1
|
Perl AL, Pokorny JL, Green KJ. Desmosomes at a glance. J Cell Sci 2024; 137:jcs261899. [PMID: 38940346 PMCID: PMC11234380 DOI: 10.1242/jcs.261899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Desmosomes are relatives of ancient cadherin-based junctions, which emerged late in evolution to ensure the structural integrity of vertebrate tissues by coupling the intermediate filament cytoskeleton to cell-cell junctions. Their ability to dynamically counter the contractile forces generated by actin-associated adherens junctions is particularly important in tissues under high mechanical stress, such as the skin and heart. Much more than the simple cellular 'spot welds' depicted in textbooks, desmosomes are in fact dynamic structures that can sense and respond to changes in their mechanical environment and external stressors like ultraviolet light and pathogens. These environmental signals are transmitted intracellularly via desmosome-dependent mechanochemical pathways that drive the physiological processes of morphogenesis and differentiation. This Cell Science at a Glance article and the accompanying poster review desmosome structure and assembly, highlight recent insights into how desmosomes integrate chemical and mechanical signaling in the epidermis, and discuss desmosomes as targets in human disease.
Collapse
Affiliation(s)
- Abbey L. Perl
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jenny L. Pokorny
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Zhang Y, Zhang H, Yan L, Liang G, Zhu C, Wang Y, Ji S, He C, Sun J, Zhang J. Exosomal microRNAs in tubal fluid may be involved in damage to tubal reproductive function associated with tubal endometriosis. Reprod Biomed Online 2023; 47:103249. [PMID: 37495470 DOI: 10.1016/j.rbmo.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 07/28/2023]
Abstract
RESEARCH QUESTION What is the effect of tubal endometriosis on tubal epithelial ultrastructure and is there a differential expression of exosomal microRNAs (miRNAs) in tubal fluid which may affect tubal infertility? DESIGN Human fallopian tube epithelium and tubal fluid samples were obtained from patients with and without tubal endometriosis. Scanning electron microscopy and transmission electron microscopy were used to assess ultrastructural changes. Exosomal miRNAs in tubal fluid were extracted for microarray. RESULTS Epithelial damage was visualized in the tubal endometriosis group using electron microscopy. The number of organelles decreased (P = 0.0314), and organelle structure was destroyed. A total of 14 differentially expressed exosomal miRNAs were detected in tubal fluid (fold change >2 and P < 0.05). Four miRNAs (miR-1273f, miR-5699-5p, miR-6087 and miR-6747-5p) were validated by quantitative real-time polymerase chain reaction. Bioinformatic analysis showed that most of the target genes participated in embryo transport, regulation of cell communication, anatomical structure morphogenesis and immune system processes. CONCLUSIONS Tubal endometriosis results in damage to the tubal epithelial ultrastructure in human specimens and the presence of differentially expressed exosomal miRNAs in tubal liquid. These findings help to clarify the pathogenesis of tubal endometriosis-associated infertility and the mechanisms driving tubal epithelial ultrastructure damage in tubal endometriosis.
Collapse
Affiliation(s)
- Yiqin Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Huiyu Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Li Yan
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Guiling Liang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Chenfeng Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Yang Wang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Sifan Ji
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Chuqing He
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Jing Sun
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Jian Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China.
| |
Collapse
|
3
|
Olbromski M, Podhorska-Okołów M, Dzięgiel P. Role of SOX Protein Groups F and H in Lung Cancer Progression. Cancers (Basel) 2020; 12:cancers12113235. [PMID: 33152990 PMCID: PMC7692225 DOI: 10.3390/cancers12113235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The expression of SOX proteins has been demonstrated in many tissues at various stages of embryogenesis, where they play the role of transcription factors. The SOX18 protein (along with SOX7 and SOX17) belongs to the SOXF group and is mainly involved in the development of the cardiovascular system, where its expression was found in the endothelium. SOX18 expression was also demonstrated in neoplastic lines of gastric, pancreatic and colon adenocarcinomas. The prognostic role of SOX30 expression has only been studied in lung adenocarcinomas, where a low expression of this factor in the stromal tumor was associated with a worse prognosis for patients. Because of the complexity of non-small-cell lung cancer (NSCLC) development, the role of the SOX proteins in this malignancy is still not fully understood. Many recently published papers show that SOX family protein members play a crucial role in the progression of NSCLC. Abstract The SOX family proteins are proved to play a crucial role in the development of the lymphatic ducts and the cardiovascular system. Moreover, an increased expression level of the SOX18 protein has been found in many malignances, such as melanoma, stomach, pancreatic breast and lung cancers. Another SOX family protein, the SOX30 transcription factor, is responsible for the development of male germ cells. Additionally, recent studies have shown its proapoptotic character in non-small cell lung cancer cells. Our preliminary studies showed a disparity in the amount of mRNA of the SOX18 gene relative to the amount of protein. This is why our attention has been focused on microRNA (miRNA) molecules, which could regulate the SOX18 gene transcript level. Recent data point to the fact that, in practically all types of cancer, hundreds of genes exhibit an abnormal methylation, covering around 5–10% of the thousands of CpG islands present in the promoter sequences, which in normal cells should not be methylated from the moment the embryo finishes its development. It has been demonstrated that in non-small-cell lung cancer (NSCLC) cases there is a large heterogeneity of the methylation process. The role of the SOX18 and SOX30 expression in non-small-cell lung cancers (NSCLCs) is not yet fully understood. However, if we take into account previous reports, these proteins may be important factors in the development and progression of these malignancies.
Collapse
Affiliation(s)
- Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-717-841-354; Fax: +48-717-840-082
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
4
|
|
5
|
Bharathan NK, Dickinson AJG. Desmoplakin is required for epidermal integrity and morphogenesis in the Xenopus laevis embryo. Dev Biol 2019; 450:115-131. [PMID: 30935896 PMCID: PMC6659752 DOI: 10.1016/j.ydbio.2019.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Desmoplakin (Dsp) is a unique and critical desmosomal protein, that is integral to epidermal development. However, it is unclear whether this protein is required specifically for epidermal morphogenesis. Using morpholinos or Crispr/Cas9 mutagenesis we decreased the function of Dsp in frog embryos to better understand its role during epidermal development. Dsp morphant and mutant embryos had developmental defects such as epidermal fragility that mimicked what has been reported in mammals. Most importantly, we also uncovered a novel function for Dsp in the morphogenesis of the epidermis in X. laevis. In particular, Dsp is required during the process of radial intercalation where basally located cells move into the outer epidermal layer. Once inserted these newly intercalated cells expand their apical surface and then they differentiate into specific epidermal cell types. Decreased levels of Dsp resulted in the failure of the radially intercalating cells to expand their apical surface, thereby reducing the number of differentiated multiciliated and secretory cells. Such defects correlate with changes in E-cadherin levels and actin and microtubule localization which could explain the defects in apical expansion. A mutated form of Dsp that maintains cell-cell adhesion but eliminates the connections to the cytoskeleton results in the same epidermal morphogenesis defect. These results suggest a specific role for Dsp in the apical expansion of cells during radial intercalation. We have developed a novel system, in the frog, to demonstrate for the first time that desmosomes not only protect against mechanical stress but are also critical for epidermal morphogenesis.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall St., Richmond, VA 23219, United States; Department of Cell Biology, Emory University School of Medicine, 615 Michael Street Atlanta, GA 30322, United States
| | - Amanda J G Dickinson
- Department of Biology, Virginia Commonwealth University, 1000 West Cary St., Richmond, VA 23284, United States.
| |
Collapse
|
6
|
Hao X, Han F, Ma B, Zhang N, Chen H, Jiang X, Yin L, Liu W, Ao L, Cao J, Liu J. SOX30 is a key regulator of desmosomal gene suppressing tumor growth and metastasis in lung adenocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:111. [PMID: 29855376 PMCID: PMC5984358 DOI: 10.1186/s13046-018-0778-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/21/2018] [Indexed: 02/02/2023]
Abstract
Background The expression of desmosomal genes in lung adenocarcinoma and lung squamous carcinoma is different. However, the regulatory mechanism of desmosomal gene expression in lung adenocarcinoma and lung squamous carcinoma remains unknown. Methods The correlation between expression of desmosomal gene expression and SOX30 expression were analyzed by bioinformatics. The expression of SOX30, DSP, JUP and DSC3 were detected in lung cancer cell lines, lung tissues of mice and patients’ tissues by qPCR, WB, Immunofluorescence and Immunohistochemistry. A chromatin Immunoprecipitation assay was used to investigate the mechanisms of the SOX30 regulation on desmosomal gene expression. In vitro proliferation, migration and invasion assays, and an in vivo nude mice model were utilized to assess the important role of desmosomal genes on SOX30-induced tumor suppression. A WB assay and TOP/FOP flash reporter assay was used to investigate the downstream pathway regulated by the SOX30-desmosomal gene axis. A chemical carcinogenic model of SOX30-knockout mice was generated to confirm the role of the SOX30-desmosomal gene axis in tumorigenesis. Results The expression of desmosomal genes were upregulated by SOX30 in lung adenocarcinoma but not in lung squamous carcinoma. Further mechanism studies showed that SOX30 acts as a key transcriptional regulator of desmosomal genes by directly binding to the ACAAT motif of desmosomal genes promoter region and activating their transcription in lung adenocarcinoma. Knockdown of the expression of related desmosomal genes by miRNA significantly attenuated the inhibitory effect of SOX30 on cell proliferation, migration and invasion in vitro and on tumor growth and metastasis in vivo. In addition, knockout of SOX30 promotes lung tumor development and loss the inhibition of desmosomal genes on downstream Wnt and ERK signal in urethane-induced lung carcinogenesis in SOX30-knockout mice. Conclusions Overall, these findings demonstrate for the first time that SOX30 acts as a master switch of desmosomal genes, inhibits lung adenocarcinoma cell proliferation, migration and invasion by activating the transcription of desmosomal genes. This study provides novel insights on the regulatory mechanism of desmosomal genes in lung adenocarcinoma. Electronic supplementary material The online version of this article (10.1186/s13046-018-0778-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianglin Hao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Bangjin Ma
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Ning Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Hongqiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Wenbin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
7
|
Evangelista F, Roth AJ, Prisayanh P, Temple BR, Li N, Qian Y, Culton DA, Liu Z, Harrison OJ, Brasch J, Honig B, Shapiro L, Diaz LA. Pathogenic IgG4 autoantibodies from endemic pemphigus foliaceus recognize a desmoglein-1 conformational epitope. J Autoimmun 2018; 89:171-185. [PMID: 29307589 PMCID: PMC5902409 DOI: 10.1016/j.jaut.2017.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
Abstract
Fogo Selvagem (FS), the endemic form of pemphigus foliaceus, is mediated by pathogenic IgG4 autoantibodies against the amino-terminal extracellular cadherin domain of the desmosomal cadherin desmoglein 1 (Dsg1). Here we define the detailed epitopes of these pathogenic antibodies. Proteolytic footprinting showed that IgG4 from 95% of FS donor sera (19/20) recognized a 16-residue peptide (A129LNSMGQDLERPLELR144) from the EC1 domain of Dsg1 that overlaps the binding site for an adhesive-partner desmosomal cadherin molecule. Mutation of Dsg1 residues M133 and Q135 reduced the binding of FS IgG4 autoantibodies to Dsg1 by ∼50%. Molecular modeling identified two nearby EC1 domain residues (Q82 and V83) likely to contribute to the epitope. Mutation of these residues completely abolished the binding of FS IgG4 to Dsg1. Bead aggregation assays showed that native binding interactions between Dsg1 and desmocollin 1 (Dsc1), which underlie desmosome structure, were abolished by Fab fragments of FS IgG4. These results further define the molecular mechanism by which FS IgG4 autoantibodies interfere with desmosome structure and lead to cell-cell detachment, the hallmark of this disease.
Collapse
Affiliation(s)
- Flor Evangelista
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Laboratorio de Investigación Multidisciplinaria, Universidad Antenor Orrego, Trujillo, Peru
| | - Aleeza J Roth
- Pathology Diagnostic Liaison-Northeast Region, Bristol-Myers Squibb, Princeton NJ, USA
| | - Phillip Prisayanh
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brenda R Temple
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; R.L. Juliano Structural Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ye Qian
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Donna A Culton
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Oliver J Harrison
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Julia Brasch
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA; Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Environmental selection during the last ice age on the mother-to-infant transmission of vitamin D and fatty acids through breast milk. Proc Natl Acad Sci U S A 2018; 115:E4426-E4432. [PMID: 29686092 PMCID: PMC5948952 DOI: 10.1073/pnas.1711788115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The frequency of the human-specific EDAR V370A isoform is highly elevated in North and East Asian populations. The gene is known to have several pleiotropic effects, among which are sweat gland density and ductal branching in the mammary gland. The former has led some geneticists to argue that the near-fixation of this allele was caused by selection for modulation of thermoregulatory sweating. We provide an alternative hypothesis, that selection instead acted on the allele’s effect of increasing ductal branching in the mammary gland, thereby amplifying the transfer of critical nutrients to infants via mother’s milk. This is likely to have occurred during the Last Glacial Maximum when a human population was genetically isolated in the high-latitude environment of the Beringia. Because of the ubiquitous adaptability of our material culture, some human populations have occupied extreme environments that intensified selection on existing genomic variation. By 32,000 years ago, people were living in Arctic Beringia, and during the Last Glacial Maximum (LGM; 28,000–18,000 y ago), they likely persisted in the Beringian refugium. Such high latitudes provide only very low levels of UV radiation, and can thereby lead to dangerously low levels of biosynthesized vitamin D. The physiological effects of vitamin D deficiency range from reduced dietary absorption of calcium to a compromised immune system and modified adipose tissue function. The ectodysplasin A receptor (EDAR) gene has a range of pleiotropic effects, including sweat gland density, incisor shoveling, and mammary gland ductal branching. The frequency of the human-specific EDAR V370A allele appears to be uniquely elevated in North and East Asian and New World populations due to a bout of positive selection likely to have occurred circa 20,000 y ago. The dental pleiotropic effects of this allele suggest an even higher occurrence among indigenous people in the Western Hemisphere before European colonization. We hypothesize that selection on EDAR V370A occurred in the Beringian refugium because it increases mammary ductal branching, and thereby may amplify the transfer of critical nutrients in vitamin D-deficient conditions to infants via mothers’ milk. This hypothesized selective context for EDAR V370A was likely intertwined with selection on the fatty acid desaturase (FADS) gene cluster because it is known to modulate lipid profiles transmitted to milk from a vitamin D-rich diet high in omega-3 fatty acids.
Collapse
|
9
|
Cirillo N, Hassona Y, Celentano A, Lim K, Manchella S, Parkinson E, Prime S. Cancer-associated fibroblasts regulate keratinocyte cell–cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. Carcinogenesis 2016; 38:76-85. [DOI: 10.1093/carcin/bgw113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/11/2016] [Accepted: 10/28/2016] [Indexed: 11/14/2022] Open
|