1
|
Lee CX, Cheah JH, Soule CK, Ding H, Whittaker CA, Karhohs K, Burds AA, Subramanyam KS, Carpenter AE, Eisner BH, Cima MJ. Identification and local delivery of vasodilators for the reduction of ureteral contractions. Nat Biomed Eng 2019; 4:28-39. [PMID: 31792422 DOI: 10.1038/s41551-019-0482-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/15/2019] [Indexed: 01/23/2023]
Abstract
Kidney stones and ureteral stents can cause ureteral colic and pain. By decreasing contractions in the ureter, clinically prescribed oral vasodilators may improve spontaneous stone passage rates and reduce the pain caused by ureteral stenting. We hypothesized that ureteral relaxation can be improved via the local administration of vasodilators and other smooth muscle relaxants. Here, by examining 18 candidate small molecules in an automated screening assay to determine the extent of ureteral relaxation, we show that the calcium channel blocker nifedipine and the Rho-kinase inhibitor ROCKi significantly relax human ureteral smooth muscle cells. We also show, by using ex vivo porcine ureter segments and sedated pigs that, with respect to the administration of a placebo, the local delivery of a clinically deployable formulation of the two drugs reduced ureteral contraction amplitude and frequency by 90% and 50%, respectively. Finally, we show that standard oral vasodilator therapy reduced contraction amplitude by only 50% and had a minimal effect on contraction frequency. Locally delivered ureteral relaxants therefore may improve ureter-related conditions.
Collapse
Affiliation(s)
- Christopher X Lee
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaime H Cheah
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christian K Soule
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Huiming Ding
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility in the Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A Whittaker
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility in the Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyle Karhohs
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Aurora A Burds
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kriti S Subramanyam
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anne E Carpenter
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Brian H Eisner
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Cima
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Material Science Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Akentieva NP, Sanina NA, Gizatullin AR, Shkondina NI, Prikhodchenko TR, Shram SI, Zhelev N, Aldoshin SM. Cytoprotective Effects of Dinitrosyl Iron Complexes on Viability of Human Fibroblasts and Cardiomyocytes. Front Pharmacol 2019; 10:1277. [PMID: 31780929 PMCID: PMC6859909 DOI: 10.3389/fphar.2019.01277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule that plays a key role in maintaining vascular homeostasis. Dinitrosyl iron complexes (DNICs) generating NO are widely used to treat cardiovascular diseases. However, the involvement of DNICs in the metabolic processes of the cell, their protective properties in doxorubicin-induced toxicity remain to be clarified. Here, we found that novel class of mononuclear DNICs with functional sulfur-containing ligands enhanced the cell viability of human lung fibroblasts and rat cardiomyocytes. Moreover, DNICs demonstrated remarkable protection against doxorubicin-induced toxicity in fibroblasts and in rat cardiomyocytes (H9c2 cells). Data revealed that the DNICs compounds modulate the mitochondria function by decreasing the mitochondrial membrane potential (ΔΨm). Results of flow cytometry showed that DNICs were not affected the proliferation, growth of fibroblasts. In addition, this study showed that DNICs did not affect glutathione levels and the formation of reactive oxygen species in cells. Moreover, results indicated that DNICs maintained the ATP equilibrium in cells. Taken together, these findings show that DNICs have protective properties in vitro. It was further suggested that DNICs may be uncouplers of oxidative phosphorylation in mitochondria and protective mechanism is mainly provided by the leakage of excess charge through the mitochondrial membrane. It is assumed that the DNICs have the therapeutic potential for treating cardiovascular diseases and for decreasing of chemotherapy-induced cardiotoxicity in cancer survivors.
Collapse
Affiliation(s)
- Natalia Pavlovna Akentieva
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Laboratory of Toxicology and Experimental Chemotherapy, Moscow State Regional University, Moscow, Russia
- Faculty of Medicine, Karabük University, Karabük, Turkey
| | - Natalia Alekseevna Sanina
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| | - Artur Rasimovich Gizatullin
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia Ivanovna Shkondina
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Tatyana Romanovna Prikhodchenko
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Stanislav Ivanovich Shram
- Neuropharmacology Sector, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Zhelev
- School of Medicine, University of Dundee, Dundee, United Kingdom
- Medical University Plovdiv, Plovdiv, Bulgaria
| | - Sergei Michailovich Aldoshin
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Wu Y, Liu X, Guo LY, Zhang L, Zheng F, Li S, Li XY, Yuan Y, Liu Y, Yan YW, Chen SY, Wang JN, Zhang JX, Tang JM. S100B is required for maintaining an intermediate state with double-positive Sca-1+ progenitor and vascular smooth muscle cells during neointimal formation. Stem Cell Res Ther 2019; 10:294. [PMID: 31547879 PMCID: PMC6757428 DOI: 10.1186/s13287-019-1400-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction Accumulation of vascular smooth muscle cells (VSMCs) within the neointimal region is a hallmark of atherosclerosis and vessel injury. Evidence has shown that Sca-1-positive (Sca-1+) progenitor cells residing in the vascular adventitia play a crucial role in VSMC assemblages and intimal lesions. However, the underlying mechanisms, especially in the circumstances of vascular injury, remain unknown. Methods and results The neointimal formation model in rats was established by carotid artery balloon injury using a 2F-Forgaty catheter. Most Sca-1+ cells first appeared at the adventitia of the vascular wall. S100B expressions were highest within the adventitia on the first day after vessel injury. Along with the sequentially increasing trend of S100B expression in the intima, media, and adventitia, respectively, the numbers of Sca-1+ cells were prominently increased at the media or neointima during the time course of neointimal formation. Furthermore, the Sca-1+ cells were markedly increased in the tunica media on the third day of vessel injury, SDF-1α expressions were obviously increased, and SDF-1α levels and Sca-1+ cells were almost synchronously increased within the neointima on the seventh day of vessel injury. These effects could effectually be reversed by knockdown of S100B by shRNA, RAGE inhibitor (SPF-ZM1), or CXCR4 blocker (AMD3100), indicating that migration of Sca-1+ cells from the adventitia into the neointima was associated with S100B/RAGE and SDF-1α/CXCR4. More importantly, the intermediate state of double-positive Sca-1+ and α-SMA cells was first found in the neointima of injured arteries, which could be substantially abrogated by using shRNA for S100B or blockade of CXCR4. S100B dose-dependently regulated SDF-1α expressions in VSMCs by activating PI3K/AKT and NF-κB, which were markedly abolished by PI3K/AKT inhibitor wortmannin and enhanced by p65 blocker PDTC. Furthermore, S100B was involved in human umbilical cord-derived Sca-1+ progenitor cells’ differentiation into VSMCs, especially in maintaining the intermediate state of double-positive Sca-1+ and α-SMA. Conclusions S100B triggered neointimal formation in rat injured arteries by maintaining the intermediate state of double-positive Sca-1+ progenitor and VSMCs, which were associated with direct activation of RAGE by S100B and indirect induction of SDF-1α by activating PI3K/AKT and NF-κB. Electronic supplementary material The online version of this article (10.1186/s13287-019-1400-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xin Liu
- Laboratory Animal Center, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ling-Yun Guo
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Lei Zhang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Fei Zheng
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Shan Li
- Department of Biochemistry, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xing-Yuan Li
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ye Yuan
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yu Liu
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yu-Wen Yan
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Shi-You Chen
- Department of Physiology & Pharmacology, The University of Georgia, Athens, GA, 30602, USA
| | - Jia-Ning Wang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jin-Xuan Zhang
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Jun-Ming Tang
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
4
|
Komatsu S, Wang L, Seow CY, Ikebe M. p116 Rip promotes myosin phosphatase activity in airway smooth muscle cells. J Cell Physiol 2019; 235:114-127. [PMID: 31347175 DOI: 10.1002/jcp.28949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022]
Abstract
Myosin phosphatase-Rho interacting protein (p116Rip ) was originally found as a RhoA-binding protein. Subsequent studies by us and others revealed that p116Rip facilitates myosin light chain phosphatase (MLCP) activity through direct and indirect manners. However, it is unclear how p116Rip regulates myosin phosphatase activity in cells. To elucidate the role of p116Rip in cellular contractile processes, we suppressed the expression of p116Rip by RNA interference in human airway smooth muscle cells (HASMCs). We found that knockdown of p116Rip in HASMCs led to increased di-phosphorylated MLC (pMLC), that is phosphorylation at both Ser19 and Thr18. This was because of a change in the interaction between MLCP and myosin, but not an alteration of RhoA/ROCK signaling. Attenuation of Zipper-interacting protein kinase (ZIPK) abolished the increase in di-pMLC, suggesting that ZIPK is involved in this process. Moreover, suppression of p116Rip expression in HASMCs substantially increased the histamine-induced collagen gel contraction. We also found that expression of the p116Rip was decreased in the airway smooth muscle tissue from asthmatic patients compared with that from non-asthmatic patients, suggesting a potential role of p116Rip expression in asthma pathogenesis.
Collapse
Affiliation(s)
- Satoshi Komatsu
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Lu Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|