the regulation effects of SFI on CRF. Metabolomic analysis was used to identify the potential genes and pathways in C2C12 mouse myoblasts treated with SFI, and the interaction of compounds and CRF targets was predicted using network pharmacology and molecular docking analyses. The putative pathways were further verified using immuno-blotting assays. The results showed that SFI significantly inhibited muscle cell apoptosis and increased the mitochondrial membrane potential of muscle cells. The network pharmacology analysis results identified 36 candidate compounds, and 244 potential targets were yielded by SFI, and they shared 10 key targets associated with cancer-related fatigue. According to the enrichment analysis and experimental validation, SFI might ameliorate muscle cell mitochondrial function by activating AMPK and inhibiting the PI3K/Akt signaling pathways, and the expression changes of mitochondrial metabolic enzymes MnSOD and apoptosis-associated proteins Bax and Bcl-2 were also triggered. The functions and mechanisms of SFI in anticancer-related fatigue were found here to be at least partly due to the targeting of the AMPK and PI3K/Akt signaling pathways, and this has highlighted new potential applications for network pharmacology when researching Chinese Medicines.
Collapse
|
18
|
Dehnavi S, Kiani A, Sadeghi M, Biregani AF, Banach M, Atkin SL, Jamialahmadi T, Sahebkar A. Targeting AMPK by Statins: A Potential Therapeutic Approach. Drugs 2021; 81:923-933. [PMID: 33939118 PMCID: PMC8144155 DOI: 10.1007/s40265-021-01510-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Statins are a group of lipid-lowering drugs that inhibit cholesterol biosynthesis and have anti-inflammatory, anti-tumor, and immunomodulatory properties. Several lines of evidence indicate that statins regulate multiple proteins associated with the regulation of differing cellular pathways. The 5'-adenosine monophosphate-activated protein kinase (AMPK) pathway plays an important role in metabolism homeostasis with effects on cellular processes including apoptosis and the inflammatory responses through several pathways. Recently, it has been shown that statins can affect the AMPK pathway in differing physiological and pathological ways, resulting in anti-cancer, cardio-protective, neuro-protective, and anti-tubercular effects; additionally, they have therapeutic effects on non-alcoholic fatty liver disease and diabetes mellitus-associated complications. Statins activate AMPK as an energy sensor that inhibits cell proliferation and induces apoptosis in cancer cells, whilst exerting its cardio-protective effects through inhibition of inflammation and fibrosis, and promotion of angiogenesis. Furthermore, statin-associated AMPK activation leads to decreased lipid accumulation and decreased amyloid beta deposition in the liver and brain, respectively, and may have therapeutic effects on the liver and neurons. In this review, we summarize the results of studies of AMPK-associated therapeutic effects of statins in different pathological conditions.
Collapse
Affiliation(s)
- Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Kiani
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Farhadi Biregani
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Razavi Khorasan Province, Daneshgah Street, 9177948564, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Zhang H, Tian F, Jiang P, Qian S, Dai X, Ma B, Wang M, Dai H, Sha X, Yang Z, Zhu X, Sun X. Solasonine Suppresses the Proliferation of Acute Monocytic Leukemia Through the Activation of the AMPK/FOXO3A Axis. Front Oncol 2021; 10:614067. [PMID: 33585239 PMCID: PMC7879981 DOI: 10.3389/fonc.2020.614067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/15/2020] [Indexed: 11/28/2022] Open
Abstract
Solasonine, the main active ingredient of Solanum nigrum L., has been reported to exert extensive antitumor activity. However, the antitumor effects in acute monocytic leukemia and the exact mechanisms involved are unknown. In this study, we investigated the role of solasonine on inhibiting the progression of acute monocytic leukemia. Our findings showed that solasonine inhibited the proliferation of acute monocytic leukemic cell lines (THP-1 and MV4-11) in vitro. Solasonine promoted apoptosis and induced cell cycle arrest in the G2/M phase. Analysis of RNA-seq data suggested that solasonine correlated with increased expression of genes in the AMPK/FOXO3A pathway. Inhibition of AMPK with compound C followed by treatment with solasonine showed that solasonine reduced apoptosis, caused less cell cycle arrest, and inactivated the AMPK/FOXO3A axis in THP-1 and MV4-11 cells. Solasonine also inhibited tumor growth by the activation of the AMPK/FOXO3A axis. In conclusion, solasonine inhibited the progress of acute monocytic leukemia in vitro and in vivo and triggered the apoptosis and cell cycle arrest in the G2/M phase by upregulating the AMPK/FOXO3A pathway.
Collapse
Affiliation(s)
- Hong Zhang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Tian
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengjun Jiang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shushu Qian
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingbin Dai
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bangyun Ma
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengya Wang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaocao Sha
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongfa Yang
- Institute of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xuejun Zhu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuemei Sun
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
20
|
ZnO Q-Dots-Induced Apoptosis Was Coupled with the Induction of PPARγ in Acute Promyelocytic Leukemia Cells; Proposing a Novel Application of Nanoparticles in Combination with Pioglitazone. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-01992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Gan W, Zhang NN, Li L. The Regulation Mechanism of AMPK/FOXO3 Signal Pathway in the Apoptosis and Differentiation of Duck Myoblasts. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Endurance Exercise Mitigates Immunometabolic Adipose Tissue Disturbances in Cancer and Obesity. Int J Mol Sci 2020; 21:ijms21249745. [PMID: 33371214 PMCID: PMC7767095 DOI: 10.3390/ijms21249745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue is considered an endocrine organ whose complex biology can be explained by the diversity of cell types that compose this tissue. The immune cells found in the stromal portion of adipose tissue play an important role on the modulation of inflammation by adipocytokines secretion. The interactions between metabolic active tissues and immune cells, called immunometabolism, is an important field for discovering new pathways and approaches to treat immunometabolic diseases, such as obesity and cancer. Moreover, physical exercise is widely known as a tool for prevention and adjuvant treatment on metabolic diseases. More specifically, aerobic exercise training is able to increase the energy expenditure, reduce the nutrition overload and modify the profile of adipocytokines and myokines with paracrine and endocrine effects. Therefore, our aim in this review was to cover the effects of aerobic exercise training on the immunometabolism of adipose tissue in obesity and cancer, focusing on the exercise-related modification on adipose tissue or immune cells isolated as well as their interaction.
Collapse
|
23
|
Raut PK, Park PH. Globular adiponectin antagonizes leptin-induced growth of cancer cells by modulating inflammasomes activation: Critical role of HO-1 signaling. Biochem Pharmacol 2020; 180:114186. [DOI: 10.1016/j.bcp.2020.114186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
|
24
|
Orozco-Arguelles L, De Los Santos S, Tenorio-Torres A, Méndez JP, Leal-García M, Coral-Vázquez R, Vega-García C, Bautista-Piña V, Tejeda ME, Cárdenas-Cárdenas E, Canto P. Adiponectin and adiponectin receptor 1 expression proteins levels are modified in breast cancer in postmenopausal women with obesity. J Clin Pathol 2020; 74:571-576. [PMID: 32848015 DOI: 10.1136/jclinpath-2020-206471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 11/03/2022]
Abstract
AIM To analyse the expression of adiponectin (ADIPOQ), and its receptors ADIPOR1 and ADIPOR2, in breast cancer tissue of postmenopausal women with different body mass indexes (BMIs). SUBJECTS AND METHODS One hundred and fifty postmenopausal Mexican-Mestizo women with breast cancer were included. BMI was determined in each case. To carry out qualitative and semiquantitative assessments of protein expression by immunohistochemistry, the H-Score method was used, through ImageJ's IHC Profiler software. Statistical power of the study was >80% with a p<0.05. RESULTS Fifty women had a normal BMI, 50 presented overweight and 50 had obesity. The expression of ADIPOQ in breast cancer tissue of postmenopausal woman with normal BMI was higher in comparison to women with overweight or with obesity (p=0.002 and p<0.001, respectively). Furthermore, the expression of ADIPOR1 in breast cancer tissue of postmenopausal women with normal BMI was significantly lower when compared with women with overweight or with obesity (p=0.005 and p<0.001, respectively). Meanwhile, the expression of ADIPOR2 in breast cancer tissue, in the cytoplasm, was similar in all groups studied. CONCLUSIONS We found that women with overweight or obesity had a lower expression of ADIPOQ and a higher ADIPOR1 expression in breast cancer tissue, when compared with women with a normal BMI.
Collapse
Affiliation(s)
- Leticia Orozco-Arguelles
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autonoma de México, Ciudad de México, México.,Subdirección de Investigación Clínica, División de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Sergio De Los Santos
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autonoma de México, Ciudad de México, México.,Subdirección de Investigación Clínica, División de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | | | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autonoma de México, Ciudad de México, México.,Subdirección de Investigación Clínica, División de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Marcela Leal-García
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autonoma de México, Ciudad de México, México.,Subdirección de Investigación Clínica, División de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Ramón Coral-Vázquez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México.,Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Claudia Vega-García
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubiran", Ciudad de México, México
| | | | - María Elena Tejeda
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autonoma de México, Ciudad de México, México.,Subdirección de Investigación Clínica, División de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Eduardo Cárdenas-Cárdenas
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autonoma de México, Ciudad de México, México.,Subdirección de Investigación Clínica, División de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autonoma de México, Ciudad de México, México .,Subdirección de Investigación Clínica, División de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| |
Collapse
|
25
|
Tian Y, Qi P, Hu X. Downregulated FOXO3a Associates With Poor Prognosis and Promotes Cell Invasion and Migration via WNT/β-catenin Signaling in Cervical Carcinoma. Front Oncol 2020; 10:903. [PMID: 32626656 PMCID: PMC7313658 DOI: 10.3389/fonc.2020.00903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Emerging studies have demonstrated that the Forkhead transcription factor FOXO3a is closely correlated with the progression of multiple tumors. Nevertheless, the biological role and prognostic value of FOXO3a have yet to be fully elucidated in cervical carcinoma. This study was designed to determine the molecular mechanism and prognosis of FOXO3a in cervical carcinoma. Methods: The protein levels of FOXO3a were detected using immunohistochemistry and Western blotting. The relationships between FOXO3a expression and clinicopathological variables were analyzed. The biological mechanism of FOXO3a in cervical carcinoma cells (HeLa and CaSki) was investigated. We also explored the effect of FOXO3a on WNT/β-catenin signaling with respect to its expression and function. Results: The results demonstrated that decreased FOXO3a expression was related to increased tumor stage and grade, positive lymph node metastasis, and poor survival outcome in cervical carcinoma. Survival analysis revealed that the FOXO3a level is an independent prognostic factor for cervical carcinoma patients. Furthermore, the data indicated that the downregulation of FOXO3a expression promotes cell invasion and migration, while FOXO3a overexpression exhibited the opposite effects on cervical carcinoma. In addition, FOXO3a acted as a negative regulator of the canonical WNT/ β-catenin pathway in cervical carcinoma. Moreover, overexpression of FOXO3a also inhibited the expression of MMP2 and MMP9. Conclusion: These results reveal that FOXO3a, serving as a tumor suppressor gene, could suppress cell invasion and migration via the WNT/β-catenin signaling pathway and indicates a good prognosis in cervical carcinoma.
Collapse
Affiliation(s)
- Yuejun Tian
- Department of Obstetrics and Gynecology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ping Qi
- Department of Clinical Laboratory, Lanzhou University Second Hospital, Lanzhou, China
| | - Xuemei Hu
- Department of Obstetrics and Gynecology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
26
|
Therapeutic aspects of AMPK in breast cancer: Progress, challenges, and future directions. Biochim Biophys Acta Rev Cancer 2020; 1874:188379. [PMID: 32439311 DOI: 10.1016/j.bbcan.2020.188379] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most ubiquitous type of neoplasms among women worldwide. Molecular aberrations associated with breast development and progressions have been extensively investigated in recent years. An AMP-activated kinase (AMPK) initially identified as a cellular energy sensor that plays a crucial role in cellular energy homeostasis. Intensive research over the last decade about the molecular mechanisms of AMPK has demonstrated that AMPK mediated diverse biological functions are achieved through phosphorylation and regulation of multiple downstream signaling molecules in normal tissue. Downregulation of AMPK activity or decreased level involved in the promotion of breast tumorigenesis, and thus activation of AMPK found to oppose tumor progression. In this review, we epitomize the recent advances in exploring the tumor suppressor function of AMPK pathways. Besides, we discuss the developments in the area of AMPK activator and its molecular mechanisms for breast cancer treatment.
Collapse
|
27
|
Lee N, Tilija Pun N, Jang WJ, Bae JW, Jeong CH. Pitavastatin induces apoptosis in oral squamous cell carcinoma through activation of FOXO3a. J Cell Mol Med 2020; 24:7055-7066. [PMID: 32406610 PMCID: PMC7299721 DOI: 10.1111/jcmm.15389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Statins are a class of lipid‐lowering drugs that have recently been used in drug repositioning in the treatment of human cancer. However, the underlying mechanism of statin‐induced cancer cell death has not been clearly defined. In the present study, we evaluated the anticancer effect of pitavastatin on oral squamous cell carcinoma (OSCC), SCC15 and SCC4 cells and found that FOXO3a might be a direct target in pitavastatin‐induced cancer cell death. Our data revealed that pitavastatin selectively suppressed cell viability and induced intrinsic apoptosis in a FOXO3a‐dependent manner in SCC15 cells while no effect was observed in SCC4 cells. Notably, treatment with pitavastatin in SCC15 cells induced the nuclear translocation of FOXO3a via dual regulation of two upstream kinases, AMPK and Akt, resulting in the up‐regulation of PUMA, a transcriptional target gene of FOXO3a. Furthermore, our data revealed that FOXO3a‐mediated PUMA induction plays a role in pitavastatin‐induced intrinsic apoptosis in SCC15 cells. Taken together, our findings suggest that pitavastatin activates the FOXO3a/PUMA apoptotic axis by regulation of nuclear translocation of FOXO3a via Akt/FOXO3a or AMPK/FOXO3a signalling. Therefore, these findings might help to elucidate the underlying mechanism of the anticancer effects of pitavastatin on OSCC.
Collapse
Affiliation(s)
- Naeun Lee
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | | | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Jung Woo Bae
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, South Korea
| |
Collapse
|
28
|
Pham DV, Raut PK, Pandit M, Chang JH, Katila N, Choi DY, Jeong JH, Park PH. Globular Adiponectin Inhibits Breast Cancer Cell Growth through Modulation of Inflammasome Activation: Critical Role of Sestrin2 and AMPK Signaling. Cancers (Basel) 2020; 12:cancers12030613. [PMID: 32155890 PMCID: PMC7139717 DOI: 10.3390/cancers12030613] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Adiponectin, an adipokine predominantly derived from adipose tissue, exhibits potent antitumor properties in breast cancer cells. However, its mechanisms of action remain elusive. Inflammasomes—intracellular multimeric protein complexes—modulate cancer cell growth in a complicated manner, as well as playing a role in the innate immune system. Herein, we examined the potential role of inflammasomes in the antitumor activity of adiponectin and found that globular adiponectin (gAcrp) significantly suppressed inflammasomes activation in breast cancer cells both in vitro and in vivo conditions, as determined by decreased expression of inflammasomes components, including NOD-like receptor pyrin domain-containing protein 3 (NLRP3) and the apoptosis-associated speck-like protein containing a CARD (ASC), and inhibition of interleukin-1β and caspase-1 activation. Treatment with pharmacological inhibitors of inflammasomes caused decrease in cell viability, apoptosis induction, and G0/G1 cell cycle arrest, suggesting that inflammasomes activation is implicated in the growth of breast cancer cells. In addition, treatment with gAcrp generated essentially similar results to those of inflammasomes inhibitors, further indicating that suppression of breast cancer cell growth by gAcrp is mediated via modulation of inflammasomes. Mechanistically, gAcrp suppressed inflammasomes activation through sestrin2 (SESN2) induction, liver kinase B1 (LKB-1)-dependent AMP-activated protein kinase (AMPK) phosphorylation, and alleviation of endoplasmic reticulum (ER) stress. Taken together, these results demonstrate that gAcrp inhibits growth of breast cancer cells by suppressing inflammasomes activation, at least in part, via SESN2 induction and AMPK activation-dependent mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pil-Hoon Park
- Correspondence: ; Tel.: +82-53-810-2826; Fax: +82-53-810-4654
| |
Collapse
|
29
|
Sadhukhan P, Sil PC. The regulation of intracellular redox homeostasis in cancer progression and its therapy. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
ER stress contributes to autophagy induction by adiponectin in macrophages: Implication in cell survival and suppression of inflammatory response. Cytokine 2019; 127:154959. [PMID: 31877413 DOI: 10.1016/j.cyto.2019.154959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Adiponectin, the most abundant adipokine, exhibits various physiological functions. In addition to its critical role in lipid metabolism, recent studies have demonstrated its potent anti-inflammatory and cytoprotective properties. Accumulating evidence suggests that autophagy plays a critical role in various biological responses by adiponectin. However, the underlying mechanisms remain elusive. Herein, we investigated the role of ER stress in adiponectin-induced autophagy and its functional roles in biological responses by adiponectin in macrophages. In this study, globular adiponectin (gAcrp) significantly increased the expression of various ER stress markers in both RAW 264.7 and primary peritoneal macrophages. In addition, inhibition of ER stress by treatment with tauroursodeoxycholic acid (TUDCA) or gene silencing of CHOP prominently suppressed gAcrp-induced autophagy. Treatment with gAcrp also induced significant increase in sestrin2 expression. Interestingly, knockdown of sestrin2 prevented autophagy induction and inhibition of ER stress abrogated sestrin2 induction by gAcrp, collectively implying that ER stress critically contributes to gAcrp-induced autophagy activation via sestrin2 induction. Moreover, pretreatment with TUDCA restored suppression of TNF-α and IL-1β expression and attenuated the enhanced viability of macrophages induced by gAcrp. Taken together, these findings indicate the potential role of ER stress in autophagy activation, modulation of inflammatory responses, and cell survival by gAcrp in macrophages.
Collapse
|
31
|
TGFβ induces stemness through non-canonical AKT-FOXO3a axis in oral squamous cell carcinoma. EBioMedicine 2019; 48:70-80. [PMID: 31629677 PMCID: PMC6838363 DOI: 10.1016/j.ebiom.2019.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/01/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Background FOXO3a has been widely regarded as a tumor suppressor. It also plays a paradoxical role in regulating the cancer stem cells (CSCs), responsible for tumor-initiation, chemo-resistance, and recurrence in various solid tumors, including oral squamous cell carcinoma (OSCC). This study aims to uncover the role of FOXO3a and its importance for a non-canonical pathway of TGFβ in regulating the OSCC stemness. Methods We identified FOXO3a expression in OSCC tissues and cell lines using immunohistochemistry and western blot. The correlation between FOXO3a and stemness was evaluated. Stable cell lines with differential expression of FOXO3a were constructed using lentiviruses. The effects of FOXO3a on stem-cell like properties in OSCC was further evaluated in vitro and in vivo. We also explored the effect of TGFβ on FOXO3a with respect to its expression and function. Findings Our findings suggest that FOXO3a was widely expressed and negatively correlated with the stemness in OSCC. This regulation can be abolished by TGFβ through phosphorylation, nuclear exclusion, and degradation in the non-Smad pathway. We also observed that non-Smad AKT-FOXO3a axis is essential to regulate stemness of CSCs by TGFβ. Interpretation TGFβ induces stemness through non-canonical AKT-FOXO3a axis in OSCC. Our study provides a foundation to understand the mechanism of CSCs and a possible therapeutic target to eliminate CSCs.
Collapse
|
32
|
Adiponectin, Obesity, and Cancer: Clash of the Bigwigs in Health and Disease. Int J Mol Sci 2019; 20:ijms20102519. [PMID: 31121868 PMCID: PMC6566909 DOI: 10.3390/ijms20102519] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Adiponectin is one of the most important adipocytokines secreted by adipocytes and is called a “guardian angel adipocytokine” owing to its unique biological functions. Adiponectin inversely correlates with body fat mass and visceral adiposity. Identified independently by four different research groups, adiponectin has multiple names; Acrp30, apM1, GBP28, and AdipoQ. Adiponectin mediates its biological functions via three known receptors, AdipoR1, AdipoR2, and T-cadherin, which are distributed throughout the body. Biological functions of adiponectin are multifold ranging from anti-diabetic, anti-atherogenic, anti-inflammatory to anti-cancer. Lower adiponectin levels have been associated with metabolic syndrome, type 2 diabetes, insulin resistance, cardiovascular diseases, and hypertension. A plethora of experimental evidence supports the role of obesity and increased adiposity in multiple cancers including breast, liver, pancreatic, prostrate, ovarian, and colorectal cancers. Obesity mediates its effect on cancer progression via dysregulation of adipocytokines including increased production of oncogenic adipokine leptin along with decreased production of adiponectin. Multiple studies have shown the protective role of adiponectin in obesity-associated diseases and cancer. Adiponectin modulates multiple signaling pathways to exert its physiological and protective functions. Many studies over the years have shown the beneficial effect of adiponectin in cancer regression and put forth various innovative ways to increase adiponectin levels.
Collapse
|
33
|
Zheng GD, Hu PJ, Chao YX, Zhou Y, Yang XJ, Chen BZ, Yu XY, Cai Y. Nobiletin induces growth inhibition and apoptosis in human nasopharyngeal carcinoma C666-1 cells through regulating PARP-2/SIRT1/AMPK signaling pathway. Food Sci Nutr 2019; 7:1104-1112. [PMID: 30918653 PMCID: PMC6418462 DOI: 10.1002/fsn3.953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/29/2018] [Accepted: 01/06/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Nobiletin, a major polymethoxyflavones (PMFs) from citri reticulatae pericarpium (CRP), can inhibit several forms of cancer proliferation. However, the effects of nobiletin on nasopharyngeal carcinoma (NPC) C666-1 cells remain largely unknown. MATERIALS AND METHODS Cell counting kit 8 (CCK8) assay was used to measure cell vitality. Flow cytometry was performed to measure the apoptosis rate. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis were applied to determine the expression of mRNA and protein, respectively. RESULTS We showed that the proliferation rate of C666-1 cells was inhibited and the apoptosis rate was raised after treating with nobiletin. Moreover, nobiletin inhibited the expression of poly(ADP-ribose)polymerase-2 (PARP-2), and the tumor suppression effect of nobiletin on C666-1 is associated with PARP-2-dependent pathway. CONCLUSION We demonstrated for the first time that nobiletin inhibited the growth of C666-1 cells, which may be relative to its regulation on PARP-2/SIRT1/AMPK signaling pathway. Our result implied that nobiletin may serve as a strategy to treat nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Guo Dong Zheng
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Ping Jun Hu
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Ying Xin Chao
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Ying Zhou
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Xiu Juan Yang
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Bai Zhong Chen
- Guangdong Xinbaotang Biological Technology Co, LtdJiangmenChina
| | - Xi Yong Yu
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| |
Collapse
|
34
|
Tilija Pun N, Khakurel A, Shrestha A, Kim SH, Park PH. Critical role of tristetraprolin and AU-rich element RNA-binding protein 1 in the suppression of cancer cell growth by globular adiponectin. FEBS Open Bio 2018; 8:1964-1976. [PMID: 30524947 PMCID: PMC6275284 DOI: 10.1002/2211-5463.12541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Adiponectin exhibits potent antitumor activities. Herein, we examined the molecular mechanisms underlying suppression of tumor growth by globular adiponectin (gAcrp). We demonstrated that gAcrp suppressed B‐cell lymphoma 2 (Bcl‐2) expression, an anti‐apoptotic gene, by inducing its mRNA destabilization, which was accompanied with a decrease in cell viability and increased caspase‐3 activity in hepatic cancer cells. In addition, gAcrp increased expression of tristetraprolin (TTP) and AU‐rich element RNA‐binding protein 1 (AUF1), which are mRNA stability regulatory proteins. Moreover, gAcrp‐induced suppression of Bcl‐2 expression was abrogated by knockdown of TTP or AUF1. These data indicate that gAcrp induces apoptosis of hepatic cancer cells by TTP‐ and AUF1‐mediated Bcl‐2 mRNA destabilization, and further suggest that TTP and AUF1 are novel targets mediating the antitumor activity of adiponectin.
Collapse
Affiliation(s)
| | | | | | - Sang-Hyun Kim
- Department of Pharmacology School of Medicine Kyungpook National University Daegu Korea
| | - Pil-Hoon Park
- College of Pharmacy Yeungnam University Gyeongsan Korea
| |
Collapse
|
35
|
Nicolini A, Ferrari P, Rossi G, Carpi A. Tumour growth and immune evasion as targets for a new strategy in advanced cancer. Endocr Relat Cancer 2018; 25:R577–R604. [PMID: 30306784 DOI: 10.1530/erc-18-0142] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has become clearer that advanced cancer, especially advanced breast cancer, is an entirely displayed pathological system that is much more complex than previously considered. However, the direct relationship between tumour growth and immune evasion can represent a general rule governing the pathological cancer system from the initial cancer cells to when the system is entirely displayed. Accordingly, a refined pathobiological model and a novel therapeutic strategy are proposed. The novel therapeutic strategy is based on therapeutically induced conditions (undetectable tumour burden and/or a prolonged tumour ‘resting state’), which enable an efficacious immune response in advanced breast and other types of solid cancers.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Rossi
- Unit of Epidemiology and Biostatistics, Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
36
|
Kim EH, Park PH. Globular adiponectin protects rat hepatocytes against acetaminophen-induced cell death via modulation of the inflammasome activation and ER stress: Critical role of autophagy induction. Biochem Pharmacol 2018; 154:278-292. [DOI: 10.1016/j.bcp.2018.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
|
37
|
Liu L, Yan X, Wu D, Yang Y, Li M, Su Y, Yang W, Shan Z, Gao Y, Jin Z. High expression of Ras-related protein 1A promotes an aggressive phenotype in colorectal cancer via PTEN/FOXO3/CCND1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:178. [PMID: 30064475 PMCID: PMC6069867 DOI: 10.1186/s13046-018-0827-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023]
Abstract
Background Colorectal cancer (CRC) is a commonly diagnosed digestive malignancy worldwide. Ras-related protein 1A (RAP1A) is a member of the Ras superfamily of small GTPases and has been recently identified as a novel oncoprotein in several human malignancies. However, its specific role in CRC remains unclear. Method In this study, we firstly analyzed its expression and clinical significance in a retrospective cohort of 144 CRC patients. Then, cellular assays in vitro and in vivo were performed to clarify its biological role in CRC cells. Finally, microarray analysis was utilized to investigate the molecular mechanisms regulated by RAP1A in CRC progression. Results Firstly, RAP1A expression was abnormally higher in CRC tissues as compared with adjacent normal tissues, and significantly correlated tumor invasion. High RAP1A expression was an independent unfavourable prognostic factor for CRC patients. Combining RAP1A expression and preoperative CEA level contributed to a more accurate prognostic stratification in CRC patients. Secondly, knockdown of RAP1A dramatically inhibited the growth of CRC cells, while it was opposite for RAP1A overexpression. Finally, the microarray analysis revealed RAP1A promoted CRC growth partly through phosphatase and tensin homolog (PTEN)/forkhead box O3(FOXO3)/cyclin D1(CCND1) signaling pathway. FOXO3 overexpression could partly mimic the inhibitory effect of RAP1A knockdown in CRC growth. Moreover, FOXO3 overexpression inhibited CCND1 expression, but had no impact on RAP1A and PTEN expression. Conclusion RAP1A promotes CRC development partly through PTEN/FOXO3 /CCND1 signaling pathway. It has a great potential to be an effective clinical biomarker and therapeutic target for CRC patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0827-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liguo Liu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Xuebing Yan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Dapeng Wu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Yi Yang
- Department of Oncological Surgery, Kunshan Traditional Chinese Medicine, Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu, China
| | - Mengcheng Li
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Yang Su
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Wenchao Yang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Zezhi Shan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China.
| | - Yuping Gao
- Department of Assisted Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, People's Republic of China.
| | - Zhiming Jin
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China.
| |
Collapse
|
38
|
Yu W, Cao DD, Li QB, Mei HL, Hu Y, Guo T. Adipocytes secreted leptin is a pro-tumor factor for survival of multiple myeloma under chemotherapy. Oncotarget 2018; 7:86075-86086. [PMID: 27863383 PMCID: PMC5349898 DOI: 10.18632/oncotarget.13342] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidences have shown that adipokines secreted from adipocytes contributes to tumor development, especially leptin. However, underlying mechanisms remain unclear. This study aims to explore the effect of leptin on development and chemoresistance in multiple myeloma cells and the potential mechanism. Analysis of levels of adipokines including leptin and adiponectin in 28 multiple myeloma patients identified significantly higher leptin compared with 28 normal controls(P < 0.05), and leptin level was positively correlated with clinical stage, IgG, ER, and ß2MG. Next, by using co-culture system of myeloma and adipocytes, and pharmacologic enhancement of leptin, we found that increased growth of myeloma cells and reduced toxicity of bortezomib were best observed at 50 ng/ml of leptin, along with increased expression of cyclinD1, Bcl-2 and decreased caspase-3 expression. We also found that phosphorylated AKT and STAT3 but not the proteins expression reached peak after 1h and 6h treatment of leptin, respectively. By using AG490, an agent blocking the phosphorylation of AKT and ERK, the proliferation of myeloma cells was inhibited, as well as the phosphorylation of AKT and STAT3, even adding leptin. Taken together, our study demonstrated that up-regulated leptin could stimulate proliferation of myeloma and reduce the anti-tumor effect of chemotherapy possibly via activating AKT and STAT3 pathways, and leptin might be one of the potential therapeutic targets for treating myeloma.
Collapse
Affiliation(s)
- Wen Yu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - De-Dong Cao
- Department of Oncology, Remmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiu-Bai Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui-Ling Mei
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Guo
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
39
|
Saavedra-García P, Nichols K, Mahmud Z, Fan LYN, Lam EWF. Unravelling the role of fatty acid metabolism in cancer through the FOXO3-FOXM1 axis. Mol Cell Endocrinol 2018; 462:82-92. [PMID: 28087388 DOI: 10.1016/j.mce.2017.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/06/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023]
Abstract
Obesity and cachexia represent divergent states of nutritional and metabolic imbalance but both are intimately linked to cancer. There is an extensive overlap in their signalling pathways and molecular components involved such as fatty acids (FAs), which likely play a crucial role in cancer. Forkhead box (FOX) proteins are responsible of a wide range of transcriptional programmes during normal development, and the FOXO3-FOXM1 axis is associated with cancer initiation, progression and drug resistance. Free fatty acids (FFAs), FA synthesis and β-oxidation are associated with cancer development and progression. Meanwhile, insulin and some adipokines, that are up-regulated by FAs, are also involved in cancer development and poor prognosis. In this review, we discuss the role of FA metabolism in cancer and how FA metabolism integrates with the FOXO3-FOXM1 axis. These new insights may provide leads to better cancer diagnostics as well as strategies for tackling cancer development, progression and drug resistance.
Collapse
Affiliation(s)
- Paula Saavedra-García
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Katie Nichols
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Zimam Mahmud
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Lavender Yuen-Nam Fan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| |
Collapse
|
40
|
ZP2495 Protects against Myocardial Ischemia/Reperfusion Injury in Diabetic Mice through Improvement of Cardiac Metabolism and Mitochondrial Function: The Possible Involvement of AMPK-FoxO3a Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6451902. [PMID: 29576852 PMCID: PMC5822888 DOI: 10.1155/2018/6451902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 08/23/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Coronary heart disease patients with type 2 diabetes were subject to higher vulnerability for cardiac ischemia-reperfusion (I/R) injury. This study was designed to evaluate the impact of ZP2495 (a glucagon-GLP-1 dual-agonist) on cardiac function and energy metabolism after myocardial I/R injury in db/db mice with a focus on mitochondrial function. C57BLKS/J-lepr+/lepr+ (BKS) and db/db mice received 4-week treatment of glucagon, ZP131 (GLP-1 receptor agonist), or ZP2495, followed by cardiac I/R injury. The results showed that cardiac function, cardiac glucose metabolism, cardiomyocyte apoptosis, cardiac mitochondrial morphology, and energetic transition were improved or ameliorated by ZP2495 to a greater extent than that of glucagon and ZP131. In vitro study showed that ZP2495, rather than glucagon, alleviated mitochondrial depolarization, cytochrome C release, and mitochondria ROS generation in neonatal rat ventricular myocytes subjected to high-glucose and simulated I/R injury conditions, the effects of which were weaker in the ZP131 group. Furthermore, the expressions of Akt, FoxO3a, and AMPK phosphorylation were elevated by ZP2495 to a greater extent than that of ZP131. In conclusion, ZP2495 may contribute to the improvement of cardiac function and energy metabolism in db/db mice after myocardial I/R injury by improving mitochondrial function possibly through Akt/FoxO3a and AMPK/FoxO3a signal pathways.
Collapse
|
41
|
Estrogen receptor signaling mediates leptin-induced growth of breast cancer cells via autophagy induction. Oncotarget 2017; 8:109417-109435. [PMID: 29312618 PMCID: PMC5752531 DOI: 10.18632/oncotarget.22684] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/29/2017] [Indexed: 12/19/2022] Open
Abstract
Leptin, a hormone derived from adipose tissue, promotes growth of cancer cells via multiple mechanisms. Estrogen receptor signaling is also known to stimulate the growth of breast cancer cells. However, the involvement of estrogen receptor signaling in the oncogenic actions of leptin and its underlying mechanisms are not clearly understood. Herein, we investigated mechanisms for estrogen receptor signaling-mediated growth of breast cancer cells, particularly focusing on autophagy, which plays a crucial role in leptin-induced tumor growth. Inhibition of estrogen receptor signaling via gene silencing or treatment with a pharmacological inhibitor (tamoxifen) abolished leptin-induced growth of MCF-7 human breast cancer cells. Interestingly, leptin-induced autophagy activation, determined by up-regulation of autophagy-related genes and autophagosome formation, was also significantly suppressed by inhibiting estrogen receptor signaling. Moreover, inhibition of estrogen receptor markedly prevented leptin-induced activation of AMPK/FoxO3A axis, which plays a crucial role in autophagy induction. Leptin-induced cell cycle progression and Bax down-regulation were also prevented by treatment with tamoxifen. The pivotal roles of estrogen receptor signaling in leptin-induced cell cycle progression, apoptosis suppression, and autophagy induction were further confirmed in MCF-7 tumor xenograft model. Taken together, these results demonstrate that estrogen receptor signaling plays a key role in leptin-induced growth of breast cancer cells via autophagy activation.
Collapse
|
42
|
Hou T, Li Z, Zhao Y, Zhu WG. Mechanisms controlling the anti-neoplastic functions of FoxO proteins. Semin Cancer Biol 2017; 50:101-114. [PMID: 29155239 DOI: 10.1016/j.semcancer.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/18/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023]
Abstract
The Forkhead box O (FoxO) proteins comprise a family of evolutionarily conserved transcription factors that predominantly function as tumor suppressors. These proteins assume diverse roles in the cellular anti-neoplastic response, including regulation of apoptosis and autophagy, cancer metabolism, cell-cycle arrest, oxidative stress and the DNA damage response. More recently, FoxO proteins have been implicated in cancer immunity and cancer stem-cell (CSC) homeostasis. Interestingly, in some sporadic sub-populations, FoxO protein function may also be manipulated by factors such as β-catenin whereby they instead can facilitate cancer progression via maintenance of CSC properties or promoting drug resistance or metastasis and invasion. This review highlights the essential biological functions of FoxOs and explores the areas that may be exploited in FoxO protein signaling pathways in the development of novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Tianyun Hou
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhiming Li
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
43
|
Evangelisti C, Cappellini A, Oliveira M, Fragoso R, Barata JT, Bertaina A, Locatelli F, Simioni C, Neri LM, Chiarini F, Lonetti A, Buontempo F, Orsini E, Pession A, Manzoli L, Martelli AM, Evangelisti C. Phosphatidylinositol 3-kinase inhibition potentiates glucocorticoid response in B-cell acute lymphoblastic leukemia. J Cell Physiol 2017; 233:1796-1811. [DOI: 10.1002/jcp.26135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences; University of Cassino; Cassino Italy
| | - Mariana Oliveira
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - João T. Barata
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - Alice Bertaina
- Department of Pediatric Hematology-Oncology, IRCCS; Bambino Gesù Children's Hospital; Rome Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS; Bambino Gesù Children's Hospital; Rome Italy
| | - Carolina Simioni
- Department of Morphology; Surgery and Experimental Medicine; University of Ferrara; Ferrara Italy
| | - Luca M. Neri
- Department of Morphology; Surgery and Experimental Medicine; University of Ferrara; Ferrara Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics; Rizzoli Orthopedic Institute, National Research Council; Bologna Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Andrea Pession
- Department of Medical and Surgical Sciences; University of Bologna; Bologna Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | | | - Camilla Evangelisti
- Institute of Molecular Genetics; Rizzoli Orthopedic Institute, National Research Council; Bologna Italy
| |
Collapse
|
44
|
Two novel dinuclear ellipsoid Ni(II) and Co(II) complexes bridged by 4,5-bis(pyrazol-1-yl)phthalic acid: Synthesis, structural characterization and biological evaluation. Eur J Med Chem 2017; 136:235-245. [DOI: 10.1016/j.ejmech.2017.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/28/2022]
|
45
|
Chung SJ, Nagaraju GP, Nagalingam A, Muniraj N, Kuppusamy P, Walker A, Woo J, Győrffy B, Gabrielson E, Saxena NK, Sharma D. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy 2017; 13:1386-1403. [PMID: 28696138 DOI: 10.1080/15548627.2017.1332565] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
ADIPOQ/adiponectin, an adipocytokine secreted by adipocytes in the breast tumor microenvironment, negatively regulates cancer cell growth hence increased levels of ADIPOQ/adiponectin are associated with decreased breast cancer growth. However, its mechanisms of action remain largely elusive. We report that ADIPOQ/adiponectin induces a robust accumulation of autophagosomes, increases MAP1LC3B-II/LC3B-II and decreases SQSTM1/p62 in breast cancer cells. ADIPOQ/adiponectin-treated cells and xenografts exhibit increased expression of autophagy-related proteins. LysoTracker Red-staining and tandem-mCherry-GFP-LC3B assay show that fusion of autophagosomes and lysosomes is augmented upon ADIPOQ/adiponectin treatment. ADIPOQ/adiponectin significantly inhibits breast cancer growth and induces apoptosis both in vitro and in vivo, and these events are preceded by macroautophagy/autophagy, which is integral for ADIPOQ/adiponectin-mediated cell death. Accordingly, blunting autophagosome formation, blocking autophagosome-lysosome fusion or genetic-knockout of BECN1/Beclin1 and ATG7 effectively impedes ADIPOQ/adiponectin induced growth-inhibition and apoptosis-induction. Mechanistic studies show that ADIPOQ/adiponectin reduces intracellular ATP levels and increases PRKAA1 phosphorylation leading to ULK1 activation. AMPK-inhibition abrogates ADIPOQ/adiponectin-induced ULK1-activation, LC3B-turnover and SQSTM1/p62-degradation while AMPK-activation potentiates ADIPOQ/adiponectin's effects. Further, ADIPOQ/adiponectin-mediated AMPK-activation and autophagy-induction are regulated by upstream master-kinase STK11/LKB1, which is a key node in antitumor function of ADIPOQ/adiponectin as STK11/LKB1-knockout abrogates ADIPOQ/adiponectin-mediated inhibition of breast tumorigenesis and molecular analyses of tumors corroborate in vitro mechanistic findings. ADIPOQ/adiponectin increases the efficacy of chemotherapeutic agents. Notably, high expression of ADIPOQ receptor ADIPOR2, ADIPOQ/adiponectin and BECN1 significantly correlates with increased overall survival in chemotherapy-treated breast cancer patients. Collectively, these data uncover that ADIPOQ/adiponectin induces autophagic cell death in breast cancer and provide in vitro and in vivo evidence for the integral role of STK11/LKB1-AMPK-ULK1 axis in ADIPOQ/adiponectin-mediated cytotoxic autophagy.
Collapse
Affiliation(s)
- Seung J Chung
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | | | - Arumugam Nagalingam
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Nethaji Muniraj
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Panjamurthy Kuppusamy
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Alyssa Walker
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Juhyung Woo
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Balázs Győrffy
- d MTA TTK Momentum Cancer Biomarker Research Group , Budapest , Hungary.,e Semmelweis University 2nd Dept. of Pediatrics , Budapest , Hungary
| | - Ed Gabrielson
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Neeraj K Saxena
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Dipali Sharma
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| |
Collapse
|
46
|
Liu YM, Lv J, Zeng QL, Shen S, Xing JY, Zhang YY, Zhang ZH, Yu ZJ. AMPK activation ameliorates D-GalN/LPS-induced acute liver failure by upregulating Foxo3A to induce autophagy. Exp Cell Res 2017; 358:335-342. [PMID: 28689811 DOI: 10.1016/j.yexcr.2017.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM Acute liver failure (ALF) is an uncommon but serious disease still carrying a high mortality. This study aimed to investigate the mechanism of AMPK on D-GalN/LPS-induced ALF. METHODS In this study, we utilized intraperitoneal injection of D-GalN/LPS to induce ALF model, and analyzed the expression of AMPK, inflammatory cytokines (TNF-α, IL-1β and IL-6), Foxo3A and autophagy-related genes (Atg-5, Beclin-1, Atg-7) by real-time quantitative polymerase chain reaction (RT-PCR) in liver tissue. We also examined the level of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum of ALF mice. AMPK activation and inhibition of autophagy were induced by AICAR and 3-MA, respectively. Silence and overexpression of Foxo3A were performed by si-Foxo3A and pcDNA-Foxo3A, respectively. Lastly, the BMDM-conditioned medium (BMDM-CM) derived from BMDMs treated with AICAR and LPS were used to explore the effect of AMPK and Foxo3A on hepatocytes. RESULT The expression of AMPK was decreased in liver tissue and the level of ALT and AST were increased in serum of D-GalN/LPS-induced ALF mice. AMPK activation ameliorated ALF by inhibiting inflammation (downregulated TNF-α, IL-1β and IL-6 expression), activating autophagy (increased Atg-5, Beclin-1 and Atg-7 expression) and upregulating Foxo3A expression. Silence of Foxo3A decreased AMPK-activated autophagy, but overexpressing Foxo3A attenuated liver failure by activating autophagy. In addition, AMPK activation alleviated liver failure in vitro. CONCLUSION Thus, AMPK/Foxo3A/autophagy pathway may be an effective treatment approach to ameliorate ALF.
Collapse
Affiliation(s)
- Yan-Min Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Jun Lv
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Qing-Lei Zeng
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Shen Shen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Ji-Yuan Xing
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Ying-Ying Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Zhi-Hao Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Zu-Jiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
47
|
Li D, Luo L, Xu M, Wu J, Chen L, Li J, Liu Z, Lu G, Wang Y, Qiao L. AMPK activates FOXO3a and promotes neuronal apoptosis in the developing rat brain during the early phase after hypoxia-ischemia. Brain Res Bull 2017; 132:1-9. [PMID: 28499802 DOI: 10.1016/j.brainresbull.2017.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/29/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022]
Abstract
AMP-activated protein kinase (AMPK) is a key metabolic and stress sensor/effector. Few investigations have been performed to study the role of AMPK in developing rat brain with hypoxia-ischemia (HI). Forkhead transcriptional factor (FOXO3a) has been revealed to be a critical effector of AMPK-mediated celluar apoptosis. However, it is not clear whether AMPK/FOXO3a pathway is involved in neuronal apoptosis in the developing rat brain after HI. In this study, we generated hypoxia-ischemia brain damage (HIBD) model using postnatal day 7 rats. We found that activation of AMPK was accompanied by the decrease of p-mTOR, p-Akt and p-FOXO3a, which induced FOXO3a translocation into the nucleus and up-regulated the expression of Bim and cleaved caspase 3 (CC3). Furthermore, we discovered that AMPK inhibition by Compound C, a selective inhibitor for AMPK activity, significantly increased the phosphorylation levels of mTOR, Akt and FOXO3a, attenuated the nuclear translocation of FOXO3a, and inhibited Bim and CC3 expression after HI. Moreover, AMPK inhibition reduced cellular apoptosis, attenuated brain infarct volume and promoted neurological recovery in the developing rat brain after HI. Our findings suggest that AMPK participates in the regulation of FOXO3a-mediated neuronal apoptosis in the developing rat brain after HI. Agents targeting AMPK may offer promise for rescuing neurons from HI-induced damage.
Collapse
Affiliation(s)
- Deyuan Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Lili Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Min Xu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Jinlin Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Lina Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Jinhui Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Zhongqiang Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Guoyan Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Yang Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Lina Qiao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China.
| |
Collapse
|
48
|
Amiodarone-Induced Retinal Neuronal Cell Apoptosis Attenuated by IGF-1 via Counter Regulation of the PI3k/Akt/FoxO3a Pathway. Mol Neurobiol 2016; 54:6931-6943. [PMID: 27774572 DOI: 10.1007/s12035-016-0211-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/11/2016] [Indexed: 01/07/2023]
Abstract
Amiodarone (AM) is the most effective antiarrhythmic agent currently available. However, clinical application of AM is limited by its serious toxic adverse effects including optic neuropathy. The purpose of this study was to explore the effects of AM and to assess if insulin-like growth factor-1 (IGF-1) could protect retinal neuronal cells from AM-induced apoptosis, and to determine the molecular mechanisms underlying the effects. Accordingly, the phosphorylation/activation of Akt and FoxO3a were analyzed by Western blot while the possible pathways involved in the protection of IGF-1 were investigated by application of various pathway inhibitors. The full electroretinogram (FERG) was used to evaluate in vivo effect of AM and IGF-1 on rat retinal physiological functions. Our results showed that AM concentration dependently caused an apoptosis of RGC-5 cells, while IGF-1 protected RGC-5 cells against this effect by AM. The protective effect of IGF-1 was reversed by PI3K inhibitors LY294002 and wortmannin as well as the Akt inhibitor VIII. AM decreased p-Akt and p-FoxO3a while increased the nuclear localization of FoxO3a in the RGC-5 cells. IGF-1 reversed the effect of AM on the p-Akt and p-FoxO3a and the nuclear translocation of FoxO3a. Similar results were obtained in primary cultured retinal ganglia cells. Furthermore, FERG in vivo recording in rats showed that AM decreased a-wave and b-wave of FERG while IGF-1 reversed the effects of AM. These data show that AM induced apoptosis of retinal neuronal cells via inhibiting the PI3K/Akt/FoxO3a pathway while IGF-1 protected RGC-5 cells against AM-induced cell apoptosis by stimulating this pathway.
Collapse
|
49
|
Qian K, Wang G, Cao R, Liu T, Qian G, Guan X, Guo Z, Xiao Y, Wang X. Capsaicin Suppresses Cell Proliferation, Induces Cell Cycle Arrest and ROS Production in Bladder Cancer Cells through FOXO3a-Mediated Pathways. Molecules 2016; 21:molecules21101406. [PMID: 27775662 PMCID: PMC6272872 DOI: 10.3390/molecules21101406] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 11/16/2022] Open
Abstract
Capsaicin (CAP), a highly selective agonist for transient receptor potential vanilloid type 1 (TRPV1), has been widely reported to exhibit anti-oxidant, anti-inflammation and anticancer activities. Currently, several therapeutic approaches for bladder cancer (BCa) are available, but accompanied by unfavorable outcomes. Previous studies reported a potential clinical effect of CAP to prevent BCa tumorigenesis. However, its underlying molecular mechanism still remains unknown. Our transcriptome analysis suggested a close link among calcium signaling pathway, cell cycle regulation, ROS metabolism and FOXO signaling pathway in BCa. In this study, several experiments were performed to investigate the effects of CAP on BCa cells (5637 and T24) and NOD/SCID mice. Our results showed that CAP could suppress BCa tumorigenesis by inhibiting its proliferation both in vitro and in vivo. Moreover, CAP induced cell cycle arrest at G0/G1 phase and ROS production. Importantly, our studies revealed a strong increase of FOXO3a after treatment with CAP. Furthermore, we observed no significant alteration of apoptosis by CAP, whereas Catalase and SOD2 were considerably upregulated, which could clear ROS and protect against cell death. Thus, our results suggested that CAP could inhibit viability and tumorigenesis of BCa possibly via FOXO3a-mediated pathways.
Collapse
Affiliation(s)
- Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
- Department of Urology, The Fifth Hospital of Wuhan, Wuhan 430050, China.
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Rui Cao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
- Department of Urology, Jingzhou Central Hospital, Jingzhou 434020, China.
| | - Guofeng Qian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China.
| | - Xinyuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Zhongqiang Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
- Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
50
|
Cheng J, Zhang T, Ji H, Tao K, Guo J, Wei W. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 2016; 1866:232-251. [PMID: 27681874 DOI: 10.1016/j.bbcan.2016.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitously expressed metabolic sensor among various species. Specifically, cellular AMPK is phosphorylated and activated under certain stressful conditions, such as energy deprivation, in turn to activate diversified downstream substrates to modulate the adaptive changes and maintain metabolic homeostasis. Recently, emerging evidences have implicated the potential roles of AMPK signaling in tumor initiation and progression. Nevertheless, a comprehensive description on such topic is still in scarcity, especially in combination of its biochemical features with mouse modeling results to elucidate the physiological role of AMPK signaling in tumorigenesis. Hence, we performed this thorough review by summarizing the tumorigenic role of each component along the AMPK signaling, comprising of both its upstream and downstream effectors. Moreover, their functional interplay with the AMPK heterotrimer and exclusive efficacies in carcinogenesis were chiefly explained among genetically altered mice models. Importantly, the pharmaceutical investigations of AMPK relevant medications have also been highlighted. In summary, in this review, we not only elucidate the potential functions of AMPK signaling pathway in governing tumorigenesis, but also potentiate the future targeted strategy aiming for better treatment of aberrant metabolism-associated diseases, including cancer.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hongbin Ji
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, People's Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|