1
|
Yalcın B, Onder GO, Goktepe O, Suna PA, Mat OC, Koseoglu E, Cetindag E, Baran M, Bitgen N, Öz Gergı N Ö, Yay A. Enhanced kidney damage induced by increasing nonylphenol doses: impact on autophagy-related proteins and proinflammatory cytokines in rats. Toxicol Mech Methods 2024; 34:867-876. [PMID: 38769906 DOI: 10.1080/15376516.2024.2358348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Nonylphenol (NP) is an organic pollutant and endocrine disruptor chemical that has harmful effects on the environment and living organisms. This study looked at whether kidney tissues subjected to increasing doses of nonylphenol generated alterations in histopathologic, pro-inflammatory, and autophagic markers. Fifty rats were divided into five groups of ten each: group I: healthy group, II: control (corn oil), group III: 25 μl/kg NP, group IV: 50 μl/kg NP, group V: 75 μl/kg NP. The kidney tissue samples were obtained for histopathological, immunohistochemical, and biochemical analyses. The histological deteriorations observed in all NP groups included tubular epithelial cell degeneration, inflammation areas, and hemorrhage. The immunohistochemical investigations showed that NP significantly elevated the autophagy markers (Beclin-1, LC3A/B, p62), pro-inflammatory cytokines (TNF-α, IL-6), HIF-1α, and eNOS in group III, IV and V compared with group I and II. The biochemical analysis also revealed that pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) increased in correlation with the NP doses, but only IL-1β reached statistical significance in NP treated rats kidney tissue. The biochemical findings have been confirmed by the histological studies. The damage to renal tissue caused by NP exposure may worsen it by increasing inflammatory and autophagic markers.
Collapse
Affiliation(s)
- Betul Yalcın
- Department of Histology and Embryology, Adıyaman University, Adıyaman, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ozge Goktepe
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Pınar Alisan Suna
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Eda Koseoglu
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Emre Cetindag
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmacy Basic Science, Erciyes University, Kayseri, Turkey
| | - Nazmiye Bitgen
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Özlem Öz Gergı N
- Department of Surgical Medicine Science, Anesthesiology and Reanimation, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Urriola-Muñoz P, Pattison LA, Smith ESJ. Dysregulation of ADAM10 shedding activity in naked mole-rat fibroblasts is due to deficient phosphatidylserine externalization. J Cell Physiol 2023; 238:761-775. [PMID: 36790936 DOI: 10.1002/jcp.30972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
The naked mole-rat (NMR, Heterocephalus glaber) is of significant interest to biogerontological research, rarely developing age-associated diseases, such as cancer. The transmembrane glycoprotein CD44 is upregulated in certain cancers and CD44 cleavage by a disintegrin and metalloproteinase 10 (ADAM10) regulates cellular migration. Here we provide evidence that mature ADAM10 is expressed in NMR primary skin fibroblasts (NPSF), and that ionomycin increases cell surface ADAM10 localization. However, we observed an absence of ADAM10 mediated CD44 cleavage, as well as shedding of exogenous and overexpressed betacellulin in NPSF, whereas in mouse primary skin fibroblasts ionomycin induced ADAM10-dependent cleavage of both CD44 and betacellulin. Overexpressing a hyperactive form of the Ca2+ -dependent phospholipid scramblase ANO6 in NPSF increased phosphatidylserine (PS) externalization, which rescued the ADAM10 sheddase activity and promoted cell migration in NPSF in an ADAM10-dependent manner. These findings suggest that dysregulation of ADAM10 shedding activity is due to a deficient PS externalization in NMR.
Collapse
Affiliation(s)
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Tatsumi M, Kishi T, Ishida S, Kawana H, Uwamizu A, Ono Y, Kawakami K, Aoki J, Inoue A. Ectodomain shedding of EGFR ligands serves as an activation readout for TRP channels. PLoS One 2023; 18:e0280448. [PMID: 36668668 PMCID: PMC9858409 DOI: 10.1371/journal.pone.0280448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
Transient receptor potential (TRP) channels are activated by various extracellular and intracellular stimuli and are involved in many physiological events. Because compounds that act on TRP channels are potential candidates for therapeutic agents, a simple method for evaluating TRP channel activation is needed. In this study, we demonstrated that a transforming growth factor alpha (TGFα) shedding assay, previously developed for detecting G-protein-coupled receptor (GPCR) activation, can also detect TRP channel activation. This assay is a low-cost, easily accessible method that requires only an absorbance microplate reader. Mechanistically, TRP-channel-triggered TGFα shedding is achieved by both of a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and 17 (ADAM17), whereas the GPCR-induced TGFα shedding response depends solely on ADAM17. This difference may be the result of qualitative or quantitative differences in intracellular Ca2+ kinetics between TRP channels and GPCRs. Use of epidermal growth factor (EGF) and betacellulin (BTC), substrates of ADAM10, improved the specificity of the shedding assay by reducing background responses mediated by endogenously expressed GPCRs. This assay for TRP channel measurement will not only facilitate the high-throughput screening of TRP channel ligands but also contribute to understanding the roles played by TRP channels as regulators of membrane protein ectodomain shedding.
Collapse
Affiliation(s)
- Manae Tatsumi
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takayuki Kishi
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Satoru Ishida
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akiharu Uwamizu
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuki Ono
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kouki Kawakami
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Asuka Inoue
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
4
|
Öner M, Bodur S, Erarpat S, Bakirdere S. A Novel Hydrogen Fluoride Assisted-Glass Surface Etching Based Liquid Phase Microextraction for the Determination of 4-n-Nonylphenol in Water by Gas Chromatography-Mass Spectrometry with Matrix Matching Strategy. ANAL SCI 2021; 37:1433-1438. [PMID: 33867401 DOI: 10.2116/analsci.21p013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel extraction method named hydrogen fluoride assisted-glass surface etching based liquid phase microextraction (HF-GSE-LPME) was proposed to determine 4-n-nonylphenol at trace levels by gas chromatography-mass spectrometry (GC-MS). After the evaluation of system analytical performance for the HF-GSE-LPME-GC-MS system, limit of detection (LOD) and limit of quantification (LOQ) values were calculated as 7.1 and 23.8 ng/g, respectively. Enhancement in detection power of the method was determined to be 22 fold when LOD values of the GC-MS and HF-GSE-LPME-GC-MS systems were compared with each other. Applicability and accuracy of the established method were checked by performing spiking experiments. A matrix matching calibration strategy was applied to boost the accuracy of quantification in both matrices, and the percent recovery results obtained for bottled drinking water and dam lake water samples were in the range of 98 - 107 and 90 - 117%, respectively.
Collapse
Affiliation(s)
- Miray Öner
- Department of Chemistry, Faculty of Art and Science, Yildiz Technical University
| | - Süleyman Bodur
- Department of Chemistry, Faculty of Art and Science, Yildiz Technical University
| | - Sezin Erarpat
- Department of Chemistry, Faculty of Art and Science, Yildiz Technical University
| | - Sezgin Bakirdere
- Department of Chemistry, Faculty of Art and Science, Yildiz Technical University.,Turkish Academy of Sciences (TÜBA)
| |
Collapse
|
5
|
Boyacioglu M, Gules O, Sahiner HS. Protective Effect of Sodium Selenite on 4-Nonylphenol-Induced Hepatotoxicity and Nephrotoxicity in Rats. Biol Trace Elem Res 2021; 199:3001-3012. [PMID: 33026593 DOI: 10.1007/s12011-020-02418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
This study was aimed at evaluating the protective effect of sodium selenite (SS) on DNA integrity, antioxidant/oxidant status, and histological changes on 4-nonylphenol (4-NP)-induced toxicity in liver and kidney tissues of rats. Twenty-four adult male Sprague Dawley rats were divided into 4 groups as control, SS, 4-NP, and SS+4-NP group. Control group was untreated. The SS group was supplemented with SS (0.5 mg/kg/day) and the 4-NP group was given 4-NP (125 mg/kg/day). The rats in the SS+4-NP group received SS followed by 4-NP 1 h later at the abovementioned doses. The treatments were administered by oral gavage for 48 days. DNA damage was analyzed by comet assay in lymphocytes. Oxidative stress parameters were measured, and histological evaluation was performed in liver and kidney tissues. Results showed that SS administration significantly decreased % Tail DNA and Mean Tail Moment in SS+4-NP group as compared with 4-NP group. Catalase activity in liver was significantly lower in 4-NP group only. SS treatment significantly increased the glutathione level and decreased high malondialdehyde level in tissues of the SS+4-NP group as compared with 4-NP group. Dilation of central vein, ballooning degeneration, vacuolar degeneration, and deterioration in the structure of remark cords in 4-NP-administered were alleviated in rats that received SS supplementation before administration of 4-NP. Moreover, glycogen intensity in hepatocytes and the wall of central vein increased in the SS+4-NP group. In addition, the SS supplementation in the SS+4-NP group decreased glomerular degeneration as well as the width of cavum glomeruli and congestion intensity in the kidney. These results indicate that SS may have a protective effect against 4-NP-induced hepato-nephrotoxicity in rats.
Collapse
Affiliation(s)
- Murat Boyacioglu
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09016, Isıklı, Aydın, Turkey.
| | - Ozay Gules
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyon, Turkey
| | - Hande Sultan Sahiner
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09016, Isıklı, Aydın, Turkey
| |
Collapse
|
6
|
Grelska A, Noszczyńska M. White rot fungi can be a promising tool for removal of bisphenol A, bisphenol S, and nonylphenol from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39958-39976. [PMID: 32803603 PMCID: PMC7546991 DOI: 10.1007/s11356-020-10382-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/03/2020] [Indexed: 05/04/2023]
Abstract
Endocrine-disrupting chemicals (EDC) are a wide group of chemicals that interfere with the endocrine system. Their similarity to natural steroid hormones makes them able to attach to hormone receptors, thereby causing unfavorable health effects. Among EDC, bisphenol A (BPA), bisphenol S (BPS), and nonylphenol (NP) seem to be particularly harmful. As the industry is experiencing rapid expansion, BPA, BPS, and NP are being produced in growing amounts, generating considerable environmental pollution. White rot fungi (WRF) are an economical, ecologically friendly, and socially acceptable way to remove EDC contamination from ecosystems. WRF secrete extracellular ligninolytic enzymes such as laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidase, involved in lignin deterioration. Owing to the broad substrate specificity of these enzymes, they are able to remove numerous xenobiotics, including EDC. Therefore, WRF seem to be a promising tool in the abovementioned EDC elimination during wastewater treatment processes. Here, we review WRF application for this EDC removal from wastewater and indicate several strengths and limitations of such methods.
Collapse
Affiliation(s)
- Agnieszka Grelska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Magdalena Noszczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
7
|
iRhom2: An Emerging Adaptor Regulating Immunity and Disease. Int J Mol Sci 2020; 21:ijms21186570. [PMID: 32911849 PMCID: PMC7554728 DOI: 10.3390/ijms21186570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The rhomboid family are evolutionary conserved intramembrane proteases. Their inactive members, iRhom in Drosophila melanogaster and iRhom1 and iRhom2 in mammals, lack the catalytic center and are hence labelled “inactive” rhomboid family members. In mammals, both iRhoms are involved in maturation and trafficking of the ubiquitous transmembrane protease a disintegrin and metalloprotease (ADAM) 17, which through cleaving many biologically active molecules has a critical role in tumor necrosis factor alpha (TNFα), epidermal growth factor receptor (EGFR), interleukin-6 (IL-6) and Notch signaling. Accordingly, with iRhom2 having a profound influence on ADAM17 activation and substrate specificity it regulates these signaling pathways. Moreover, iRhom2 has a role in the innate immune response to both RNA and DNA viruses and in regulation of keratin subtype expression in wound healing and cancer. Here we review the role of iRhom2 in immunity and disease, both dependent and independent of its regulation of ADAM17.
Collapse
|
8
|
Smith TM, Tharakan A, Martin RK. Targeting ADAM10 in Cancer and Autoimmunity. Front Immunol 2020; 11:499. [PMID: 32265938 PMCID: PMC7105615 DOI: 10.3389/fimmu.2020.00499] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Generating inhibitors for A Disintegrin And Metalloproteinase 10 (ADAM10), a zinc-dependent protease, was heavily invested in by the pharmaceutical industry starting over 20 years ago. There has been much enthusiasm in basic research for these inhibitors, with a multitude of studies generating significant data, yet the clinical trials have not replicated the same results. ADAM10 is ubiquitously expressed and cleaves many important substrates such as Notch, PD-L1, EGFR/HER ligands, ICOS-L, TACI, and the "stress related molecules" MIC-A, MIC-B and ULBPs. This review goes through the most recent pre-clinical data with inhibitors as well as clinical data supporting the use of ADAM10 inhibitor use in cancer and autoimmunity. It additionally addresses how ADAM10 inhibitor therapy can be improved and if inhibitor therapy can be paired with other drug treatments to maximize effectiveness in various disease states. Finally, it examines the ADAM10 substrates that are important to each disease state and if any of these substrates or ADAM10 itself is a potential biomarker for disease.
Collapse
Affiliation(s)
| | | | - Rebecca K. Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
9
|
Merzoug-Larabi M, Youssef I, Bui AT, Legay C, Loiodice S, Lognon S, Babajko S, Ricort JM. Protein Kinase D1 (PKD1) Is a New Functional Non-Genomic Target of Bisphenol A in Breast Cancer Cells. Front Pharmacol 2020; 10:1683. [PMID: 32082170 PMCID: PMC7006487 DOI: 10.3389/fphar.2019.01683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023] Open
Abstract
Exposure to bisphenol A (BPA), one of the most widespread endocrine disruptors present in our environment, has been associated with the recent increased prevalence and severity of several diseases such as diabetes, obesity, autism, reproductive and neurological defects, oral diseases, and cancers such as breast tumors. BPA is suspected to act through genomic and non-genomic pathways. However, its precise molecular mechanisms are still largely unknown. Our goal was to identify and characterize a new molecular target of BPA in breast cancer cells in order to better understand how this compound may affect breast tumor growth and development. By using in vitro (MCF-7, T47D, Hs578t, and MDA-MB231 cell lines) and in vivo models, we demonstrated that PKD1 is a functional non-genomic target of BPA. PKD1 specifically mediates BPA-induced cell proliferation, clonogenicity, and anchorage-independent growth of breast tumor cells. Additionally, low-doses of BPA (≤10- 8 M) induced the phosphorylation of PKD1, a key signature of its activation state. Moreover, PKD1 overexpression increased the growth of BPA-exposed breast tumor xenografts in vivo in athymic female Swiss nude (Foxn1nu/nu ) mice. These findings further our understanding of the molecular mechanisms of BPA. By defining PKD1 as a functional target of BPA in breast cancer cell proliferation and tumor development, they provide new insights into the pathogenesis related to the exposure to BPA and other endocrine disruptors acting similarly.
Collapse
Affiliation(s)
- Messaouda Merzoug-Larabi
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Ilige Youssef
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Ai Thu Bui
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Christine Legay
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Sophia Loiodice
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Sophie Lognon
- École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Jean-Marc Ricort
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| |
Collapse
|
10
|
Jung N, Maguer-Satta V, Guyot B. Early Steps of Mammary Stem Cell Transformation by Exogenous Signals; Effects of Bisphenol Endocrine Disrupting Chemicals and Bone Morphogenetic Proteins. Cancers (Basel) 2019; 11:cancers11091351. [PMID: 31547326 PMCID: PMC6770465 DOI: 10.3390/cancers11091351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/17/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Estrogens are major regulators of the mammary gland development, notably during puberty, via estrogen receptor (ER) activation, leading to the proliferation and differentiation of mammary cells. In addition to estrogens, the bone morphogenetic proteins (BMPs) family is involved in breast stem cell/progenitor commitment. However, these two pathways that synergistically contribute to the biology of the normal mammary gland have also been described to initiate and/or promote breast cancer development. In addition to intrinsic events, lifestyle habits and exposure to environmental cues are key risk factors for cancer in general, and especially for breast cancer. In the latter case, bisphenol A (BPA), an estrogen-mimetic compound, is a critical pollutant both in terms of the quantities released in our environment and of its known and speculated effects on mammary gland biology. In this review, we summarize the current knowledge on the actions of BMPs and estrogens in both normal mammary gland development and breast cancer initiation, dissemination, and resistance to treatment, focusing on the dysregulations of these processes by BPA but also by other bisphenols, including BPS and BPF, initially considered as safer alternatives to BPA.
Collapse
Affiliation(s)
- Nora Jung
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Université de Lyon, F-69000 Lyon, France.
- Department of Tumor Escape Signaling, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Institut des Sciences Pharmaceutiques et Biologiques, Université Lyon 1, F-69000 Lyon, France.
| | - Veronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Université de Lyon, F-69000 Lyon, France.
- Department of Tumor Escape Signaling, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Institut des Sciences Pharmaceutiques et Biologiques, Université Lyon 1, F-69000 Lyon, France.
| | - Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Université de Lyon, F-69000 Lyon, France.
- Department of Tumor Escape Signaling, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Institut des Sciences Pharmaceutiques et Biologiques, Université Lyon 1, F-69000 Lyon, France.
| |
Collapse
|
11
|
Urriola-Muñoz P, Lagos-Cabré R, Patiño-García D, Reyes JG, Moreno RD. Bisphenol-A and Nonylphenol Induce Apoptosis in Reproductive Tract Cancer Cell Lines by the Activation of ADAM17. Int J Mol Sci 2018; 19:ijms19082238. [PMID: 30065191 PMCID: PMC6121659 DOI: 10.3390/ijms19082238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
Endocrine-disruptor chemicals (EDCs), such as bisphenol A (BPA) and nonylphenol (NP), have been widely studied due to their negative effects on human and wildlife reproduction. Exposure to BPA or NP is related to cell death, hormonal deregulation, and cancer onset. Our previous studies showed that both compounds induce A Disintegrin And Metalloprotease 17 (ADAM17) activation. Here, we show that BPA and NP induce apoptosis in prostate and ovary cancer cell lines, in a process dependent on ADAM17 activation. ADAM17 knockdown completely prevented apoptosis as well as the shedding of ADAM17 substrates. Both compounds were found to induce an increase in intracellular calcium (Ca2+) only in Ca2+-containing medium, with the NP-treated cells response being more robust than those treated with BPA. Additionally, using a phosphorylated protein microarray, we found that both compounds stimulate common intracellular pathways related to cell growth, differentiation, survival, and apoptosis. These results suggest that BPA and NP could induce apoptosis through ADAM17 by activating different intracellular signaling pathways that may converge in different cellular responses, one of which is apoptosis. These results confirm the capacity of these compounds to induce cell apoptosis in cancer cell lines and uncover ADAM17 as a key regulator of this process in response to EDCs.
Collapse
Affiliation(s)
- Paulina Urriola-Muñoz
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile.
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7820436, Chile.
| | - Raúl Lagos-Cabré
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7820436, Chile.
| | - Daniel Patiño-García
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7820436, Chile.
| | - Juan G Reyes
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile.
| | - Ricardo D Moreno
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7820436, Chile.
| |
Collapse
|
12
|
Stolz A, Schönfelder G, Schneider MR. Endocrine Disruptors: Adverse Health Effects Mediated by EGFR? Trends Endocrinol Metab 2018; 29:69-71. [PMID: 29292062 DOI: 10.1016/j.tem.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 02/09/2023]
Abstract
Although endocrine disruptors represent a serious concern to human health, the underlying molecular mechanisms leading to diseases such as cancer remain poorly understood. Recent work has uncovered the epidermal growth factor receptor (EGFR) as a possible mediator of these adverse health effects, with important implications for the role of endocrine disruptors in human diseases.
Collapse
Affiliation(s)
- Ailine Stolz
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marlon R Schneider
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany.
| |
Collapse
|