1
|
Yamada K, Tanaka T, Kai K, Matsufuji S, Ito K, Kitajima Y, Manabe T, Noshiro H. Suppression of NASH-Related HCC by Farnesyltransferase Inhibitor through Inhibition of Inflammation and Hypoxia-Inducible Factor-1α Expression. Int J Mol Sci 2023; 24:11546. [PMID: 37511305 PMCID: PMC10380354 DOI: 10.3390/ijms241411546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory processes play major roles in carcinogenesis and the progression of hepatocellular carcinoma (HCC) derived from non-alcoholic steatohepatitis (NASH). But, there are no therapies for NASH-related HCC, especially focusing on these critical steps. Previous studies have reported that farnesyltransferase inhibitors (FTIs) have anti-inflammatory and anti-tumor effects. However, the influence of FTIs on NASH-related HCC has not been elucidated. In hepatoblastoma and HCC cell lines, HepG2, Hep3B, and Huh-7, we confirmed the expression of hypoxia-inducible factor (HIF)-1α, an accelerator of tumor aggressiveness and the inflammatory response. We established NASH-related HCC models under inflammation and free fatty acid burden and confirmed that HIF-1α expression was increased under both conditions. Tipifarnib, which is an FTI, strongly suppressed increased HIF-1α, inhibited cell proliferation, and induced apoptosis. Simultaneously, intracellular interleukin-6 as an inflammation marker was increased under both conditions and significantly suppressed by tipifarnib. Additionally, tipifarnib suppressed the expression of phosphorylated nuclear factor-κB and transforming growth factor-β. Finally, in a NASH-related HCC mouse model burdened with diethylnitrosamine and a high-fat diet, tipifarnib significantly reduced tumor nodule formation in association with decreased serum interleukin-6. In conclusion, tipifarnib has anti-tumor and anti-inflammatory effects in a NASH-related HCC model and may be a promising new agent to treat this disease.
Collapse
Affiliation(s)
- Kohei Yamada
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Tomokazu Tanaka
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Keita Kai
- Department of Pathology, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Shohei Matsufuji
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Kotaro Ito
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Yoshihiko Kitajima
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
- Department of Surgery, National Hospital Organization Higashisaga Hospital, Saga 849-0101, Japan
| | - Tatsuya Manabe
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Hirokazu Noshiro
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| |
Collapse
|
2
|
Karami Fath M, Garousi S, Mottahedi M, Ghasemzadeh N, Salmani K, Olfati F, Beit Saeed M, Sotoudeh S, Barati G. The role of hypoxia-inducible factors in breast cancer stem cell specification. Pathol Res Pract 2023; 243:154349. [PMID: 36791562 DOI: 10.1016/j.prp.2023.154349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Breast tumor is heterogeneous cancer with high morbidity and mortality rates, particularly in developing countries. Despite new efforts to reduce the breast cancer implications, the number of newly diagnosed cases is increasing worldwide. It is believed that cancer stem cells (CSCs) are responsible for the implication of cancers including breast cancer. Although CSCs compose a small population in tumor bulks, they play a crucial role in tumor initiation, progression, metastasis, and chemotherapeutic resistance. These events are mediated by the hypoxia-inducible factor (HIF) pathway which regulates the transcription of genes involved in CSC maintenance and tumorigenesis. In this review, we discussed the mechanisms by which hypoxia- or chemotherapy-induced HIFs promote breast CSC specification.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Kiana Salmani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Olfati
- Department of Reproductive Health, Faculty of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Miad Beit Saeed
- Faculty of Nursing and Midwifery, Abadan Islamic Azad University, Abadan, Iran
| | - Sina Sotoudeh
- Faculty of Nursing and Midwifery, Guilan University of Medical Sciences, Guilan, Iran
| | | |
Collapse
|
3
|
Jinna N, Rida P, Smart M, LaBarge M, Jovanovic-Talisman T, Natarajan R, Seewaldt V. Adaptation to Hypoxia May Promote Therapeutic Resistance to Androgen Receptor Inhibition in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23168844. [PMID: 36012111 PMCID: PMC9408190 DOI: 10.3390/ijms23168844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) surpasses other BC subtypes as the most challenging to treat due to its lack of traditional BC biomarkers. Nearly 30% of TNBC patients express the androgen receptor (AR), and the blockade of androgen production and AR signaling have been the cornerstones of therapies for AR-positive TNBC. However, the majority of women are resistant to AR-targeted therapy, which is a major impediment to improving outcomes for the AR-positive TNBC subpopulation. The hypoxia signaling cascade is frequently activated in the tumor microenvironment in response to low oxygen levels; activation of the hypoxia signaling cascade allows tumors to survive despite hypoxia-mediated interference with cellular metabolism. The activation of hypoxia signaling networks in TNBC promotes resistance to most anticancer drugs including AR inhibitors. The activation of hypoxia network signaling occurs more frequently in TNBC compared to other BC subtypes. Herein, we examine the (1) interplay between hypoxia signaling networks and AR and (2) whether hypoxia and hypoxic stress adaptive pathways promote the emergence of resistance to therapies that target AR. We also pose the well-supported question, “Can the efficacy of androgen-/AR-targeted treatments be enhanced by co-targeting hypoxia?” By critically examining the evidence and the complex entwinement of these two oncogenic pathways, we argue that the simultaneous targeting of androgen biosynthesis/AR signaling and hypoxia may enhance the sensitivity of AR-positive TNBCs to AR-targeted treatments, derail the emergence of therapy resistance, and improve patient outcomes.
Collapse
Affiliation(s)
- Nikita Jinna
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Max Smart
- Rowland Hall, Salt Lake City, UT 84102, USA
| | - Mark LaBarge
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Victoria Seewaldt
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence:
| |
Collapse
|
4
|
Kobayashi E, Kondo S, Dochi H, Moriyama-Kita M, Hirai N, Komori T, Ueno T, Nakanishi Y, Hatano M, Endo K, Sugimoto H, Wakisaka N, Yoshizaki T. Protein Farnesylation on Nasopharyngeal Carcinoma, Molecular Background and Its Potential as a Therapeutic Target. Cancers (Basel) 2022; 14:cancers14122826. [PMID: 35740492 PMCID: PMC9220992 DOI: 10.3390/cancers14122826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is distinguished from other head and neck carcinomas by the association of its carcinogenesis with the Epstein–Barr virus. It is highly metastatic, and a novel therapeutic modality for metastatic nasopharyngeal carcinoma is keenly awaited. Protein farnesylation is a C-terminal lipid modification of proteins and was initially investigated as a key process in activating the RAS oncoprotein through its association with the cellular membrane structure. Since then, more and more evidence has accumulated to indicate that proteins other than RAS are also farnesylated and have significant roles in carcinogenesis. This review delineates molecular pathogenesis through protein farnesylation in the context of nasopharyngeal carcinoma and discusses the potential of farnesylation as a therapeutic target. Abstract Nasopharyngeal carcinoma (NPC) is one of the Epstein–Barr virus (EBV)-associated malignancies. NPC is highly metastatic compared to other head and neck carcinomas, and evidence has shown that the metastatic features of NPC are involved in EBV infection. The prognosis of advanced cases, especially those with distant metastasis, is still poor despite advancements in molecular research and its application to clinical settings. Thus, further advancement in basic and clinical research that may lead to novel therapeutic modalities is needed. Farnesylation is a lipid modification in the C-terminus of proteins. It enables proteins to attach to the lipid bilayer structure of cellular membranes. Farnesylation was initially identified as a key process of membrane association and activation of the RAS oncoprotein. Farnesylation is thus expected to be an ideal therapeutic target in anti-RAS therapy. Additionally, more and more molecular evidence has been reported, showing that proteins other than RAS are also farnesylated and have significant roles in cancer progression. However, although several clinical trials have been conducted in cancers with high rates of ras gene mutation, such as pancreatic carcinomas, the results were less favorable than anticipated. In contrast, favorable outcomes were reported in the results of a phase II trial on head and neck carcinoma. In this review, we provide an overview of the molecular pathogenesis of NPC in terms of the process of farnesylation and discuss the potential of anti-farnesylation therapy in the treatment of NPC.
Collapse
|
5
|
Odeniyide P, Yohe ME, Pollard K, Vaseva AV, Calizo A, Zhang L, Rodriguez FJ, Gross JM, Allen AN, Wan X, Somwar R, Schreck KC, Kessler L, Wang J, Pratilas CA. Targeting farnesylation as a novel therapeutic approach in HRAS-mutant rhabdomyosarcoma. Oncogene 2022; 41:2973-2983. [PMID: 35459782 PMCID: PMC9122815 DOI: 10.1038/s41388-022-02305-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/11/2023]
Abstract
Activating RAS mutations are found in a subset of fusion-negative rhabdomyosarcoma (RMS), and therapeutic strategies to directly target RAS in these tumors have been investigated, without clinical success to date. A potential strategy to inhibit oncogenic RAS activity is the disruption of RAS prenylation, an obligate step for RAS membrane localization and effector pathway signaling, through inhibition of farnesyltransferase (FTase). Of the major RAS family members, HRAS is uniquely dependent on FTase for prenylation, whereas NRAS and KRAS can utilize geranylgeranyl transferase as a bypass prenylation mechanism. Tumors driven by oncogenic HRAS may therefore be uniquely sensitive to FTase inhibition. To investigate the mutation-specific effects of FTase inhibition in RMS we utilized tipifarnib, a potent and selective FTase inhibitor, in in vitro and in vivo models of RMS genomically characterized for RAS mutation status. Tipifarnib reduced HRAS processing, and plasma membrane localization leading to decreased GTP-bound HRAS and decreased signaling through RAS effector pathways. In HRAS-mutant cell lines, tipifarnib reduced two-dimensional and three-dimensional cell growth, and in vivo treatment with tipifarnib resulted in tumor growth inhibition exclusively in HRAS-mutant RMS xenografts. Our data suggest that small molecule inhibition of FTase is active in HRAS-driven RMS and may represent an effective therapeutic strategy for a genomically-defined subset of patients with RMS.
Collapse
Affiliation(s)
- Patience Odeniyide
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kai Pollard
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelina V Vaseva
- The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ana Calizo
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindy Zhang
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fausto J Rodriguez
- Department of Laboratory Medicine and Pathology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John M Gross
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy N Allen
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolin Wan
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karisa C Schreck
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jiawan Wang
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Dang W, Guo P, Song X, Zhang Y, Li N, Yu C, Xing B, Liu R, Jia X, Zhang Q, Feng X, Liu Z. Nuclear Targeted Peptide Combined With Gambogic Acid for Synergistic Treatment of Breast Cancer. Front Chem 2022; 9:821426. [PMID: 35155383 PMCID: PMC8832139 DOI: 10.3389/fchem.2021.821426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
As a natural compound, gambogic acid (GA) emerged a shining multi-target antitumor activity in a variety of tumors. Whereas its poor solubility and non-specific effect to tumor blocked the clinical application of this drug. Herein, we reported a simple and effective strategy to construct liposome modified with nuclear targeted peptide CB5005N (VQRKRQKLMPC) via polyethylene glycol (PEG) linker to decrease the inherent limitations of GA and promote its anti-tumor activity. In this study, liposomes were prepared by thin film hydration method. The characterization of formulations contained particle size, Zeta potential, morphology and encapsulation efficiency. Further, in vitro cytotoxicity and uptake tests were investigated by 4T1 and MDA-MB-231 cells, and nuclear targeting capability was performed on MDA-MB-231 cells. In addition, the in vivo antitumor effect and biological distribution of formulations were tested in BALB/c female mice. The GA-loaded liposome modified by CB5005N showed small size, good uniformity, better targeting, higher anti-tumor efficiency, better tumor inhibition rate and lower toxicity to normal tissues than other groups. In vitro and in vivo research proved that CB5005N-GA-liposome exhibited excellent anti-tumor activity and significantly reduced toxicities. As a result, CB5005N-GA-liposome nano drug delivery system enhanced the tumor targeting and antitumor effects of GA, which provided a basis for its clinical application.
Collapse
Affiliation(s)
- Wenli Dang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pan Guo
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xunan Song
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ying Zhang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Li
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Changxiang Yu
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Xing
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Liu
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xintao Jia
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingqing Zhang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaojiao Feng
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Zhidong Liu,
| |
Collapse
|
7
|
Bachmann HS, Jung D, Link T, Arnold A, Kantelhardt E, Thomssen C, Wimberger P, Vetter M, Kuhlmann JD. FNTB Promoter Polymorphisms Are Independent Predictors of Survival in Patients with Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030468. [PMID: 35158735 PMCID: PMC8833514 DOI: 10.3390/cancers14030468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
In breast cancer, the promising efficacy of farnesyltransferase inhibitors (FTIs) in preclinical studies is in contrast to only limited effects in clinical Phase II–III trials. The objective of this study was to explore the clinical relevance of farnesyltransferase β-subunit (FNTB) single nucleotide promoter polymorphisms (FNTB-173 6G > 5G (rs3215788), -609 G > C (rs11623866) and -179 T > A (rs192403314)) in early breast cancer. FNTB genotyping was performed by pyrosequencing in 797 patients from a prospective multicentre observational PiA trial (NCT 01592825). In the total cohort, the FNTB-173 6G > 5G polymorphism was an independent predictor of RFI (HR = 0.568; 95% CI = 0.339–0.949, p = 0.031), OS (HR = 0.629; 95% CI = 0.403–0.980, p = 0.040) and BCSS (HR = 0.433; 95% CI = 0.213–0.882; p = 0.021), whereas the FNTB-609 G > C polymorphism was an independent predictor of RFI (HR = 0.453; 95% CI = 0.226–0.910, p = 0.026) and BCSS (HR = 0.227; 95% CI = 0.075–0.687, p = 0.009). Subtype analysis revealed the independent prognostic relevance of FNTB promoter polymorphisms, particularly in TNBC but not in luminal or HER2-positive intrinsic subtypes. Finally, we used electrophoretic mobility shift assays (EMSAs) to confirm in vitro that the polymorphism FNTB-173 6G > 5G resulted in the differential binding of nuclear proteins from five different breast cancer cell lines. This is the first study on breast cancer suggesting that FNTB promoter polymorphisms (i) are independent prognostic biomarkers, particularly in patients with early TNBC, and (ii) could modulate FNTB’s transcriptional activity.
Collapse
Affiliation(s)
- Hagen Sjard Bachmann
- Institute of Pharmacology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (H.S.B.); (D.J.); (A.A.)
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Dominik Jung
- Institute of Pharmacology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (H.S.B.); (D.J.); (A.A.)
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Arnold
- Institute of Pharmacology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (H.S.B.); (D.J.); (A.A.)
| | - Eva Kantelhardt
- Department of Gynecology, Martin Luther University Halle Wittenberg, 06120 Halle, Germany; (E.K.); (C.T.); (M.V.)
- Institute of Medical Epidemiology, Bioinformatics and Statistics, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Christoph Thomssen
- Department of Gynecology, Martin Luther University Halle Wittenberg, 06120 Halle, Germany; (E.K.); (C.T.); (M.V.)
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martina Vetter
- Department of Gynecology, Martin Luther University Halle Wittenberg, 06120 Halle, Germany; (E.K.); (C.T.); (M.V.)
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-351-458-2434
| |
Collapse
|
8
|
Xing Z, Wang R, Wang X, Liu J, Zhang M, Feng K, Wang X. CircRNA circ-PDCD11 promotes triple-negative breast cancer progression via enhancing aerobic glycolysis. Cell Death Discov 2021; 7:218. [PMID: 34420029 PMCID: PMC8380247 DOI: 10.1038/s41420-021-00604-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Well-described evidence has demonstrated the critical roles of aerobic glycolysis in triple-negative breast cancer (TNBC) oncotherapy. Moreover, next-generation high-throughput sequencing indicates the potential regulation of energy metabolism by circular RNAs (circRNAs) in TNBC. However, circRNA modulation of TNBC aerobic glycolysis is still unclear. Here, the present research aimed to investigate the function and underlying mechanisms of novel circPDCD11 (hsa_circ_0019853) in TNBC aerobic glycolysis. The results revealed that circPDCD11 expression was significantly upregulated in TNBC tissues and cells. Clinical data demonstrated that the high expression of circPDCD11 was closely correlated with a poor prognosis and acted as an independent risk factor for TNBC prognosis. Functionally, in vitro gain- and loss-of-function experiments revealed that circPDCD11 accelerated glucose uptake, lactate production, ATP generation, and the extracellular acidification rate in TNBC cells. In vivo, circPDCD11 silencing repressed tumor growth. Mechanistically, circPDCD11 acted as a miRNA sponge to enhance LDHA expression by sponging miR-432-5p. In conclusion, these combined results demonstrated that circPDCD11 acts as an oncogene for TNBC, providing a promising prognostic biomarker for TNBC.
Collapse
Affiliation(s)
- Zeyu Xing
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruojiao Wang
- Department of Medical Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xin Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiaqi Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Menglu Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kexin Feng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiang Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Durrani IA, Bhatti A, John P. The prognostic outcome of 'type 2 diabetes mellitus and breast cancer' association pivots on hypoxia-hyperglycemia axis. Cancer Cell Int 2021; 21:351. [PMID: 34225729 PMCID: PMC8259382 DOI: 10.1186/s12935-021-02040-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes mellitus and breast cancer are complex, chronic, heterogeneous, and multi-factorial diseases; with common risk factors including but not limited to diet, obesity, and age. They also share mutually inclusive phenotypic features such as the metabolic deregulations resulting from hyperglycemia, hypoxic conditions and hormonal imbalances. Although, the association between diabetes and cancer has long been speculated; however, the exact molecular nature of this link remains to be fully elucidated. Both the diseases are leading causes of death worldwide and a causal relationship between the two if not addressed, may translate into a major global health concern. Previous studies have hypothesized hyperglycemia, hyperinsulinemia, hormonal imbalances and chronic inflammation, as some of the possible grounds for explaining how diabetes may lead to cancer initiation, yet further research still needs to be done to validate these proposed mechanisms. At the crux of this dilemma, hyperglycemia and hypoxia are two intimately related states involving an intricate level of crosstalk and hypoxia inducible factor 1, at the center of this, plays a key role in mediating an aggressive disease state, particularly in solid tumors such as breast cancer. Subsequently, elucidating the role of HIF1 in establishing the diabetes-breast cancer link on hypoxia-hyperglycemia axis may not only provide an insight into the molecular mechanisms underlying the association but also, illuminate on the prognostic outcome of the therapeutic targeting of HIF1 signaling in diabetic patients with breast cancer or vice versa. Hence, this review highlights the critical role of HIF1 signaling in patients with both T2DM and breast cancer, potentiates its significance as a prognostic marker in comorbid patients, and further discusses the potential prognostic outcome of targeting HIF1, subsequently establishing the pressing need for HIF1 molecular profiling-based patient selection leading to more effective therapeutic strategies emerging from personalized medicine.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Attya Bhatti
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| | - Peter John
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| |
Collapse
|
10
|
Egawa N, Tanaka T, Matsufuji S, Yamada K, Ito K, Kitagawa H, Okuyama K, Kitajima Y, Noshiro H. Antitumor effects of low-dose tipifarnib on the mTOR signaling pathway and reactive oxygen species production in HIF-1α-expressing gastric cancer cells. FEBS Open Bio 2021; 11:1465-1475. [PMID: 33773069 PMCID: PMC8091580 DOI: 10.1002/2211-5463.13154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Farnesyltransferase inhibitors (FTIs) suppress tumor aggressiveness in several malignancies by inhibiting Ras signaling. However, treatment of cells with a low dose of the FTI tipifarnib suppresses the expression of hypoxia‐inducible factor‐1α (HIF‐1α) and results in antitumor effects without inhibiting the Ras pathway. Although we previously reported that elevated HIF‐1α expression is associated with an aggressive phenotype in gastric cancer (GC), little is known about the antitumor effects of FTIs on GC. In this study, we examined the relationship between the antitumor effects of low‐dose tipifarnib and HIF‐1α expression in GC cells. Under normoxic conditions, HIF‐1α was expressed only in MKN45 and KATOIII cells. The inhibitory effect of tipifarnib on HIF‐1α was observed in HIF‐1α‐positive cells. Low‐dose tipifarnib had antitumor effects only on HIF‐1α‐positive cells both in vitro and in vivo. Furthermore, low‐dose tipifarnib inactivated ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) signaling and decreased intracellular reactive oxygen species (ROS) levels in HIF‐1α‐positive GC cells. Our results that the antitumor effects of low‐dose tipifarnib are at least partially mediated through suppression of mTOR signaling and HIF‐1α expression via inhibition of Rheb farnesylation and reduction in ROS levels. These findings suggest that low‐dose tipifarnib may be capable of exerting an antitumor effect that is dependent on HIF‐1α expression in GC cells. Tipifarnib may have potential as a novel therapeutic agent for HIF‐1α‐expressing GC exhibiting an aggressive phenotype.
Collapse
Affiliation(s)
- Noriyuki Egawa
- Department of Surgery, Saga University Faculty of Medicine, Japan
| | - Tomokazu Tanaka
- Department of Surgery, Saga University Faculty of Medicine, Japan
| | - Shohei Matsufuji
- Department of Surgery, Saga University Faculty of Medicine, Japan
| | - Kohei Yamada
- Department of Surgery, Saga University Faculty of Medicine, Japan
| | - Kotaro Ito
- Department of Surgery, Saga University Faculty of Medicine, Japan
| | - Hiroshi Kitagawa
- Department of Surgery, Saga University Faculty of Medicine, Japan
| | | | - Yoshihiko Kitajima
- Department of Surgery, Saga University Faculty of Medicine, Japan.,Department of Surgery, National Hospital Organization Higashisaga Hospital, Saga, Japan
| | - Hirokazu Noshiro
- Department of Surgery, Saga University Faculty of Medicine, Japan
| |
Collapse
|
11
|
Abstract
Ras proteins mediate extracellular and cytoplasmic signaling networks via receptor tyrosine kinase. The Ras pathway induces activation of signaling molecules involved in cell proliferation and growth, cell survival and apoptosis, metabolism, and motility. Although Ras mutations in breast cancer are not frequently reported, hyperactivation of Ras signaling plays an important role in breast cancer growth and progression. Oncogenic Ras activation occurs via loss of Ras GTPase-activating proteins, overexpression of growth factor receptor, and stimulation by various cytokines. Effective control of oncogenic Ras is one of the therapeutic strategies in breast cancer. The mechanisms of intracellular localization, activation, and signaling pathway of Ras in cancer have been used to develop therapeutic candidates. Recent studies have reported an effective therapy for breast cancer by inhibition of enzymes involved in the posttranslational modification of Ras, such as farnesyltransferase and geranylgeranyltransferase 1, and anti-cancer therapies targeting the epidermal growth factor receptor (EGFR). Emerging targets involved in EGF-mediated Ras activity in breast cancer have shed new insight into Ras activation in breast cancer progression. These alternative mechanisms for Ras signaling pathway may suggest novel therapeutic approaches for targeting Ras in breast cancer. In spite of the difficulties in targeting Ras protein, important discoveries highlight the direct inhibition of Ras activity. Further studies may elucidate the effects of targeting Ras protein and the clinical relevance thereof.
Collapse
|
12
|
Dai X, Sun Y, Zhang T, Ming Y, Hongwei G. An overview on natural farnesyltransferase inhibitors for efficient cancer therapy. J Enzyme Inhib Med Chem 2020; 35:1027-1044. [PMID: 32308053 PMCID: PMC7191900 DOI: 10.1080/14756366.2020.1732366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/11/2020] [Accepted: 02/09/2020] [Indexed: 12/21/2022] Open
Abstract
As one of the world's five terminally ills, tumours can cause important genetic dysfunction. However, some current medicines for tumours usually have strong toxic side effects and are prone to drug resistance. Studies have found that farnesyltransferase inhibitors (FTIs) extracted from natural materials have a good inhibiting ability on tumours with fewer side effects. This article describes several FTIs extracted from natural materials and clarifies the current research progress, which provides a new choice for the treatment of tumours.
Collapse
Affiliation(s)
- Xiaohan Dai
- School of Life Science, Ludong University, Yantai, Shandong, China
| | - Yingni Sun
- School of Life Science, Ludong University, Yantai, Shandong, China
| | - Ting Zhang
- School of Life Science, Ludong University, Yantai, Shandong, China
| | - Yongfei Ming
- School of Life Science, Ludong University, Yantai, Shandong, China
| | - Gao Hongwei
- School of Life Science, Ludong University, Yantai, Shandong, China
| |
Collapse
|
13
|
Mammadzada P, Corredoira PM, André H. The role of hypoxia-inducible factors in neovascular age-related macular degeneration: a gene therapy perspective. Cell Mol Life Sci 2020; 77:819-833. [PMID: 31893312 PMCID: PMC7058677 DOI: 10.1007/s00018-019-03422-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
Understanding the mechanisms that underlie age-related macular degeneration (AMD) has led to the identification of key molecules. Hypoxia-inducible transcription factors (HIFs) have been associated with choroidal neovascularization and the progression of AMD into the neovascular clinical phenotype (nAMD). HIFs regulate the expression of multiple growth factors and cytokines involved in angiogenesis and inflammation, hallmarks of nAMD. This knowledge has propelled the development of a new group of therapeutic strategies focused on gene therapy. The present review provides an update on current gene therapies in ocular angiogenesis, particularly nAMD, from both basic and clinical perspectives.
Collapse
Affiliation(s)
- Parviz Mammadzada
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden
| | - Pablo M Corredoira
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden
| | - Helder André
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden.
| |
Collapse
|
14
|
Malekian S, Rahmati M, Sari S, Kazemimanesh M, Kheirbakhsh R, Muhammadnejad A, Amanpour S. Expression of Diverse Angiogenesis Factor in Different Stages of the 4T1 Tumor as a Mouse Model of Triple-Negative Breast Cancer. Adv Pharm Bull 2020; 10:323-328. [PMID: 32373503 PMCID: PMC7191227 DOI: 10.34172/apb.2020.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Triple-negative breast cancer (TNBC) is specified by high vascularity and repetitious metastasis. Although several studies have indicated that angiogenesis has an important role in invasive breast cancer, a suitable model of TNBC that can show the exact onset of angiogenesis factors still needs to be developed. The purpose of this study is to determine the expression level of angiogenesis factors in different clinical stages of the 4T1 tumor as TNBC mouse model. Methods: Twenty mice were injected by the 4T1 cell line, and four mice selected as healthy controls. Following by tumor induction, the mice were randomly put into four groups, each contains four mice. Once the tumor volume reached to the early stage (<100 mm3), intermediate stage (100-300 mm3), advanced stage (300-500 mm3), and end stage (>500 mm3), they were removed by surgery. Then, the expression levels of Hif1α, VEGFR1, and VEGFR2 genes, as well as tumor markers of VEGF, bFGF and CD31, were evaluated by qPCR and immunohistochemistry (IHC) respectively. The statistical analysis was done by SPSS version 16. Results: TNBC tumors were confirmed and multi-foci metastasis in the lung were seen. The mRNA and protein expression levels of the angiogenesis factors increased in the early stage and as the tumor grew, their expression level enhanced dramatically. Conclusion: The 4T1 syngeneic mouse tumor may serve as an appropriate TNBC model for further investigation of the angiogenesis and therapies. Moreover, angiogenesis factors are induced before the advanced stage, and anti-angiogenesis therapy is necessary to be considered at the first line of treatment in TBNC.
Collapse
Affiliation(s)
- Saba Malekian
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Molecular and Cellular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soyar Sari
- Department of Molecular and Cellular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Kheirbakhsh
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Amanpour
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Lopes-Ventura S, Pojo M, Matias AT, Moura MM, Marques IJ, Leite V, Cavaco BM. The efficacy of HRAS and CDK4/6 inhibitors in anaplastic thyroid cancer cell lines. J Endocrinol Invest 2019; 42:527-540. [PMID: 30191474 DOI: 10.1007/s40618-018-0947-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/11/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Anaplastic thyroid carcinomas (ATCs) are non-responsive to multimodal therapy, representing one of the major challenges in thyroid cancer. Previously, our group has shown that genes involved in cell cycle are deregulated in ATCs, and the most common mutations in these tumours occurred in cell proliferation and cell cycle related genes, namely TP53, RAS, CDKN2A and CDKN2B, making these genes potential targets for ATCs treatment. Here, we investigated the inhibition of HRAS by tipifarnib (TIP) and cyclin D-cyclin-dependent kinase 4/6 (CDK4/6) by palbociclib (PD), in ATC cells. METHODS ATC cell lines, mutated or wild type for HRAS, CDKN2A and CDKN2B genes, were used and the cytotoxic effects of PD and TIP in each cell line were evaluated. Half maximal inhibitory concentration (IC50) values were determined for these drugs and its effects on cell cycle, cell death and cell proliferation were subsequently analysed. RESULTS Cell culture studies demonstrated that 0.1 µM TIP induced cell cycle arrest in the G2/M phase (50%, p < 0.01), cell death, and inhibition of cell viability (p < 0.001), only in the HRAS mutated cell line. PD lowest concentration (0.1 µM) increased significantly cell cycle arrest in the G0/G1 phase (80%, p < 0.05), but only in ATC cell lines with alterations in CDKN2A/CDKN2B genes; additionally, 0.5 µM PD induced cell death. The inhibition of cell viability by PD was more pronounced in cells with alterations in CDKN2A/CDKN2B genes (p < 0.05) and/or cyclin D1 overexpression. CONCLUSIONS This study suggests that TIP and PD, which are currently in clinical trials for other types of cancer, may play a relevant role in ATC treatment, depending on the specific tumour molecular profile.
Collapse
Affiliation(s)
- S Lopes-Ventura
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023, Lisbon, Portugal
| | - M Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023, Lisbon, Portugal
| | - A T Matias
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023, Lisbon, Portugal
| | - M M Moura
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023, Lisbon, Portugal
| | - I J Marques
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023, Lisbon, Portugal
- Centro de Estudos de Doenças Crónicas (CEDOC), Rua Câmara Pestana nº 6, 6-A, Edifício CEDOC II, 1150-082, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - V Leite
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023, Lisbon, Portugal
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - B M Cavaco
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023, Lisbon, Portugal.
| |
Collapse
|
16
|
Wang RX, Ou XW, Kang MF, Zhou ZP. Association of HIF-1α and NDRG2 Expression with EMT in Gastric Cancer Tissues. Open Life Sci 2019; 14:217-223. [PMID: 33817155 PMCID: PMC7874826 DOI: 10.1515/biol-2019-0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/19/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This study aims to investigate the differences in the expression of hypoxia-inducible factor-1α (HIF-1α), N-myc downstream-regulated gene 2 (NDRG2) and epithelial mesenchymal transition (EMT)-related proteins in normal gastric tissues, gastric cancer tissues and lymph node metastasis. METHODS Immunohistochemistry was used to detect the expression of HIF-1α, NDRG2, E-cadherin, Snail and Twist in normal gastric tissues, gastric cancer tissues and lymph node metastasis. RESULTS In normal gastric tissues, HIF-1α was not expressed, NDRG2 was highly expressed. There was a significant between the expression of NDRG2 and Snail, as well as of NDRG2 and Twist. In gastric cancer tissues, there was no statistically difference between the expression of HIF-1α and E-cadherin, NDRG2 and E-cadherin. However, there was a significant difference in expression between the expression of HIF-1α and Snail, HIF-1α and Twist, NDRG2 and Snail, and NDRG2 and Twist. In lymph node metastasis tissues, we show that HIF-1α was highly expressed, while NDRG2 was not, and the difference between the expression of HIF-1α and E-cadherin, HIF-1α and Snail, HIF-1α and Twist was not significant. CONCLUSION HIF-1α may promote EMT, possibly by inhibiting the expression of NDRG2.
Collapse
Affiliation(s)
- Ren-Xiang Wang
- Clinical medical school of Guilin Medical College, Guilin, Guangxi, 541001, China
| | - Xia-Wan Ou
- Clinical medical school of Guilin Medical College, Guilin, Guangxi, 541001, China
| | - Ma-Fei Kang
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, Guilin, Guangxi, 541001, China
| | - Zu-Ping Zhou
- Guangxi Normal University, College of Life Science; Stem Cells and Medical Biological Technology Key Laboratory of Guangxi Colleges and Universities, Guilin, Guangxi, 541004, China
| |
Collapse
|
17
|
Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy. Adv Cancer Res 2019; 141:175-212. [PMID: 30691683 DOI: 10.1016/bs.acr.2018.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical studies have revealed that breast cancers contain regions of intratumoral hypoxia (reduced oxygen availability), which activates hypoxia-inducible factors (HIFs). The relationship between intratumoral hypoxia, distant metastasis and cancer mortality has been well established. A major mechanism by which intratumoral hypoxia contributes to disease progression is through induction of the breast cancer stem cell (BCSC) phenotype. BCSCs are a small subpopulation of cells with the capability for self-renewal. BCSCs have been implicated in resistance to chemotherapy, disease recurrence, and metastasis. In this review, we will discuss our current understanding of the molecular mechanisms underlying HIF-dependent induction of the BCSC phenotype in response to hypoxia or chemotherapy.
Collapse
|
18
|
C-Terminal Farnesylation of UCH-L1 Plays a Role in Transport of Epstein-Barr Virus Primary Oncoprotein LMP1 to Exosomes. mSphere 2018; 3:mSphere00030-18. [PMID: 29435490 PMCID: PMC5806207 DOI: 10.1128/msphere.00030-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Exosomes are small vesicles that cells secrete into the extracellular space, and there is increasing evidence that they have pivotal roles in cell-to-cell communication in malignancy. It is reported also that EBV-associated malignant cells, including those derived from nasopharyngeal carcinoma (NPC) and B-cell lymphoma, secrete exosomes. These EBV-related exosomes may contain viral products such as latent membrane protein 1 (LMP1) and may contribute to cancer progression. The aim of this study was to investigate the mechanism by which those viral products are loaded in exosomes. In this study, we show for the first time that ubiquitin C-terminal hydrolase-L1 (UCH-L1) and its C-terminal farnesylation, a posttranslational lipid modification, contribute to this mechanism. Our results also suggest that inhibition of UCH-L1 farnesylation is a potential therapeutic target against cancer metastasis and invasion. Increasing evidence shows that exosomes are key regulators in cancer cell-to-cell communication. Several reports on Epstein-Barr virus (EBV)-related malignancies demonstrate that latent membrane protein 1 (LMP1) secreted by exosomes derived from EBV- or LMP1-positive cells can promote cancer progression and metastasis. However, the mechanism by which LMP1 is loaded into exosomes is still poorly understood. Here, we examined whether the process of LMP1 loading into exosomes is linked to the multifunctional molecule of the ubiquitin system—ubiquitin C-terminal hydrolase-L1 (UCH-L1). For the first time, we demonstrate that LMP1 is physically associated with UCH-L1 and that directing of LMP1 to exosomes is mediated by C-terminal farnesylation of UCH-L1. Additionally, we found that the FTI-277 farnesyltransferase inhibitor reduces motility- and anchorage-independent growth of EBV-positive cells in functional assays. On the basis of our results, we conclude that C-terminal farnesylation of UCH-L1 is one of the key mechanisms by which LMP1 is sorted to exosomes. We hypothesize that inhibition of farnesylation with specific small-molecule inhibitors blocks exosome-mediated transfer of prometastatic molecules such as LMP1 during cancer cell-to-cell communications and thereby impedes the process of cancer invasion. IMPORTANCE Exosomes are small vesicles that cells secrete into the extracellular space, and there is increasing evidence that they have pivotal roles in cell-to-cell communication in malignancy. It is reported also that EBV-associated malignant cells, including those derived from nasopharyngeal carcinoma (NPC) and B-cell lymphoma, secrete exosomes. These EBV-related exosomes may contain viral products such as latent membrane protein 1 (LMP1) and may contribute to cancer progression. The aim of this study was to investigate the mechanism by which those viral products are loaded in exosomes. In this study, we show for the first time that ubiquitin C-terminal hydrolase-L1 (UCH-L1) and its C-terminal farnesylation, a posttranslational lipid modification, contribute to this mechanism. Our results also suggest that inhibition of UCH-L1 farnesylation is a potential therapeutic target against cancer metastasis and invasion.
Collapse
|
19
|
Nicolini A, Ferrari P, Diodati L, Carpi A. Recent Advances in Comprehending the Signaling Pathways Involved in the Progression of Breast Cancer. Int J Mol Sci 2017; 18:E2321. [PMID: 29099748 PMCID: PMC5713290 DOI: 10.3390/ijms18112321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
This review describes recent advances in the comprehension of signaling pathways involved in breast cancer progression. Calcium sensing receptor (CaSR), caveolae signaling, signaling referred to hypoxia-inducing factors and disturbances in the apoptotic machinery are related to more general biological mechanisms and are considered first. The others refer to signaling pathways of more specific biological mechanisms, namely the heparin/heparin-sulfate interactome, over-expression of miRNA-378a-5p, restriction of luminal and basal epithelial cells, fatty-acid synthesis, molecular pathways related to epithelial to mesenchimal transition (EMT), HER-2/neu gene amplification and protein expression, and the expression of other members of the epithelial growth factor receptor family. This progress in basic research is fundamental to foster the ongoing efforts that use the new genotyping technologies, and aim at defining new prognostic and predictive biomarkers for a better personalized management of breast cancer disease.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Lucrezia Diodati
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
20
|
Low-dose YC-1 combined with glucose and insulin selectively induces apoptosis in hypoxic gastric carcinoma cells by inhibiting anaerobic glycolysis. Sci Rep 2017; 7:12653. [PMID: 28978999 PMCID: PMC5627264 DOI: 10.1038/s41598-017-12929-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/23/2017] [Indexed: 01/15/2023] Open
Abstract
This study aimed to establish a therapeutic strategy targeting hypoxic cancer cells in gastric carcinoma (GC). YC-1 is a HIF-1α inhibitor, and we revealed that low-dose YC-1 (10 µM) suppressed HIF-1α expression, and induced hypoxia-dependent apoptosis in the GC cell line 58As9. This hypoxia-specific apoptosis induction by YC-1 involved excessive reactive oxygen species (ROS) generation. The apoptotic effect of 10 µM YC-1 was enhanced by additional glucose (G) and insulin (I) treatments. RT-PCR demonstrated that 10 µM YC-1 reduced hypoxia-induced expression of HIF-1α targets involved in anaerobic glycolysis. Metabolic analysis showed that YC-1 shifted glucose metabolism in hypoxic cells from anaerobic glycolysis to oxidative phosphorylation (OXPHOS). Additional GI accelerated membranous GLUT1 translocation, elevating glucose uptake, and increased acetyl-CoA levels, leading to more ROS generation in hypoxic YC-1-treated cells. Finally, we evaluated the anti-cancer effect of low-dose YC-1 (1 mg/kg) + G (2 g/kg) and I (1 unit/3 g G) treatment in xenograft models. YC-1 + GI therapy strongly inhibited tumour growth. Immunohistochemical analysis demonstrated that YC-1 + GI reduced HIF-1α expression and pimonidazole accumulation in tumours. Conversely, YC-1 + GI increased intra-tumoral 8-OHdG and levels of apoptosis markers. Low-dose YC-1 + GI is a unique therapy targeting hypoxic GC cells that generates lethal ROS via forced activation of OXPHOS.
Collapse
|
21
|
Wang J, Yao X, Huang J. New tricks for human farnesyltransferase inhibitor: cancer and beyond. MEDCHEMCOMM 2017; 8:841-854. [PMID: 30108801 PMCID: PMC6072492 DOI: 10.1039/c7md00030h] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
Abstract
Human protein farnesyltransferase (FTase) catalyzes the addition of a C15-farnesyl lipid group to the cysteine residue located in the COOH-terminal tetrapeptide motif of a variety of important substrate proteins, including well-known Ras protein superfamily. The farnesylation of Ras protein is required both for its normal physiological function, and for the transforming capacity of its oncogenic mutants. Over the last several decades, FTase inhibitors (FTIs) were developed to disrupt the farnesylation of oncogenic Ras as anti-cancer agents, and some of them have entered cancer clinical investigation. On the other hand, some substrates of FTase were demonstrated to be related with other human diseases, including Hutchinson-Gilford progeria syndrome, chronic hepatitis D, and cardiovascular diseases. In this review, we summarize the roles of FTase in malignant transformation, proliferation, apoptosis, angiogenesis, and metastasis of tumor cells, and the recently anticancer clinical research advances of FTIs. The therapeutic prospect of FTIs on several other human diseases is also discussed.
Collapse
Affiliation(s)
- Jingyuan Wang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| | - Xue Yao
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| |
Collapse
|
22
|
Novel insight into triple-negative breast cancers, the emerging role of angiogenesis, and antiangiogenic therapy. Expert Rev Mol Med 2016; 18:e18. [DOI: 10.1017/erm.2016.17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous group of tumours characterised by lack of expression of oestrogen-, progesterone- and human epidermal growth factor receptors. TNBC, which represents approximately 15% of all mammary tumours, has a poor prognosis because of an aggressive behaviour and the lack of specific treatment. Accordingly, TNBC has become a major focus of research into breast cancer and is now classified into several molecular subtypes, each with a different prognosis. Pathological angiogenesis occurs at a late stage in the proliferation of TNBC and is associated with invasion and metastasis; there is an association with metabolic syndrome. Semaphorins are a versatile family of proteins with multiple roles in angiogenesis, tumour growth and metastasis and may represent a clinically useful focus for therapeutic targeting in this type of breast cancer. Another important field of investigation into the control of pathological angiogenesis is related to the expression of noncoding RNA (ncRNA) – these molecules can be considered as a therapeutic target or as a biomarker. Several molecular agents for intervening in the activity of different signalling pathways are being explored in TNBC, but none has so far proved effective in clinical trials and the disease continues to pose a defining challenge for clinical management as well as innovative cancer research.
Collapse
|