1
|
Kaneguchi A, Sakitani N, Umehara T. Histological changes in skeletal muscle induced by heart failure in human patients and animal models: A scoping review. Acta Histochem 2024; 126:152210. [PMID: 39442432 DOI: 10.1016/j.acthis.2024.152210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This scoping review aimed to characterize the histological changes in skeletal muscle after heart failure (HF) and to identify gaps in knowledge. METHODS On April 03, 2024, systematic searches were performed for papers in which histological analyses were conducted on skeletal muscle sampled from patients with HF or animal models of HF. Screening and data extraction were conducted by two independent authors. RESULTS AND CONCLUSION A total of 118 papers were selected, including 33 human and 85 animal studies. Despite some disagreements among studies, some trends were observed. These trends included a slow-to-fast transition, a decrease in muscle fiber size, capillary to muscle fiber ratio, and mitochondrial activity and content, and an increase in apoptosis. These changes may contribute to the fatigability and decrease in muscle strength observed after HF. Although there were some disagreements between the results of human and animal studies, the results were generally similar. Animal models of HF will therefore be useful in elucidating the histological changes in skeletal muscle that occur in human patients with HF. Because the muscles subjected to histological analysis were mostly thigh muscles in humans and mostly lower leg muscles in animals, it remains uncertain whether changes similar to those seen in lower limb (hindlimb) muscles after HF also occur in upper limb (forelimb) muscles. The results of this review will consolidate the current knowledge on HF-induced histological changes in skeletal muscle and consequently aid in the rehabilitation of patients with HF and future studies.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan.
| | - Naoyoshi Sakitani
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Hayashi-cho 2217-4, Takamatsu, Kagawa, 761-0395, Japan
| | - Takuya Umehara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan
| |
Collapse
|
2
|
Packer M, Anker SD, Butler J, Cleland JGF, Kalra PR, Mentz RJ, Ponikowski P. Identification of three mechanistic pathways for iron-deficient heart failure. Eur Heart J 2024; 45:2281-2293. [PMID: 38733250 PMCID: PMC11231948 DOI: 10.1093/eurheartj/ehae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Current understanding of iron-deficient heart failure is based on blood tests that are thought to reflect systemic iron stores, but the available evidence suggests greater complexity. The entry and egress of circulating iron is controlled by erythroblasts, which (in severe iron deficiency) will sacrifice erythropoiesis to supply iron to other organs, e.g. the heart. Marked hypoferraemia (typically with anaemia) can drive the depletion of cardiomyocyte iron, impairing contractile performance and explaining why a transferrin saturation < ≈15%-16% predicts the ability of intravenous iron to reduce the risk of major heart failure events in long-term trials (Type 1 iron-deficient heart failure). However, heart failure may be accompanied by intracellular iron depletion within skeletal muscle and cardiomyocytes, which is disproportionate to the findings of systemic iron biomarkers. Inflammation- and deconditioning-mediated skeletal muscle dysfunction-a primary cause of dyspnoea and exercise intolerance in patients with heart failure-is accompanied by intracellular skeletal myocyte iron depletion, which can be exacerbated by even mild hypoferraemia, explaining why symptoms and functional capacity improve following intravenous iron, regardless of baseline haemoglobin or changes in haemoglobin (Type 2 iron-deficient heart failure). Additionally, patients with advanced heart failure show myocardial iron depletion due to both diminished entry into and enhanced egress of iron from the myocardium; the changes in iron proteins in the cardiomyocytes of these patients are opposite to those expected from systemic iron deficiency. Nevertheless, iron supplementation can prevent ventricular remodelling and cardiomyopathy produced by experimental injury in the absence of systemic iron deficiency (Type 3 iron-deficient heart failure). These observations, taken collectively, support the possibility of three different mechanistic pathways for the development of iron-deficient heart failure: one that is driven through systemic iron depletion and impaired erythropoiesis and two that are characterized by disproportionate depletion of intracellular iron in skeletal and cardiac muscle. These mechanisms are not mutually exclusive, and all pathways may be operative at the same time or may occur sequentially in the same patients.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 North Hall Street, Dallas, TX 75226, USA
- Imperial College, London, UK
| | - Stefan D Anker
- Department of Cardiology of German Heart Center Charité, Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research, partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Javed Butler
- Baylor Scott and White Research Institute, Baylor University Medical Center, Dallas, TX, USA
- University of Mississippi Medical Center, Jackson, MS, USA
| | - John G F Cleland
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Paul R Kalra
- Department of Cardiology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
- Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Robert J Mentz
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| |
Collapse
|
3
|
Zhang J, Feng J, Jia J, Wang X, Zhou J, Liu L. Research progress on the pathogenesis and treatment of ventilator-induced diaphragm dysfunction. Heliyon 2023; 9:e22317. [PMID: 38053869 PMCID: PMC10694316 DOI: 10.1016/j.heliyon.2023.e22317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Prolonged controlled mechanical ventilation (CMV) can cause diaphragm fiber atrophy and inspiratory muscle weakness, resulting in diaphragmatic contractile dysfunction, called ventilator-induced diaphragm dysfunction (VIDD). VIDD is associated with higher rates of in-hospital deaths, nosocomial pneumonia, difficulty weaning from ventilators, and increased costs. Currently, appropriate clinical strategies to prevent and treat VIDD are unavailable, necessitating the importance of exploring the mechanisms of VIDD and suitable treatment options to reduce the healthcare burden. Numerous animal studies have demonstrated that ventilator-induced diaphragm dysfunction is associated with oxidative stress, increased protein hydrolysis, disuse atrophy, and calcium ion disorders. Therefore, this article summarizes the molecular pathogenesis and treatment of ventilator-induced diaphragm dysfunction in recent years so that it can be better served clinically and is essential to reduce the duration of mechanical ventilation use, intensive care unit (ICU) length of stay, and the medical burden.
Collapse
Affiliation(s)
- Jumei Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jing Jia
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
4
|
Mangner N, Winzer EB, Linke A, Adams V. Locomotor and respiratory muscle abnormalities in HFrEF and HFpEF. Front Cardiovasc Med 2023; 10:1149065. [PMID: 37965088 PMCID: PMC10641491 DOI: 10.3389/fcvm.2023.1149065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Heart failure (HF) is a chronic and progressive syndrome affecting worldwide billions of patients. Exercise intolerance and early fatigue are hallmarks of HF patients either with a reduced (HFrEF) or a preserved (HFpEF) ejection fraction. Alterations of the skeletal muscle contribute to exercise intolerance in HF. This review will provide a contemporary summary of the clinical and molecular alterations currently known to occur in the skeletal muscles of both HFrEF and HFpEF, and thereby differentiate the effects on locomotor and respiratory muscles, in particular the diaphragm. Moreover, current and future therapeutic options to address skeletal muscle weakness will be discussed focusing mainly on the effects of exercise training.
Collapse
Affiliation(s)
- Norman Mangner
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Ephraim B. Winzer
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| |
Collapse
|
5
|
Mañas-García L, Denhard C, Mateu J, Duran X, Gea J, Barreiro E. Beneficial Effects of Resveratrol in Mouse Gastrocnemius: A Hint to Muscle Phenotype and Proteolysis. Cells 2021; 10:cells10092436. [PMID: 34572085 PMCID: PMC8469306 DOI: 10.3390/cells10092436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022] Open
Abstract
We hypothesized that the phenolic compound resveratrol mitigates muscle protein degradation and loss and improves muscle fiber cross-sectional area (CSA) in gastrocnemius of mice exposed to unloading (7dI). In gastrocnemius of mice (female C57BL/6J, 10 weeks) exposed to a seven-day period of hindlimb immobilization with/without resveratrol treatment, markers of muscle proteolysis (tyrosine release, systemic troponin-I), atrophy signaling pathways, and muscle phenotypic features and function were analyzed. In gastrocnemius of unloaded mice treated with resveratrol, body and muscle weight and function were attenuated, whereas muscle proteolysis (tyrosine release), proteolytic and apoptotic markers, atrophy signaling pathways, and myofiber CSA significantly improved. Resveratrol treatment of mice exposed to a seven-day period of unloading prevented body and muscle weight and limb strength loss, while an improvement in muscle proteolysis, proteolytic markers, atrophy signaling pathways, apoptosis, and muscle fiber CSA was observed in the gastrocnemius muscle. These findings may have potential therapeutic implications in the management of disuse muscle atrophy in clinical settings.
Collapse
Affiliation(s)
- Laura Mañas-García
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, IMIM—Hospital del Mar, Parc de Salut Mar, 08003 Barcelona, Spain; (L.M.-G.); (C.D.); (J.G.)
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Charlotte Denhard
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, IMIM—Hospital del Mar, Parc de Salut Mar, 08003 Barcelona, Spain; (L.M.-G.); (C.D.); (J.G.)
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Javier Mateu
- Department of Pharmacy, Hospital del Mar, Parc de Salut Mar, 08003 Barcelona, Spain;
| | - Xavier Duran
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Joaquim Gea
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, IMIM—Hospital del Mar, Parc de Salut Mar, 08003 Barcelona, Spain; (L.M.-G.); (C.D.); (J.G.)
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Esther Barreiro
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, IMIM—Hospital del Mar, Parc de Salut Mar, 08003 Barcelona, Spain; (L.M.-G.); (C.D.); (J.G.)
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0385; Fax: +34-93-316-0410
| |
Collapse
|
6
|
Checa J, Aran JM. Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. Int J Mol Sci 2020; 21:E9317. [PMID: 33297418 PMCID: PMC7731288 DOI: 10.3390/ijms21239317] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.
Collapse
Affiliation(s)
| | - Josep M. Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| |
Collapse
|
7
|
Mañas-García L, Penedo-Vázquez A, López-Postigo A, Deschrevel J, Durán X, Barreiro E. Prolonged Immobilization Exacerbates the Loss of Muscle Mass and Function Induced by Cancer-Associated Cachexia through Enhanced Proteolysis in Mice. Int J Mol Sci 2020; 21:E8167. [PMID: 33142912 PMCID: PMC7663403 DOI: 10.3390/ijms21218167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that in mice with lung cancer (LC)-induced cachexia, periods of immobilization of the hindlimb (7 and 15 days) may further aggravate the process of muscle mass loss and function. Mice were divided into seven groups (n = 10/group): (1) non-immobilized control mice, (2) 7-day unloaded mice (7-day I), (3) 15-day unloaded mice (15-day I), (4) 21-day LC-cachexia group (LC 21-days), (5) 30-day LC-cachexia group (LC 30-days), (6) 21-day LC-cachexia group besides 7 days of unloading (LC 21-days + 7-day I), (7) 30-day LC-cachexia group besides 15 days of unloading (LC 30-days + 15-day I). Physiological parameters, body weight, muscle and tumor weights, phenotype and morphometry, muscle damage (including troponin I), proteolytic and autophagy markers, and muscle regeneration markers were identified in gastrocnemius muscle. In LC-induced cachexia mice exposed to hindlimb unloading, gastrocnemius weight, limb strength, fast-twitch myofiber cross-sectional area, and muscle regeneration markers significantly decreased, while tumor weight and area, muscle damage (troponin), and proteolytic and autophagy markers increased. In gastrocnemius of cancer-cachectic mice exposed to unloading, severe muscle atrophy and impaired function was observed along with increased muscle proteolysis and autophagy, muscle damage, and impaired muscle regeneration.
Collapse
Affiliation(s)
- Laura Mañas-García
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Antonio Penedo-Vázquez
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Adrián López-Postigo
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Jorieke Deschrevel
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Laboratory of Respiratory diseases and Thoracic Surgery, Department Chrometa, Catholic University of Leuven, B-3000 Leuven, Belgium
| | - Xavier Durán
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| |
Collapse
|
8
|
Mañas-García L, Guitart M, Duran X, Barreiro E. Satellite Cells and Markers of Muscle Regeneration during Unloading and Reloading: Effects of Treatment with Resveratrol and Curcumin. Nutrients 2020; 12:nu12061870. [PMID: 32585875 PMCID: PMC7353305 DOI: 10.3390/nu12061870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that treatment with pharmacological agents known to increase sirtuin-1 activity (resveratrol and curcumin) may enhance muscle regeneration. In limb muscles of mice (C57BL/6J, 10 weeks) exposed to reloading for seven days following a seven-day period of hindlimb immobilization with/without curcumin or resveratrol treatment, progenitor muscle cell numbers (FACS), satellite cell subtypes (histology), early and late muscle regeneration markers, phenotype and morphometry, sirtuin-1 activity and content, and muscle function were assessed. Treatment with either resveratrol or curcumin in immobilized muscles elicited a significant improvement in numbers of progenitor, activated, quiescent, and total counts of muscle satellite cells, compared to non-treated animals. Treatment with either resveratrol or curcumin in reloaded muscles compared to non-treated mice induced a significant improvement in the CSA of both hybrid (curcumin) and fast-twitch fibers (resveratrol), sirtuin-1 activity (curcumin), sirtuin-1 content (resveratrol), and counts of progenitor muscle cells (resveratrol). Treatment with the pharmacological agents resveratrol and curcumin enhanced the numbers of satellite cells (muscle progenitor, quiescent, activated, and total satellite cells) in the unloaded limb muscles but not in the reloaded muscles. These findings have potential clinical implications as treatment with these phenolic compounds would predominantly be indicated during disuse muscle atrophy to enhance the muscle regeneration process.
Collapse
Affiliation(s)
- Laura Mañas-García
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (M.G.)
| | - Maria Guitart
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (M.G.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Xavier Duran
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (M.G.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0385; Fax: +34-93-316-0410
| |
Collapse
|
9
|
Xu DQ, Li CJ, Jiang ZZ, Wang L, Huang HF, Li ZJ, Sun LX, Fan SS, Zhang LY, Wang T. The hypoglycemic mechanism of catalpol involves increased AMPK-mediated mitochondrial biogenesis. Acta Pharmacol Sin 2020; 41:791-799. [PMID: 31937931 PMCID: PMC7470840 DOI: 10.1038/s41401-019-0345-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondria serve as sensors of energy regulation and glucose levels, which are impaired by diabetes progression. Catalpol is an iridoid glycoside that exerts a hypoglycemic effect by improving mitochondrial function, but the underlying mechanism has not been fully elucidated. In the current study we explored the effects of catalpol on mitochondrial function in db/db mice and C2C12 myotubes in vitro. After oral administration of catalpol (200 mg·kg−1·d−1) for 8 weeks, db/db mice exhibited a decreased fasting blood glucose level and restored mitochondrial function in skeletal muscle. Catalpol increased mitochondrial biogenesis, evidenced by significant elevations in the number of mitochondria, mitochondrial DNA levels, and the expression of three genes associated with mitochondrial biogenesis: peroxisome proliferator-activated receptor gammaco-activator 1 (PGC-1α), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor 1 (NRF1). In C2C12 myotubes, catalpol significantly increased glucose uptake and ATP production. These effects depended on activation of AMP-activated protein kinase (AMPK)-mediated mitochondrial biogenesis. Thus, catalpol improves skeletal muscle mitochondrial function by activating AMPK-mediated mitochondrial biogenesis. These findings may guide the development of a new therapeutic approach for type 2 diabetes.
Collapse
|
10
|
Kammoun M, Piquereau J, Nadal‐Desbarats L, Même S, Beuvin M, Bonne G, Veksler V, Le Fur Y, Pouletaut P, Même W, Szeremeta F, Constans J, Bruinsma ES, Nelson Holte MH, Najafova Z, Johnsen SA, Subramaniam M, Hawse JR, Bensamoun SF. Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities. Acta Physiol (Oxf) 2020; 228:e13394. [PMID: 31560161 DOI: 10.1111/apha.13394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022]
Abstract
AIM Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. METHODS We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. RESULTS Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1 H-NMR spectra revealed no significant metabolic difference between wild-type and KO muscles. However, 31 P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. CONCLUSION Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.
Collapse
Affiliation(s)
- Malek Kammoun
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| | - Jerome Piquereau
- Signalling and Cardiovascular Pathophysiology ‐ UMR‐S 1180 Université Paris‐Sud INSERM Université Paris‐Saclay Châtenay‐Malabry France
| | | | - Sandra Même
- CNRS UPR4301 Centre de Biophysique Moléculaire Orléans France
| | - Maud Beuvin
- Inserm U974 Centre de Recherche en Myologie Sorbonne Université Paris France
| | - Gisèle Bonne
- Inserm U974 Centre de Recherche en Myologie Sorbonne Université Paris France
| | - Vladimir Veksler
- Signalling and Cardiovascular Pathophysiology ‐ UMR‐S 1180 Université Paris‐Sud INSERM Université Paris‐Saclay Châtenay‐Malabry France
| | - Yann Le Fur
- Aix‐Marseille University CNRS CRMBM Marseille France
| | - Philippe Pouletaut
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| | - William Même
- CNRS UPR4301 Centre de Biophysique Moléculaire Orléans France
| | | | - Jean‐Marc Constans
- Institut Faire Faces EA Chimère Imagerie et Radiologie Médicale CHU Amiens Amiens France
| | | | | | - Zeynab Najafova
- Department of General, Visceral and Pediatric Surgery University Medical Center Göttingen Göttingen Germany
| | - Steven A. Johnsen
- Department of General, Visceral and Pediatric Surgery University Medical Center Göttingen Göttingen Germany
| | | | - John R. Hawse
- Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN USA
| | - Sabine F. Bensamoun
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| |
Collapse
|
11
|
Muscle Phenotype, Proteolysis, and Atrophy Signaling During Reloading in Mice: Effects of Curcumin on the Gastrocnemius. Nutrients 2020; 12:nu12020388. [PMID: 32024036 PMCID: PMC7071295 DOI: 10.3390/nu12020388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/24/2019] [Accepted: 01/24/2020] [Indexed: 12/31/2022] Open
Abstract
We hypothesized that curcumin may mitigate muscle protein degradation and loss through attenuation of proteolytic activity in limb muscles of mice exposed to reloading (7dR) following immobilization (7dI). In gastrocnemius of mice (female C57BL/6J, 10 weeks) exposed to recovery following a seven-day period of hindlimb immobilization with/without curcumin treatment, markers of muscle proteolysis (systemic troponin-I), atrophy signaling pathways and histone deacetylases, protein synthesis, and muscle phenotypic characteristics and function were analyzed. In gastrocnemius of reloading mice compared to unloaded, muscle function, structure, sirtuin-1, and protein synthesis improved, while proteolytic and signaling markers (FoxO1/3) declined. In gastrocnemius of unloaded and reloaded mice treated with curcumin, proteolytic and signaling markers (NF-kB p50) decreased and sirtuin-1 activity and hybrid fibers size increased (reloaded muscle), while no significant improvement was seen in muscle function. Treatment with curcumin elicited a rise in sirtuin-1 activity, while attenuating proteolysis in gastrocnemius of mice during reloading following a period of unloading. Curcumin attenuated muscle proteolysis probably via activation of histone deacetylase sirtuin-1, which also led to decreased levels of atrophy signaling pathways. These findings offer an avenue of research in the design of therapeutic strategies in clinical settings of patients exposed to periods of disuse muscle atrophy.
Collapse
|
12
|
Spiesshoefer J, Boentert M, Tuleta I, Giannoni A, Langer D, Kabitz HJ. Diaphragm Involvement in Heart Failure: Mere Consequence of Hypoperfusion or Mediated by HF-Related Pro-inflammatory Cytokine Storms? Front Physiol 2019; 10:1335. [PMID: 31749709 PMCID: PMC6842997 DOI: 10.3389/fphys.2019.01335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jens Spiesshoefer
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Respiratory Physiology Laboratory, Department of Neurology With Institute for Translational Neurology, University of Münster, Münster, Germany
| | - Matthias Boentert
- Respiratory Physiology Laboratory, Department of Neurology With Institute for Translational Neurology, University of Münster, Münster, Germany
| | - Izabela Tuleta
- Department of Cardiology I, University Hospital Muenster, Münster, Germany
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology and Cardiovascular Medicine Division, Fondazione Toscana Gabriele Monasterio, National Research Council, CNR-Regione Toscana, Pisa, Italy
| | - Daniel Langer
- Respiratory Rehabilitation Unit, Respiratory Division, University Hospitals Leuven and Department of Rehabilitation Sciences, Leuven, Belgium
| | - Hans Joachim Kabitz
- Department of Pneumology, Cardiology and Intensive Care Medicine, Klinikum Konstanz, Konstanz, Germany
| |
Collapse
|
13
|
Barreiro E, Wang X, Tang J. COPD: preclinical models and emerging therapeutic targets. Expert Opin Ther Targets 2019; 23:829-838. [DOI: 10.1080/14728222.2019.1667976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Esther Barreiro
- Respiratory Medicine Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Xuejie Wang
- Respiratory Medicine Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Jun Tang
- Respiratory Medicine Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Hahn D, Kumar RA, Ryan TE, Ferreira LF. Mitochondrial respiration and H 2O 2 emission in saponin-permeabilized murine diaphragm fibers: optimization of fiber separation and comparison to limb muscle. Am J Physiol Cell Physiol 2019; 317:C665-C673. [PMID: 31314583 DOI: 10.1152/ajpcell.00184.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Diaphragm abnormalities in aging or chronic diseases include impaired mitochondrial respiration and H2O2 emission, which can be measured using saponin-permeabilized muscle fibers. Mouse diaphragm presents a challenge for isolation of fibers due to relatively high abundance of connective tissue in healthy muscle that is exacerbated in disease states. We tested a new approach to process mouse diaphragm for assessment of intact mitochondria respiration and ROS emission in saponin-permeabilized fibers. We used the red gastrocnemius (RG) as "standard" limb muscle. Markers of mitochondrial content were two- to fourfold higher in diaphragm (Dia) than in RG (P < 0.05). Maximal O2 consumption (JO2: pmol·s-1·mg-1) in Dia was higher with glutamate, malate, and succinate (Dia 399 ± 127, RG 148 ± 60; P < 0.05) and palmitoyl-CoA + carnitine (Dia 15 ± 5, RG 7 ± 1; P < 0.05) than in RG, but not different between muscles when JO2 was normalized to citrate synthase activity. Absolute JO2 for Dia was two- to fourfold higher than reported in previous studies. Mitochondrial JH2O2 was higher in Dia than in RG (P < 0.05), but lower in Dia than in RG when JH2O2 was normalized to citrate synthase activity. Our findings are consistent with an optimized diaphragm preparation for assessment of intact mitochondria in permeabilized fiber bundles. The data also suggest that higher mitochondrial content potentially makes the diaphragm more susceptible to "mitochondrial onset" myopathy. Overall, the new approach will facilitate testing and understanding of diaphragm mitochondrial function in mouse models that are used to advance biomedical research and human health.
Collapse
Affiliation(s)
- Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Ravi A Kumar
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| |
Collapse
|
15
|
Salazar-Degracia A, Granado-Martínez P, Millán-Sánchez A, Tang J, Pons-Carreto A, Barreiro E. Reduced lung cancer burden by selective immunomodulators elicits improvements in muscle proteolysis and strength in cachectic mice. J Cell Physiol 2019; 234:18041-18052. [PMID: 30851071 DOI: 10.1002/jcp.28437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Identification of to what extent tumor burden influences muscle mass independently of specific treatments for cancer-cachexia remains to be elucidated. We hypothesized that reduced tumor burden by selective treatment of tumor with immunomodulators may exert beneficial effects on muscle wasting and function in mice. Body and muscle weight, grip strength, physical activity, muscle morphometry, apoptotic nuclei, troponin-I systemic levels, interleukin-6, proteolytic markers, and tyrosine release, and apoptosis markers were determined in diaphragm and gastrocnemius muscles of lung cancer (LP07 adenocarcinoma cells) mice (BALB/c) treated with monoclonal antibodies (mAbs), against immune check-points and pathways (CD-137, cytotoxic T-lymphocyte associated protein-4, programed cell death-1, and CD-19; N = 10/group). Nontreated lung cancer cachectic mice were the controls. T and B cell numbers and macrophages were counted in tumors of both mouse groups. Compared to nontreated cachectic mice, in the mAbs-treated animals, T cells increased, no differences in B cells or macrophages, the variables final body weight, body weight and grip strength gains significantly improved. In diaphragm and gastrocnemius of mAbs-treated cachectic mice, number of apoptotic nuclei, tyrosine release, proteolysis, and apoptosis markers significantly decreased compared to nontreated cachectic mice. Systemic levels of troponin-I significantly decreased in treated cachectic mice compared to nontreated animals. We conclude that reduced tumor burden as a result of selective treatment of the lung cancer cells with immunomodulators elicits per se beneficial effects on muscle mass loss through attenuation of several biological mechanisms that lead to increased protein breakdown and apoptosis, which translated into significant improvements in limb muscle strength but not in physical activity parameters.
Collapse
Affiliation(s)
- Anna Salazar-Degracia
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Paula Granado-Martínez
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Aïna Millán-Sánchez
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jun Tang
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Pons-Carreto
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Greising SM, Ottenheijm CAC, O'Halloran KD, Barreiro E. Diaphragm plasticity in aging and disease: therapies for muscle weakness go from strength to strength. J Appl Physiol (1985) 2018; 125:243-253. [PMID: 29672230 DOI: 10.1152/japplphysiol.01059.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The diaphragm is the main inspiratory muscle and is required to be highly active throughout the life span. The diaphragm muscle must be able to produce and sustain various behaviors that range from ventilatory to nonventilatory such as those required for airway maintenance and clearance. Throughout the life span various circumstances and conditions may affect the ability of the diaphragm muscle to generate requisite forces, and in turn the diaphragm muscle may undergo significant weakness and dysfunction. For example, hypoxic stress, critical illness, cancer cachexia, chronic obstructive pulmonary disorder, and age-related sarcopenia all represent conditions in which significant diaphragm muscle dysfunction exits. This perspective review article presents several interesting topics involving diaphragm plasticity in aging and disease that were presented at the International Union of Physiological Sciences Conference in 2017. This review seeks to maximize the broad and collective research impact on diaphragm muscle dysfunction in the search for transformative treatment approaches to improve the diaphragm muscle health during aging and disease.
Collapse
Affiliation(s)
- Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,School of Kinesiology, University of Minnesota , Minneapolis, Minnesota
| | - Coen A C Ottenheijm
- Department of Physiology, VU University Medical Center , Amsterdam , The Netherlands.,Cellular and Molecular Medicine, University of Arizona , Tucson, Arizona
| | - Ken D O'Halloran
- Department of Physiology, University College Cork , Cork , Ireland
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona , Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III , Barcelona , Spain
| |
Collapse
|
17
|
Salazar-Degracia A, Busquets S, Argilés JM, Bargalló-Gispert N, López-Soriano FJ, Barreiro E. Effects of the beta 2 agonist formoterol on atrophy signaling, autophagy, and muscle phenotype in respiratory and limb muscles of rats with cancer-induced cachexia. Biochimie 2018; 149:79-91. [PMID: 29654866 DOI: 10.1016/j.biochi.2018.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Beta-adrenoceptors attenuate muscle wasting. We hypothesized that specific muscle atrophy signaling pathways and altered metabolism may be attenuated in cancer cachectic animals receiving treatment with the beta2 agonist formoterol. In diaphragm and gastrocnemius of tumor-bearing rats (intraperitoneal inoculum, 108 AH-130 Yoshida ascites hepatoma cells, 7-day study period) with and without treatment with formoterol (0.3 mg/kg body weight/day/7days, subcutaneous), atrophy signaling pathways (NF-κB, MAPK, FoxO), proteolytic markers (ligases, proteasome, ubiquitination), autophagy markers (p62, beclin-1, LC3), myostatin, apoptosis, muscle metabolism markers, and muscle structure features were analyzed (immunoblotting, immunohistochemistry). In diaphragm and gastrocnemius of cancer cachectic rats, fiber sizes were reduced, levels of structural alterations, atrophy signaling pathways, proteasome content, protein ubiquitination, autophagy, and myostatin were increased, while those of regenerative and metabolic markers (myoD, mTOR, AKT, and PGC-1alpha) were decreased. Formoterol treatment attenuated such alterations in both muscles. Muscle wasting in this rat model of cancer-induced cachexia was characterized by induction of significant structural alterations, atrophy signaling pathways, proteasome activity, apoptotic and autophagy markers, and myostatin, along with a significant decline in the expression of muscle regenerative and metabolic markers. Treatment of the cachectic rats with formoterol partly attenuated the structural alterations and atrophy signaling, while improving other molecular perturbations similarly in both respiratory and limb muscles. The results reported in this study have relevant therapeutic implications as they showed beneficial effects of the beta2 agonist formoterol in the cachectic muscles through several key biological pathways.
Collapse
Affiliation(s)
- Anna Salazar-Degracia
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Núria Bargalló-Gispert
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain.
| |
Collapse
|
18
|
Barreiro E, Puig-Vilanova E, Salazar-Degracia A, Pascual-Guardia S, Casadevall C, Gea J. The phosphodiesterase-4 inhibitor roflumilast reverts proteolysis in skeletal muscle cells of patients with COPD cachexia. J Appl Physiol (1985) 2018; 125:287-303. [PMID: 29648516 DOI: 10.1152/japplphysiol.00798.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Peripheral muscle weakness and mass loss are characteristic features in severe chronic obstructive pulmonary disease (COPD). We hypothesized that the phosphodiesterase (PDE)-4 inhibitor roflumilast-induced cAMP may ameliorate proteolysis and metabolism in skeletal muscles of COPD patients with severe muscle wasting. In myogenic precursor cells (isolated from muscle biopsies and cultured up to obtain differentiated myotubes) from 10 severe COPD patients and 10 healthy controls, which were treated with 1 μM roflumilast N-oxide (RNO) for three time cohorts (1, 6, and 24 h), genes of antioxidant defense and oxidative stress marker, myogenesis and muscle metabolism, proteolysis (tyrosine release assay) and ubiquitin-proteasome system markers, autophagy, and myosin isoforms were analyzed using RT-PCR and immunoblotting. In COPD patients at 6 h RNO treatment, myotube tyrosine release, total protein ubiquitination, and tripartite motif-containing protein 32 levels were significantly lower than healthy controls, whereas at 24 h RNO treatment, myotube myosin heavy chain ( MyHC) -I and MyHC-IIx expression levels were upregulated in both patients and controls. In the 6-h RNO cohort, in patients and controls, myotube expression of nuclear factor (erythroid-derived 2)-like 2 ( NRF2) and its downstream antioxidants sirtuin-1, FGF-inducible 14, and insulin-like growth factor-1 was upregulated, whereas that of myocyte-specific enhancer factor 2C, myogenic differentiation, myogenin, myostatin, atrogin-1, and muscle RING-finger protein-1 was downregulated. In myotubes of severe COPD patients with cachexia, roflumilast-induced cAMP signaling exerts beneficial effects by targeting muscle protein breakdown (tyrosine release), along with reduced expression of proteolytic markers of the ubiquitin-proteasome system and that of myostatin. In both patients and controls, roflumilast also favored antioxidant defense through upregulation of the NRF2 pathway and that of the histone deacetylase sirtuin-1, whereas it improved the expression of slow- and fast-twitch myosin isoforms. These findings show that muscle dysfunction and wasting may be targeted by roflumilast-induced cAMP signaling in COPD. These results have potential therapeutic implications, as this PDE-4 inhibitor is currently available for the treatment of systemic inflammation and exacerbations in patients with severe COPD. NEW & NOTEWORTHY In myotubes of cachectic chronic obstructive pulmonary disease (COPD) patients, cAMP signaling exerted beneficial effects by targeting muscle proteolysis and reducing gene expression of proteolytic markers of the ubiquitin-proteasome system and that of myostatin. In myotubes of patients and controls, roflumilast also favored antioxidant defense through upregulation of the nuclear factor (erythroid-derived 2)-like 2 pathway, of sirtuin-1, and of gene expression of slow- and fast-twitch isoforms. These findings have potential clinical implications for the treatment of muscle wasting in patients with COPD and cachexia.
Collapse
Affiliation(s)
- Esther Barreiro
- Pulmonology Department, Muscle and Respiratory System Research Unit, Hospital del Mar Medical Research Institute, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra , Barcelona , Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III , Madrid , Spain
| | - Ester Puig-Vilanova
- Pulmonology Department, Muscle and Respiratory System Research Unit, Hospital del Mar Medical Research Institute, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra , Barcelona , Spain
| | - Anna Salazar-Degracia
- Pulmonology Department, Muscle and Respiratory System Research Unit, Hospital del Mar Medical Research Institute, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra , Barcelona , Spain
| | - Sergi Pascual-Guardia
- Pulmonology Department, Muscle and Respiratory System Research Unit, Hospital del Mar Medical Research Institute, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra , Barcelona , Spain
| | - Carme Casadevall
- Pulmonology Department, Muscle and Respiratory System Research Unit, Hospital del Mar Medical Research Institute, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra , Barcelona , Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III , Madrid , Spain
| | - Joaquim Gea
- Pulmonology Department, Muscle and Respiratory System Research Unit, Hospital del Mar Medical Research Institute, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra , Barcelona , Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III , Madrid , Spain
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Severe exercise intolerance and early fatigue are hallmarks of heart failure patients either with a reduced (HFrEF) or a still preserved (HFpEF) ejection fraction. This review, therefore, will provide a contemporary summary of the alterations currently known to occur in the skeletal muscles of both HFrEF and HFpEF, and provide some further directions that will be required if we want to improve our current understanding of this area. RECENT FINDINGS Skeletal muscle alterations are well documented for over 20 years in HFrEF, and during the recent years also data are presented that in HFpEF muscular alterations are present. Alterations are ranging from a shift in fiber type and capillarization to an induction of atrophy and modulation of mitochondrial energy supply. In general, the molecular alterations are more severe in the skeletal muscle of HFrEF when compared to HFpEF. The alterations occurring in the skeletal muscle at the molecular level may contribute to exercise intolerance in HFrEF and HFpEF. Nevertheless, the knowledge of changes in the skeletal muscle of HFpEF is still sparsely available and more studies in this HF cohort are clearly warranted.
Collapse
Affiliation(s)
- Volker Adams
- Clinic of Cardiology, Heart Center Leipzig, Strümpellstrasse 39, 04289, Leipzig, Germany.
| | - Axel Linke
- Clinic of Cardiology, Heart Center Leipzig, Strümpellstrasse 39, 04289, Leipzig, Germany
| | - Ephraim Winzer
- Clinic of Cardiology, Heart Center Leipzig, Strümpellstrasse 39, 04289, Leipzig, Germany
| |
Collapse
|
20
|
Guitart M, Lloreta J, Mañas‐Garcia L, Barreiro E. Muscle regeneration potential and satellite cell activation profile during recovery following hindlimb immobilization in mice. J Cell Physiol 2018; 233:4360-4372. [DOI: 10.1002/jcp.26282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Maria Guitart
- Department of Pulmonology‐Muscle Wasting Cachexia in Chronic Respiratory Diseases Lung Cancer Research GroupIMIM‐Hospital del Mar Parc de Salut Mar, Health and Sciences Experimental Department (CEXS)Universitat Pompeu Fabra (UPF)Barcelona Biomedical Research Park (PRBB)BarcelonaSpain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES)Instituto de Salud Carlos III (ISCIII)BarcelonaSpain
| | - Josep Lloreta
- Department of PathologyHospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS)Universitat Pompeu Fabra (UPF)Barcelona Biomedical Research Park (PRBB)BarcelonaSpain
| | - Laura Mañas‐Garcia
- Department of Pulmonology‐Muscle Wasting Cachexia in Chronic Respiratory Diseases Lung Cancer Research GroupIMIM‐Hospital del Mar Parc de Salut Mar, Health and Sciences Experimental Department (CEXS)Universitat Pompeu Fabra (UPF)Barcelona Biomedical Research Park (PRBB)BarcelonaSpain
| | - Esther Barreiro
- Department of Pulmonology‐Muscle Wasting Cachexia in Chronic Respiratory Diseases Lung Cancer Research GroupIMIM‐Hospital del Mar Parc de Salut Mar, Health and Sciences Experimental Department (CEXS)Universitat Pompeu Fabra (UPF)Barcelona Biomedical Research Park (PRBB)BarcelonaSpain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES)Instituto de Salud Carlos III (ISCIII)BarcelonaSpain
| |
Collapse
|
21
|
Adams V, Reich B, Uhlemann M, Niebauer J. Molecular effects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium. Am J Physiol Heart Circ Physiol 2017; 313:H72-H88. [PMID: 28476924 DOI: 10.1152/ajpheart.00470.2016] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
For decades, we have known that exercise training exerts beneficial effects on the human body, and clear evidence is available that a higher fitness level is associated with a lower incidence of suffering premature cardiovascular death. Despite this knowledge, it took some time to also incorporate physical exercise training into the treatment plan for patients with cardiovascular disease (CVD). In recent years, in addition to continuous exercise training, further training modalities such as high-intensity interval training and pyramid training have been introduced for coronary artery disease patients. The beneficial effect for patients with CVD is clearly documented, and during the last years, we have also started to understand the molecular mechanisms occurring in the skeletal muscle (limb muscle and diaphragm) and endothelium, two systems contributing to exercise intolerance in these patients. In the present review, we describe the effects of the different training modalities in CVD and summarize the molecular effects mainly in the skeletal muscle and cardiovascular system.
Collapse
Affiliation(s)
- Volker Adams
- Clinic of Internal Medicine/Cardiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany; and
| | - Bernhard Reich
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Madlen Uhlemann
- Clinic of Internal Medicine/Cardiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany; and
| | - Josef Niebauer
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
22
|
Chacon-Cabrera A, Mateu-Jimenez M, Langohr K, Fermoselle C, García-Arumí E, Andreu AL, Yelamos J, Barreiro E. Role of PARP activity in lung cancer-induced cachexia: Effects on muscle oxidative stress, proteolysis, anabolic markers, and phenotype. J Cell Physiol 2017; 232:3744-3761. [DOI: 10.1002/jcp.25851] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 02/07/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Alba Chacon-Cabrera
- Pulmonology Department-Lung Cancer and Muscle Research Group, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| | - Mercè Mateu-Jimenez
- Pulmonology Department-Lung Cancer and Muscle Research Group, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| | - Klaus Langohr
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program; Hospital del Mal Medical Research Institute (IMIM); Barcelona Spain
- Department of Statistics and Operations Research; Universitat Politècnica de Barcelona/Barcelonatech; Barcelona Spain
| | - Clara Fermoselle
- Pulmonology Department-Lung Cancer and Muscle Research Group, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF); Barcelona Spain
| | - Elena García-Arumí
- Unitat de Patologia Neuromuscular i Mitocondrial, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR); Universitat Autònoma de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII; Barcelona Spain
| | - Antoni L. Andreu
- Unitat de Patologia Neuromuscular i Mitocondrial, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR); Universitat Autònoma de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII; Barcelona Spain
| | - Jose Yelamos
- Cancer Research Program-Immunology; Hospital del Mar Medical Research Institute (IMIM)-Hospital del Mar; Barcelona Spain
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| | - Esther Barreiro
- Pulmonology Department-Lung Cancer and Muscle Research Group, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| |
Collapse
|
23
|
Baehr LM, West DWD, Marshall AG, Marcotte GR, Baar K, Bodine SC. Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats. J Appl Physiol (1985) 2017; 122:1336-1350. [PMID: 28336537 DOI: 10.1152/japplphysiol.00703.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/16/2017] [Accepted: 02/26/2017] [Indexed: 12/19/2022] Open
Abstract
Disuse is a potent inducer of muscle atrophy, but the molecular mechanisms driving this loss of muscle mass are highly debated. In particular, the extent to which disuse triggers decreases in protein synthesis or increases in protein degradation, and whether these changes are uniform across muscles or influenced by age, is unclear. We aimed to determine the impact of disuse on protein synthesis and protein degradation in lower limb muscles of varied function and fiber type in adult and old rats. Alterations in protein synthesis and degradation were measured in the soleus, medial gastrocnemius, and tibialis anterior (TA) muscles of adult and old rats subjected to hindlimb unloading (HU) for 3, 7, or 14 days. Loss of muscle mass was progressive during the unloading period, but highly variable (-9 to -38%) across muscle types and between ages. Protein synthesis decreased significantly in all muscles, except for the old TA. Atrophy-associated gene expression was only loosely associated with protein degradation as muscle RING finger-1, muscle atrophy F-box (MAFbx), and Forkhead box O1 expression significantly increased in all muscles, but an increase in proteasome activity was only observed in the adult soleus. MAFbx protein levels were significantly higher in the old muscles compared with adult muscles, despite the old having higher expression of microRNA-23a. These results indicate that adult and old muscles respond similarly to HU, and the greatest loss in muscle mass occurs in predominantly slow-twitch extensor muscles due to a concomitant decrease in protein synthesis and increase in protein degradation.NEW & NOTEWORTHY In this study, we showed that age did not intensify the atrophy response to unloading in rats, but rather that the degree of atrophy was highly variable across muscles, indicating that changes in protein synthesis and protein degradation occur in a muscle-specific manner. Our data emphasize the importance of studying muscles of varying fiber-type and physiological function at multiple time points to fully understand the molecular mechanisms responsible for disuse atrophy.
Collapse
Affiliation(s)
- Leslie M Baehr
- Veterans Affairs Northern California Health Care System, Mather, California.,Department of Physiology and Membrane Biology, University of California Davis, Davis, California; and
| | - Daniel W D West
- Veterans Affairs Northern California Health Care System, Mather, California.,Department of Physiology and Membrane Biology, University of California Davis, Davis, California; and
| | - Andrea G Marshall
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California; and
| | - George R Marcotte
- Veterans Affairs Northern California Health Care System, Mather, California
| | - Keith Baar
- Veterans Affairs Northern California Health Care System, Mather, California.,Department of Physiology and Membrane Biology, University of California Davis, Davis, California; and.,Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| | - Sue C Bodine
- Veterans Affairs Northern California Health Care System, Mather, California; .,Department of Physiology and Membrane Biology, University of California Davis, Davis, California; and.,Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| |
Collapse
|
24
|
Chacon-Cabrera A, Lund-Palau H, Gea J, Barreiro E. Time-Course of Muscle Mass Loss, Damage, and Proteolysis in Gastrocnemius following Unloading and Reloading: Implications in Chronic Diseases. PLoS One 2016; 11:e0164951. [PMID: 27792730 PMCID: PMC5085049 DOI: 10.1371/journal.pone.0164951] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Disuse muscle atrophy is a major comorbidity in patients with chronic diseases including cancer. We sought to explore the kinetics of molecular mechanisms shown to be involved in muscle mass loss throughout time in a mouse model of disuse muscle atrophy and recovery following immobilization. METHODS Body and muscle weights, grip strength, muscle phenotype (fiber type composition and morphometry and muscle structural alterations), proteolysis, contractile proteins, systemic troponin I, and mitochondrial content were assessed in gastrocnemius of mice exposed to periods (1, 2, 3, 7, 15 and 30 days) of non-invasive hindlimb immobilization (plastic splint, I cohorts) and in those exposed to reloading for different time-points (1, 3, 7, 15, and 30 days, R cohorts) following a seven-day period of immobilization. Groups of control animals were also used. RESULTS Compared to non-exposed controls, muscle weight, limb strength, slow- and fast-twitch cross-sectional areas, mtDNA/nDNA, and myosin content were decreased in mice of I cohorts, whereas tyrosine release, ubiquitin-proteasome activity, muscle injury and systemic troponin I levels were increased. Gastrocnemius reloading following splint removal improved muscle mass loss, strength, fiber atrophy, injury, myosin content, and mtDNA/nDNA, while reducing ubiquitin-proteasome activity and proteolysis. CONCLUSIONS A consistent program of molecular and cellular events leading to reduced gastrocnemius muscle mass and mitochondrial content and reduced strength, enhanced proteolysis, and injury, was seen in this non-invasive mouse model of disuse muscle atrophy. Unloading of the muscle following removal of the splint significantly improved the alterations seen during unloading, characterized by a specific kinetic profile of molecular events involved in muscle regeneration. These findings have implications in patients with chronic diseases including cancer in whom physical activity may be severely compromised.
Collapse
Affiliation(s)
- Alba Chacon-Cabrera
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), C/ Dr. Aiguader, 88, Barcelona, E-08003 Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Helena Lund-Palau
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), C/ Dr. Aiguader, 88, Barcelona, E-08003 Spain
| | - Joaquim Gea
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), C/ Dr. Aiguader, 88, Barcelona, E-08003 Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), C/ Dr. Aiguader, 88, Barcelona, E-08003 Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- * E-mail:
| |
Collapse
|
25
|
Mateu-Jimenez M, Curull V, Pijuan L, Sánchez-Font A, Rivera-Ramos H, Rodríguez-Fuster A, Aguiló R, Gea J, Barreiro E. Systemic and Tumor Th1 and Th2 Inflammatory Profile and Macrophages in Lung Cancer: Influence of Underlying Chronic Respiratory Disease. J Thorac Oncol 2016; 12:235-248. [PMID: 27793775 DOI: 10.1016/j.jtho.2016.09.137] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/31/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Chronic respiratory conditions, especially chronic obstructive pulmonary disease (COPD), and inflammatory events underlie lung cancer (LC). We hypothesized that profiles of T helper 1 and T helper 2 cytokines and type 1 and type 2 macrophages (M1 and M2) are differentially expressed in lung tumors and blood of patients with NSCLC with and without COPD and that the ratio M1/M2 specifically may influence their survival. METHODS In blood, inflammatory cytokines (determined by enzyme-linked immunosorbent assay) were quantified in 80 patients with LC (60 with LC and COPD [the LC-COPD group] and 20 with LC only [the LC-only group]) and lung specimens (tumor and nontumor) from those undergoing thoracotomy (20 in the LC-COPD group and 20 in the LC-only group). RESULTS In the LC-COPD group compared with in the LC-only group, systemic levels of tumor necrosis factor-α, interleukin-2 (IL-2), transforming growth factor-β, and IL-10 were increased, whereas vascular endothelial growth factor and IL-4 levels were decreased. In lung tumors, levels of tumor necrosis factor-α, transforming growth factor-β, and IL-10 were higher than in nontumor parenchyma in the LC-COPD group, whereas IL-2 and vascular endothelial growth factor levels were higher in tumors of both the LC-only and LC-COPD groups. Compared with in nontumor lung, M1 macrophage counts were reduced whereas M2 counts were increased in tumors of both patient groups, and the M1/M2 ratio was higher in the LC-COPD group than the LC-only group. M1 and M2 counts did not influence patients' survival. CONCLUSIONS The relative predominance of T helper 1 cytokines and M1 macrophages in the blood and tumors of patients with underlying COPD imply that a stronger proinflammatory pattern exists in these patients. Inflammation should not be targeted systematically in all patients with LC. Screening for the presence of underlying respiratory diseases and identification of the specific inflammatory pattern should be carried out in patients with LC, at least in early stages of their disease.
Collapse
Affiliation(s)
- Mercè Mateu-Jimenez
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain
| | - Víctor Curull
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain
| | - Lara Pijuan
- Pathology Department, Hospital del Mar Medical Research Institute, Health Park Mar, Barcelona, Spain
| | - Albert Sánchez-Font
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain
| | - Hugo Rivera-Ramos
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain
| | - Alberto Rodríguez-Fuster
- Thoracic Surgery Department, Hospital del Mar Medical Research Institute, Health Park Mar, Barcelona, Spain
| | - Rafael Aguiló
- Thoracic Surgery Department, Hospital del Mar Medical Research Institute, Health Park Mar, Barcelona, Spain
| | - Joaquim Gea
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain.
| |
Collapse
|
26
|
Chacon-Cabrera A, Gea J, Barreiro E. Short- and Long-Term Hindlimb Immobilization and Reloading: Profile of Epigenetic Events in Gastrocnemius. J Cell Physiol 2016; 232:1415-1427. [DOI: 10.1002/jcp.25635] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/05/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Alba Chacon-Cabrera
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| | - Joaquim Gea
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| |
Collapse
|
27
|
Salazar-Degracia A, Blanco D, Vilà-Ubach M, de Biurrun G, de Solórzano CO, Montuenga LM, Barreiro E. Phenotypic and metabolic features of mouse diaphragm and gastrocnemius muscles in chronic lung carcinogenesis: influence of underlying emphysema. J Transl Med 2016; 14:244. [PMID: 27549759 PMCID: PMC4994253 DOI: 10.1186/s12967-016-1003-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/09/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Muscle wasting negatively impacts the progress of chronic diseases such as lung cancer (LC) and emphysema, which are in turn interrelated. OBJECTIVES We hypothesized that muscle atrophy and body weight loss may develop in an experimental mouse model of lung carcinogenesis, that the profile of alterations in muscle fiber phenotype (fiber type composition and morphometry, muscle structural alterations, and nuclear apoptosis), and in muscle metabolism are similar in both respiratory and limb muscles of the tumor-bearing mice, and that the presence of underlying emphysema may influence those events. METHODS Diaphragm and gastrocnemius muscles of mice with urethane-induced lung cancer (LC-U) with and without elastase-induced emphysema (E-U) and non-exposed controls (N = 8/group) were studied: fiber type composition, morphometry, muscle abnormalities, apoptotic nuclei (immunohistochemistry), and proteolytic and autophagy markers (immunoblotting) at 20- and 35-week exposure times. In the latter cohort, structural contractile proteins, creatine kinase (CK), peroxisome proliferator-activated receptor (PPAR) expression, oxidative stress, and inflammation were also measured. Body and muscle weights were quantified (baseline, during follow-up, and sacrifice). RESULTS Compared to controls, in U and E-U mice, whole body, diaphragm and gastrocnemius weights were reduced. Additionally, both in diaphragm and gastrocnemius, muscle fiber cross-sectional areas were smaller, structural abnormalities, autophagy and apoptotic nuclei were increased, while levels of actin, myosin, CK, PPARs, and antioxidants were decreased, and muscle proteolytic markers did not vary among groups. CONCLUSIONS In this model of lung carcinogenesis with and without emphysema, reduced body weight gain and muscle atrophy were observed in respiratory and limb muscles of mice after 20- and 35-week exposure times most likely through increased nuclear apoptosis and autophagy. Underlying emphysema induced a larger reduction in the size of slow- and fast-twitch fibers in the diaphragm of U and E-U mice probably as a result of the greater inspiratory burden imposed onto this muscle.
Collapse
Affiliation(s)
- Anna Salazar-Degracia
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), C/Dr. Aiguader, 88, 08003, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - David Blanco
- Laboratorio de Biomarcadores, Programa de Tumores Sólidos, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Navarra, Spain
| | - Mònica Vilà-Ubach
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), C/Dr. Aiguader, 88, 08003, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Gabriel de Biurrun
- Laboratorio de Biomarcadores, Programa de Tumores Sólidos, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Navarra, Spain
| | - Carlos Ortiz de Solórzano
- Laboratorio de Imagen del Cáncer, Programa de Tumores Sólidos, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Navarra, Spain
| | - Luis M Montuenga
- Laboratorio de Biomarcadores, Programa de Tumores Sólidos, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Navarra, Spain.,Departamento de Histología y Anatomía Patológica, Facultades de Medicina y Ciencias, Universidad de Navarra, Pamplona, Spain.,IDISNA, Instituto de Investigaciones Sanitarias de Navarra, Pamplona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), C/Dr. Aiguader, 88, 08003, Barcelona, Spain. .,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain.
| |
Collapse
|