1
|
Sorensen CM, Salomonsson M, Lubberding AF, Holstein‐Rathlou N. The renal vasodilatation from β-adrenergic activation in vivo in rats is not driven by K V7 and BK Ca channels. Exp Physiol 2024; 109:791-803. [PMID: 38460127 PMCID: PMC11061631 DOI: 10.1113/ep091618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/21/2024] [Indexed: 03/11/2024]
Abstract
The mechanisms behind renal vasodilatation elicited by stimulation of β-adrenergic receptors are not clarified. As several classes of K channels are potentially activated, we tested the hypothesis that KV7 and BKCa channels contribute to the decreased renal vascular tone in vivo and in vitro. Changes in renal blood flow (RBF) during β-adrenergic stimulation were measured in anaesthetized rats using an ultrasonic flow probe. The isometric tension of segmental arteries from normo- and hypertensive rats and segmental arteries from wild-type mice and mice lacking functional KV7.1 channels was examined in a wire-myograph. The β-adrenergic agonist isoprenaline increased RBF significantly in vivo. Neither activation nor inhibition of KV7 and BKCa channels affected the β-adrenergic RBF response. In segmental arteries from normo- and hypertensive rats, inhibition of KV7 channels significantly decreased the β-adrenergic vasorelaxation. However, inhibiting BKCa channels was equally effective in reducing the β-adrenergic vasorelaxation. The β-adrenergic vasorelaxation was not different between segmental arteries from wild-type mice and mice lacking KV7.1 channels. As opposed to rats, inhibition of KV7 channels did not affect the murine β-adrenergic vasorelaxation. Although inhibition and activation of KV7 channels or BKCa channels significantly changed baseline RBF in vivo, none of the treatments affected β-adrenergic vasodilatation. In isolated segmental arteries, however, inhibition of KV7 and BKCa channels significantly reduced the β-adrenergic vasorelaxation, indicating that the regulation of RBF in vivo is driven by several actors in order to maintain an adequate RBF. Our data illustrates the challenge in extrapolating results from in vitro to in vivo conditions.
Collapse
Affiliation(s)
- Charlotte Mehlin Sorensen
- Department of Biomedical Sciences, Physiology of Circulation, Kidney and LungUniversity of CopenhagenCopenhagenDenmark
| | | | - Anniek Frederike Lubberding
- Department of Biomedical Sciences, Physiology of Inflammation, Metabolism and OxidationUniversity of CopenhagenCopenhagenDenmark
| | - Niels‐Henrik Holstein‐Rathlou
- Department of Biomedical Sciences, Physiology of Circulation, Kidney and LungUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Hu F, Zhang Y, Qin P, Zhao Y, Liu D, Zhou Q, Tian G, Li Q, Guo C, Wu X, Qie R, Huang S, Han M, Li Y, Zhang M, Hu D. Integrated analysis of probability of type 2 diabetes mellitus with polymorphisms and methylation of KCNQ1 gene: A nested case-control study. J Diabetes 2021; 13:975-986. [PMID: 34260825 DOI: 10.1111/1753-0407.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To estimate the associations between single-nucleotide polymorphisms (SNPs) and methylation of KCNQ1 gene and type 2 diabetes mellitus (T2DM) risk and the interactions among SNPs, methylation, and environmental factors on T2DM risk. METHODS We genotyped five SNPs and tested methylation at 39 CpG loci of KCNQ1 in 290 T2DM cases and 290 matched controls nested in the Rural Chinese Cohort Study. Conditional logistic regression model was used to estimate the associations between SNPs and KCNQ1 methylation and T2DM risk. Multifactor dimensionality reduction (MDR) analysis was used to estimate the effect of the interactions SNPs-SNPs, SNPs-methylation, methylation-methylation and SNPs, and methylation-environment on T2DM risk. RESULTS Probability of T2DM was decreased with rs2283228 of KCNQ1 (CA vs AA, odds ratio [OR] = 0.65, 95% confidence interval [CI] 0.42-0.99). T2DM probability was significantly increased with rs2237895 combined with hypertriglyceridemia (OReg = 2.76, 95% CI 1.35-5.62), with hypertension (OReg = 2.23, 95% CI 1.25-3.98), and with body mass index (BMI; OReg = 1.93, 95% CI 1.12-3.34). T2DM probability was associated with methylation of CG11 and CG41 (OR = 1.89, 95% CI 1.23-2.89, P = .003). It was significantly associated with the interaction between BMI, hypertriglyceridemia, and CG5 methylation (P = .028 and .028), and the combined effects of CG11 with hypertriglyceridemia and hypertension. On MDR analysis, no significant interaction was observed. CONCLUSION T2DM probability was reduced 35% with rs2283228 polymorphism. It was associated with rs2237895 combined with hypertension, with BMI and with hypertriglyceridemia. The methylation at two CpG loci of KCNQ1 significantly increased T2DM risk by 89%.
Collapse
Affiliation(s)
- Fulan Hu
- Study Team of Shenzhen's Sanming Project, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, China
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Yanyan Zhang
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Pei Qin
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Yang Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dechen Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qionggui Zhou
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Gang Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Quanman Li
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chunmei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ranran Qie
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shengbing Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Minghui Han
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yang Li
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Ming Zhang
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Dongsheng Hu
- Study Team of Shenzhen's Sanming Project, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
3
|
Chen Y, Wang H, Zhu S, Lan X. miR-483-5p promotes esophageal cancer progression by targeting KCNQ1. Biochem Biophys Res Commun 2020; 531:615-621. [PMID: 32819715 DOI: 10.1016/j.bbrc.2020.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES miR-483-5p has been reported to be an oncogene of various cancers, but its functional and regulatory mechanisms in esophageal cancer (EC) remain unclear. This study aimed to investigate the functional and molecular mechanisms of miR-483-5p in EC so as to provide a theoretical basis for exploring the therapeutic target for EC. METHODS miRNA expression profiles were downloaded from the TCGA-ESCA dataset to screen the target miRNA. Real-time quantitative PCR was performed to detect the transcriptional levels of miR-483-5p and KCNQ1 in EC cells. Western blot was conducted to determine the protein expression of KCNQ1. Cell Counting Kit-8 assay was carried out to assess cell proliferation. Transwell assay was performed to evaluate cell migration and invasion. Dual-luciferase reporter assay was conducted to verify the targeting relationship between miR-483-5p and KCNQ1. RESULTS miR-483-5p was up-regulated in EC cells and could bind to the 3'-untranslational region of KCNQ1. Over-expressing miR-483-5p suppressed KCNQ1 expression. Besides, miR-483-5p over-expression facilitated EC cell proliferation, migration and invasion, while its down-regulation triggered opposite result. Over-expressing miR-483-5p and KCNQ1 simultaneously could weaken the promoting effect of miR-483-5p over-expression on EC cell proliferation, migration and invasion. CONCLUSION miR-483-5p as an oncogene facilitated EC cell proliferation, migration and invasion by targeted silencing KCNQ1, which is likely to provide a basis for further exploring the molecular mechanism of EC progression.
Collapse
Affiliation(s)
- Yong Chen
- Department of Radiation Oncology, Lishui People's Hospital, China
| | - Hanying Wang
- Department of Radiation Oncology, Lishui People's Hospital, China
| | - Shuangmei Zhu
- Department of Radiation Oncology, Lishui People's Hospital, China
| | - Xiang Lan
- Department of Radiation Oncology, Lishui People's Hospital, China.
| |
Collapse
|
4
|
Gan WZ, Ramachandran V, Lim CSY, Koh RY. Omics-based biomarkers in the diagnosis of diabetes. J Basic Clin Physiol Pharmacol 2019; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0120/jbcpp-2019-0120.xml. [PMID: 31730525 DOI: 10.1515/jbcpp-2019-0120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases related to the dysfunction of insulin, causing hyperglycaemia and life-threatening complications. Current early screening and diagnostic tests for DM are based on changes in glucose levels and autoantibody detection. This review evaluates recent studies on biomarker candidates in diagnosing type 1, type 2 and gestational DM based on omics classification, whilst highlighting the relationship of these biomarkers with the development of diabetes, diagnostic accuracy, challenges and future prospects. In addition, it also focuses on possible non-invasive biomarker candidates besides common blood biomarkers.
Collapse
Affiliation(s)
- Wei Zien Gan
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Valsala Ramachandran
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Crystale Siew Ying Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University Kuala Lumpur, 56000 Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, 57000 Kuala Lumpur, Malaysia, Phone: +60327317207
| |
Collapse
|
5
|
Brown IAM, Diederich L, Good ME, DeLalio LJ, Murphy SA, Cortese-Krott MM, Hall JL, Le TH, Isakson BE. Vascular Smooth Muscle Remodeling in Conductive and Resistance Arteries in Hypertension. Arterioscler Thromb Vasc Biol 2019; 38:1969-1985. [PMID: 30354262 DOI: 10.1161/atvbaha.118.311229] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a leading cause of death worldwide and accounts for >17.3 million deaths per year, with an estimated increase in incidence to 23.6 million by 2030. 1 Cardiovascular death represents 31% of all global deaths 2 -with stroke, heart attack, and ruptured aneurysms predominantly contributing to these high mortality rates. A key risk factor for cardiovascular disease is hypertension. Although treatment or reduction in hypertension can prevent the onset of cardiovascular events, existing therapies are only partially effective. A key pathological hallmark of hypertension is increased peripheral vascular resistance because of structural and functional changes in large (conductive) and small (resistance) arteries. In this review, we discuss the clinical implications of vascular remodeling, compare the differences between vascular smooth muscle cell remodeling in conductive and resistance arteries, discuss the genetic factors associated with vascular smooth muscle cell function in hypertensive patients, and provide a prospective assessment of current and future research and pharmacological targets for the treatment of hypertension.
Collapse
Affiliation(s)
- Isola A M Brown
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Lukas Diederich
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany (L.D., M.M.C.-K.)
| | - Miranda E Good
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.).,Department of Pharmacology (L.J.D.)
| | - Sara A Murphy
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany (L.D., M.M.C.-K.)
| | - Jennifer L Hall
- Lillehei Heart Institute (J.L.H.).,Division of Cardiology, Department of Medicine (J.L.H.), University of Minnesota, Minneapolis.,American Heart Association, Dallas, TX (J.L.H.)
| | - Thu H Le
- Division of Nephrology, Department of Medicine (T.H.L.)
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.).,Department of Molecular Physiology and Biophysics (B.E.I.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
6
|
Jia X, Yang Y, Chen Y, Xia Z, Zhang W, Feng Y, Li Y, Tan J, Xu C, Zhang Q, Deng H, Shi X. Multivariate analysis of genome-wide data to identify potential pleiotropic genes for type 2 diabetes, obesity and coronary artery disease using MetaCCA. Int J Cardiol 2019; 283:144-150. [DOI: 10.1016/j.ijcard.2018.10.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/17/2018] [Accepted: 10/29/2018] [Indexed: 01/26/2023]
|