1
|
Ma Y, Schwager (Karpukhina) A, Dib C, Gautier C, Hermine O, Allemand E, Vassetzky YS. Exchange of subtelomeric regions between chromosomes 4q and 10q reverts the FSHD genotype and phenotype. SCIENCE ADVANCES 2024; 10:eadl1922. [PMID: 38691604 PMCID: PMC11062572 DOI: 10.1126/sciadv.adl1922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/26/2024] [Indexed: 05/03/2024]
Abstract
The most common form of facioscapulohumeral dystrophy (FSHD1) is caused by a partial loss of the D4Z4 macrosatellite repeat array in the subtelomeric region of chromosome 4. Patients with FSHD1 typically carry 1 to 10 D4Z4 repeats, whereas nonaffected individuals have 11 to 150 repeats. The ~150-kilobyte subtelomeric region of the chromosome 10q exhibits a ~99% sequence identity to the 4q, including the D4Z4 array. Nevertheless, contractions of the chr10 array do not cause FSHD or any known disease, as in most people D4Z4 array on chr10 is flanked by the nonfunctional polyadenylation signal, not permitting the DUX4 expression. Here, we attempted to correct the FSHD genotype by a CRISPR-Cas9-induced exchange of the chr4 and chr10 subtelomeric regions. We demonstrated that the induced t(4;10) translocation can generate recombinant genotypes translated into improved FSHD phenotype. FSHD myoblasts with the t(4;10) exhibited reduced expression of the DUX4 targets, restored PAX7 target expression, reduced sensitivity to oxidative stress, and improved differentiation capacity.
Collapse
Affiliation(s)
- Yinxing Ma
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anna Schwager (Karpukhina)
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
- Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Carla Dib
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Candice Gautier
- Université de Paris Cité, Institut Imagine, Inserm U1163, Paris, France
| | - Olivier Hermine
- Université de Paris Cité, Institut Imagine, Inserm U1163, Paris, France
- Department of Hematology, Hôpital Necker Enfants Malades, AP-HP, Faculté de Médecine Paris Descartes, Paris, France
| | - Eric Allemand
- Université de Paris Cité, Institut Imagine, Inserm U1163, Paris, France
| | - Yegor S. Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
- Koltzov Institute of Developmental Biology, Moscow, Russia
| |
Collapse
|
2
|
Schätzl T, Kaiser L, Deigner HP. Facioscapulohumeral muscular dystrophy: genetics, gene activation and downstream signalling with regard to recent therapeutic approaches: an update. Orphanet J Rare Dis 2021; 16:129. [PMID: 33712050 PMCID: PMC7953708 DOI: 10.1186/s13023-021-01760-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Whilst a disease-modifying treatment for Facioscapulohumeral muscular dystrophy (FSHD) does not exist currently, recent advances in complex molecular pathophysiology studies of FSHD have led to possible therapeutic approaches for its targeted treatment. Although the underlying genetics of FSHD have been researched extensively, there remains an incomplete understanding of the pathophysiology of FSHD in relation to the molecules leading to DUX4 gene activation and the downstream gene targets of DUX4 that cause its toxic effects. In the context of the local proximity of chromosome 4q to the nuclear envelope, a contraction of the D4Z4 macrosatellite induces lower methylation levels, enabling the ectopic expression of DUX4. This disrupts numerous signalling pathways that mostly result in cell death, detrimentally affecting skeletal muscle in affected individuals. In this regard different options are currently explored either to suppress the transcription of DUX4 gene, inhibiting DUX4 protein from its toxic effects, or to alleviate the symptoms triggered by its numerous targets.
Collapse
Affiliation(s)
- Teresa Schätzl
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104, Freiburg i. Br., Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI, Leipzig, Schillingallee 68, 18057, Rostock, Germany.
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
3
|
Greco A, Goossens R, van Engelen B, van der Maarel SM. Consequences of epigenetic derepression in facioscapulohumeral muscular dystrophy. Clin Genet 2020; 97:799-814. [PMID: 32086799 PMCID: PMC7318180 DOI: 10.1111/cge.13726] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a common hereditary myopathy, is caused either by the contraction of the D4Z4 macrosatellite repeat at the distal end of chromosome 4q to a size of 1 to 10 repeat units (FSHD1) or by mutations in D4Z4 chromatin modifiers such as Structural Maintenance of Chromosomes Hinge Domain Containing 1 (FSHD2). These two genotypes share a phenotype characterized by progressive and often asymmetric muscle weakening and atrophy, and common epigenetic alterations of the D4Z4 repeat. All together, these epigenetic changes converge the two genetic forms into one disease and explain the derepression of the DUX4 gene, which is otherwise kept epigenetically silent in skeletal muscle. DUX4 is consistently transcriptionally upregulated in FSHD1 and FSHD2 skeletal muscle cells where it is believed to exercise a toxic effect. Here we provide a review of the recent literature describing the progress in understanding the complex genetic and epigenetic architecture of FSHD, with a focus on one of the consequences that these epigenetic changes inflict, the DUX4-induced immune deregulation cascade. Moreover, we review the latest therapeutic strategies, with particular attention to the potential of epigenetic correction of the FSHD locus.
Collapse
Affiliation(s)
- Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of Experimental Internal MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Remko Goossens
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | | |
Collapse
|
4
|
Campbell AE, Belleville AE, Resnick R, Shadle SC, Tapscott SJ. Facioscapulohumeral dystrophy: activating an early embryonic transcriptional program in human skeletal muscle. Hum Mol Genet 2019; 27:R153-R162. [PMID: 29718206 DOI: 10.1093/hmg/ddy162] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is the third most prevalent muscular dystrophy. A progressive disease, it presents clinically as weakness and wasting of the face, shoulder and upper arm muscles, with later involvement of the trunk and lower extremities. FSHD develops through complex genetic and epigenetic events that converge on a common mechanism of toxicity with mis-expression of the transcription factor double homeobox 4 (DUX4). There is currently no treatment available for FSHD. However, the consensus that ectopic DUX4 expression in skeletal muscle is the root cause of FSHD pathophysiology has allowed research efforts to turn toward cultivating a deeper understanding of DUX4 biology and the pathways that underlie FSHD muscle pathology, and to translational studies aimed at developing targeted therapeutics using ever more sophisticated cell and animal-based models of FSHD. This review summarizes recent advances in our understanding of FSHD, including the regulation and activity of DUX4 in its normal developmental roles as well as its pathological contexts. We highlight how these advances raise new questions and challenges for the field as it moves into the next decade of FSHD research.
Collapse
Affiliation(s)
- Amy E Campbell
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrea E Belleville
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rebecca Resnick
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.,Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Sean C Shadle
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Mah JK, Chen YW. A Pediatric Review of Facioscapulohumeral Muscular Dystrophy. JOURNAL OF PEDIATRIC NEUROLOGY 2018; 16:222-231. [PMID: 30923442 PMCID: PMC6435288 DOI: 10.1055/s-0037-1604197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Facioscapulohumeral dystrophy is one of the most common forms of muscular dystrophies worldwide. It is a complex and heterogeneous disease secondary to insufficient epigenetic repression of D4Z4 repeats and aberrant expression of DUX4 in skeletal muscles. Type 1 facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of D4Z4 repeats on 4q35, whereas type 2 FSHD is associated with mutations of the SMCHD1 or DNMT3B gene in the presence of a disease-permissive 4qA haplotype. Classical FSHD is a slowly progressive disorder with gradual-onset of muscle atrophy and a descending pattern of muscle weakness. In contrast, early-onset FSHD is associated with a large deletion of D4Z4 repeats and a more severe disease phenotype, including early loss of independent ambulation as well as extramuscular manifestations, such as retinal vasculopathy, hearing loss, and central nervous system (CNS) involvement. However, the correlation between D4Z4 repeats and disease severity remains imprecise. The current standard of care guidelines offers comprehensive assessment and symptomatic management of secondary complications. Several clinical trials are currently underway for FSHD. New and emerging treatments focus on correcting the transcriptional misregulation of D4Z4 and reversing the cytotoxic effects of DUX4. Other potential therapeutic targets include reduction of inflammation, improving muscle mass, and activating compensatory molecular pathways. The utility of disease-modifying treatments will depend on selection of sensitive clinical endpoints as well as validation of muscle magnetic resonance imaging (MRI) and other biomarkers to detect meaningful changes in disease progression. Correction of the epigenetic defects using new gene editing as well as other DUX4 silencing technologies offers potential treatment options for many individuals with FSHD.
Collapse
Affiliation(s)
- Jean K. Mah
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children’s National Health System, Washington, District of Columbia, United States
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia, United States
| |
Collapse
|
6
|
miR-221 modulates skeletal muscle satellite cells proliferation and differentiation. In Vitro Cell Dev Biol Anim 2017; 54:147-155. [PMID: 29197032 DOI: 10.1007/s11626-017-0210-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/12/2017] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, which play important roles in animals by targeting mRNA transcripts for translational repression. Many recent studies have shown that miRNAs are involved in the control of muscle development. In this study, the expression levels of miR-221 in different tissues and during rabbit skeletal muscle satellite cells (SMSCs) differentiation were detected. Gene ontology term enrichment was used to predict the potential biological roles of miR-221. A synthetic miR-221 mimic and a miR-221 inhibitor were used to investigate the functions of miR-221 during SMSCs proliferation and differentiation to further verify the functions of miR-221 in muscle development. In this report, we compared the expression levels of miR-221 in different tissues. The expression levels of miR-221 were upregulated after the induction of differentiation, and then were gradually downregulated during SMSCs differentiation. Overexpression of miR-221 promoted SMSCs proliferation, whereas inhibiting expression restrained proliferation in the EdU and CCK-8 assays. In addition, overexpression of miR-221 led to a decline in the expression levels of the differentiation marker genes MyoG and MHC. miR-221 overexpression suppressed SMSCs myotube formation. On the contrary, inhibition of miR-221 promoted myotube formation. Our data showed that miR-221 increased SMSCs proliferation and decreased differentiation.
Collapse
|
7
|
DeSimone AM, Pakula A, Lek A, Emerson CP. Facioscapulohumeral Muscular Dystrophy. Compr Physiol 2017; 7:1229-1279. [PMID: 28915324 DOI: 10.1002/cphy.c160039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral Muscular Dystrophy is a common form of muscular dystrophy that presents clinically with progressive weakness of the facial, scapular, and humeral muscles, with later involvement of the trunk and lower extremities. While typically inherited as autosomal dominant, facioscapulohumeral muscular dystrophy (FSHD) has a complex genetic and epigenetic etiology that has only recently been well described. The most prevalent form of the disease, FSHD1, is associated with the contraction of the D4Z4 microsatellite repeat array located on a permissive 4qA chromosome. D4Z4 contraction allows epigenetic derepression of the array, and possibly the surrounding 4q35 region, allowing misexpression of the toxic DUX4 transcription factor encoded within the terminal D4Z4 repeat in skeletal muscles. The less common form of the disease, FSHD2, results from haploinsufficiency of the SMCHD1 gene in individuals carrying a permissive 4qA allele, also leading to the derepression of DUX4, further supporting a central role for DUX4. How DUX4 misexpression contributes to FSHD muscle pathology is a major focus of current investigation. Misexpression of other genes at the 4q35 locus, including FRG1 and FAT1, and unlinked genes, such as SMCHD1, has also been implicated as disease modifiers, leading to several competing disease models. In this review, we describe recent advances in understanding the pathophysiology of FSHD, including the application of MRI as a research and diagnostic tool, the genetic and epigenetic disruptions associated with the disease, and the molecular basis of FSHD. We discuss how these advances are leading to the emergence of new approaches to enable development of FSHD therapeutics. © 2017 American Physiological Society. Compr Physiol 7:1229-1279, 2017.
Collapse
Affiliation(s)
- Alec M DeSimone
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Pakula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA
| | - Angela Lek
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
8
|
Saada YB, Dib C, Lipinski M, Vassetzky YS. Genome- and Cell-Based Strategies in Therapy of Muscular Dystrophies. BIOCHEMISTRY (MOSCOW) 2017; 81:678-90. [PMID: 27449614 DOI: 10.1134/s000629791607004x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Muscular dystrophies are a group of heterogeneous genetic disorders characterized by progressive loss of skeletal muscle mass. Depending on the muscular dystrophy, the muscle weakness varies in degree of severity. The majority of myopathies are due to genetic events leading to a loss of function of key genes involved in muscle function. Although there is until now no curative treatment to stop the progression of most myopathies, a significant number of experimental gene- and cell-based strategies and approaches have been and are being tested in vitro and in animal models, aiming to restore gene function. Genome editing using programmable endonucleases is a powerful tool for modifying target genome sequences and has been extensively used over the last decade to correct in vitro genetic defects of many single-gene diseases. By inducing double-strand breaks (DSBs), the engineered endonucleases specifically target chosen sequences. These DSBs are spontaneously repaired either by homologous recombination in the presence of a sequence template, or by nonhomologous-end joining error prone repair. In this review, we highlight recent developments and challenges for genome-editing based strategies that hold great promise for muscular dystrophies and regenerative medicine.
Collapse
Affiliation(s)
- Y Bou Saada
- UMR 8126, CNRS, Université Paris-Sud, Université Paris Saclay, Institut de Cancérologie Gustave-Roussy, Villejuif, F-94805, France.
| | | | | | | |
Collapse
|
9
|
Dmitriev P, Bou Saada Y, Dib C, Ansseau E, Barat A, Hamade A, Dessen P, Robert T, Lazar V, Louzada RAN, Dupuy C, Zakharova V, Carnac G, Lipinski M, Vassetzky YS. DUX4-induced constitutive DNA damage and oxidative stress contribute to aberrant differentiation of myoblasts from FSHD patients. Free Radic Biol Med 2016; 99:244-258. [PMID: 27519269 DOI: 10.1016/j.freeradbiomed.2016.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/29/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD) is one of the three most common muscular dystrophies in the Western world, however, its etiology remains only partially understood. Here, we provide evidence of constitutive DNA damage in in vitro cultured myoblasts isolated from FSHD patients and demonstrate oxidative DNA damage implication in the differentiation of these cells into phenotypically-aberrant myotubes. Double homeobox 4 (DUX4), the major actor in FSHD pathology induced DNA damage accumulation when overexpressed in normal human myoblasts, and RNAi-mediated DUX4 inhibition reduced the level of DNA damage in FSHD myoblasts. Addition of tempol, a powerful antioxidant, to the culture medium of proliferating DUX4-transfected myoblasts and FSHD myoblasts reduced the level of DNA damage, suggesting that DNA alterations are mainly due to oxidative stress. Antioxidant treatment during the myogenic differentiation of FSHD myoblasts significantly reduced morphological defects in myotube formation. We propose that the induction of DNA damage is a novel function of the DUX4 protein affecting myogenic differentiation of FSHD myoblasts.
Collapse
Affiliation(s)
- Petr Dmitriev
- UMR 8126, Univ. Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, F-94805 Villejuif, France; PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, F-34295 Montpellier cedex 5, France
| | - Yara Bou Saada
- UMR 8126, Univ. Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, F-94805 Villejuif, France
| | - Carla Dib
- UMR 8126, Univ. Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, F-94805 Villejuif, France
| | - Eugénie Ansseau
- Laboratory of Molecular Biology, University of Mons, 20 place du Parc, B700 Mons, Belgium
| | - Ana Barat
- UMR 8126, Univ. Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, F-94805 Villejuif, France
| | - Aline Hamade
- ER030-EDST, Department of Life and Earth Sciences, Faculty of Sciences II, Lebanese University, Lebanon
| | - Philippe Dessen
- Functional Genomics Unit, Institut de Cancérologie Gustave-Roussy, F-94805 Villejuif, France
| | - Thomas Robert
- Functional Genomics Unit, Institut de Cancérologie Gustave-Roussy, F-94805 Villejuif, France
| | - Vladimir Lazar
- Functional Genomics Unit, Institut de Cancérologie Gustave-Roussy, F-94805 Villejuif, France
| | - Ruy A N Louzada
- UMR 8200, Univ., Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, F-94805 Villejuif, France
| | - Corinne Dupuy
- UMR 8200, Univ., Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, F-94805 Villejuif, France
| | - Vlada Zakharova
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, 119991 Moscow, Russia
| | - Gilles Carnac
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, F-34295 Montpellier cedex 5, France
| | - Marc Lipinski
- UMR 8126, Univ. Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, F-94805 Villejuif, France
| | - Yegor S Vassetzky
- UMR 8126, Univ. Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, F-94805 Villejuif, France; Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, 119991 Moscow, Russia.
| |
Collapse
|