1
|
Huang S, Jiang Y, Li J, Mao L, Qiu Z, Zhang S, Jiang Y, Liu Y, Liu W, Xiong Z, Zhang W, Liu X, Zhang Y, Bai X, Guo B. Osteocytes/Osteoblasts Produce SAA3 to Regulate Hepatic Metabolism of Cholesterol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307818. [PMID: 38613835 PMCID: PMC11199997 DOI: 10.1002/advs.202307818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/19/2024] [Indexed: 04/15/2024]
Abstract
Hypercholesterolaemia is a systemic metabolic disease, but the role of organs other than liver in cholesterol metabolism is unappreciated. The phenotypic characterization of the Tsc1Dmp1 mice reveal that genetic depletion of tuberous sclerosis complex 1 (TSC1) in osteocytes/osteoblasts (Dmp1-Cre) triggers progressive increase in serum cholesterol level. The resulting cholesterol metabolic dysregulation is shown to be associated with upregulation and elevation of serum amyloid A3 (SAA3), a lipid metabolism related factor, in the bone and serum respectively. SAA3, elicited from the bone, bound to toll-like receptor 4 (TLR4) on hepatocytes to phosphorylate c-Jun, and caused impeded conversion of cholesterol to bile acids via suppression on cholesterol 7 α-hydroxylase (Cyp7a1) expression. Ablation of Saa3 in Tsc1Dmp1 mice prevented the CYP7A1 reduction in liver and cholesterol elevation in serum. These results expand the understanding of bone function and hepatic regulation of cholesterol metabolism and uncover a potential therapeutic use of pharmacological modulation of SAA3 in hypercholesterolaemia.
Collapse
Affiliation(s)
- Shijiang Huang
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yuanjun Jiang
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jing Li
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Linlin Mao
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Zeyou Qiu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Equipment Material DepartmentWest China Xiamen Hospital of Sichuan UniversityXiamenFujian361000China
| | - Sheng Zhang
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yuhui Jiang
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yong Liu
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Wen Liu
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Zhi Xiong
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Wuju Zhang
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Central LaboratoryThe Fifth Affiliated HospitalSouthern Medical UniversityGuangzhouGuangdong510900China
| | - Xiaolin Liu
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yue Zhang
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdong510630China
| | - Bin Guo
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- The Tenth Affiliated HospitalSouthern Medical UniversityDongguanGuangdong523018China
| |
Collapse
|
2
|
Mi Y, Wen O, Lei Z, Ge L, Xing L, Xi H. Insulin resistance and osteocalcin associate with the incidence and severity of postoperative delirium in elderly patients undergoing joint replacement. Geriatr Gerontol Int 2024; 24:421-429. [PMID: 38438300 DOI: 10.1111/ggi.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
AIM While insulin sensitivity plays an important role in maintaining glucose metabolic homeostasis and cognitive function, its impact on postoperative delirium (POD) remains unclear. This study aimed to investigate the association between POD and indicators of insulin sensitivity, including insulin resistance and osteocalcin. METHODS A total of 120 elderly patients undergoing joint replacement were recruited and divided into delirium and non-delirium groups. Plasma and cerebrospinal fluid (CSF) samples were collected for the analysis of biomarkers, including insulin, uncarboxylated osteocalcin (ucOC), total osteocalcin (tOC), and glucose. Insulin resistance was assessed through the homeostatic model assessment of insulin resistance (HOMA-IR). MAIN RESULTS Out of the total, 28 patients (23.3%) experienced POD within 5 days after surgery. Patients with delirium exhibited higher levels of preoperative HOMA-IR and ucOC in CSF and plasma, and of tOC in CSF (P = 0.028, P < 0.001, P = 0.005, P = 0.019). After adjusting for variables, including age, Mini-Mental State Examination score, surgical site and preoperative fracture, only preoperative ucOC in CSF and HOMA-IR were significantly linked to the incidence of delirium (OR = 5.940, P = 0.008; OR = 1.208, P = 0.046, respectively), both of which also correlated with the severity of delirium (P = 0.007, P < 0.001). Receiver operating curve analysis indicated that preoperative HOMA-IR and ucOC in CSF might partly predict POD (area under the curve [AUC] = 0.697, 95% confidence interval [CI] = 0.501-0.775, AUC = 0.745, 95% CI = 0.659-0.860). CONCLUSIONS We observed that preoperative elevated HOMA-IR and ucOC in CSF were associated with the incidence and severity of POD. While these preliminary results need confirmation, they suggest a potential involvement of insulin resistance and osteocalcin in the pathological mechanism of POD. Geriatr Gerontol Int 2024; 24: 421-429.
Collapse
Affiliation(s)
- Yang Mi
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ouyang Wen
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhou Lei
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Long Ge
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liu Xing
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - He Xi
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Guo X, Li Y, Zhou Y, Zhang C, Liang S, Zheng Y, Chen X, Cai G. Osteocalcin association with vascular function in chronic kidney disease. J Clin Hypertens (Greenwich) 2022; 24:928-936. [PMID: 35687487 PMCID: PMC9278578 DOI: 10.1111/jch.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Osteocalcin (OCN) is a bone‐derived and vitamin K dependent hormone that affects energy metabolism and vascular calcification. The relationship between serum OCN and vascular function in patients with chronic kidney disease (CKD) is uncertain. This study investigated the association between serum OCN and vascular function as expressed with reactive hyperemia index (RHI) and augmentation index (AIx) measured by Endo‐PAT 2000 device. This cross‐sectional analysis was based on 256 pre‐dialysis CKD patients who had completed the Endo‐PAT 2000 test and serum OCN at the First Center of Chinese PLA Hospital from November 2017 to December 2019. Based on whether the RHI was less than 1.67, the patients were divided into endothelial dysfunction and normal endothelial function groups. Multiple logistic and linear regression were used to analyze the association between OCN and vascular function. Subgroup analyses were performed to examine the effects of OCN on vascular function in different CKD populations. After multivariate adjustment, CKD with low OCN were more likely to have endothelial dysfunction (OR: 0.794; 95%CI: 0.674‐0.934; P = .006); on the contrary, patients with high OCN had a higher degree of arterial stiffness (standardized β: 0.174; P = .003). Subgroup analyses showed that higher OCN was associated with severe arterial stiffness but a better endothelial function in young (age < 65 years, PRHI/PAIx@75 = .027/.011), male (PRHI/PAIx@75 = .040/.016), patients with a history of hypertension (PRHI/PAIx@75 = .004/.009) or diabetes (PRHI/PAIx@75 = .005/.005), and in early CKD (PRHI/PAIx@75 = .014/.015). In conclusion, serum OCN correlates with vascular function in CKD patients: beneficial for endothelial function but detrimental to arterial stiffness.
Collapse
Affiliation(s)
- Xinru Guo
- School of Medicine, Nankai University, Tianjin, China.,Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Yisha Li
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Yena Zhou
- School of Medicine, Nankai University, Tianjin, China.,Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Chun Zhang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Shuang Liang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Ying Zheng
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| |
Collapse
|
4
|
Bidwell J, Tersey SA, Adaway M, Bone RN, Creecy A, Klunk A, Atkinson EG, Wek RC, Robling AG, Wallace JM, Evans-Molina C. Nmp4, a Regulator of Induced Osteoanabolism, Also Influences Insulin Secretion and Sensitivity. Calcif Tissue Int 2022; 110:244-259. [PMID: 34417862 PMCID: PMC8792173 DOI: 10.1007/s00223-021-00903-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/04/2021] [Indexed: 02/03/2023]
Abstract
A bidirectional and complex relationship exists between bone and glycemia. Persons with type 2 diabetes (T2D) are at risk for bone loss and fracture, however, heightened osteoanabolism may ameliorate T2D-induced deficits in glycemia as bone-forming osteoblasts contribute to energy metabolism via increased glucose uptake and cellular glycolysis. Mice globally lacking nuclear matrix protein 4 (Nmp4), a transcription factor expressed in all tissues and conserved between humans and rodents, are healthy and exhibit enhanced bone formation in response to anabolic osteoporosis therapies. To test whether loss of Nmp4 similarly impacted bone deficits caused by diet-induced obesity, male wild-type and Nmp4-/- mice (8 weeks) were fed either low-fat diet or high-fat diet (HFD) for 12 weeks. Endpoint parameters included bone architecture, structural and estimated tissue-level mechanical properties, body weight/composition, glucose-stimulated insulin secretion, glucose tolerance, insulin tolerance, and metabolic cage analysis. HFD diminished bone architecture and ultimate force and stiffness equally in both genotypes. Unexpectedly, the Nmp4-/- mice exhibited deficits in pancreatic β-cell function and were modestly glucose intolerant under normal diet conditions. Despite the β-cell deficits, the Nmp4-/- mice were less sensitive to HFD-induced weight gain, increases in % fat mass, and decreases in glucose tolerance and insulin sensitivity. We conclude that Nmp4 supports pancreatic β-cell function but suppresses peripheral glucose utilization, perhaps contributing to its suppression of induced skeletal anabolism. Selective disruption of Nmp4 in peripheral tissues may provide a strategy for improving both induced osteoanabolism and energy metabolism in comorbid patients.
Collapse
Affiliation(s)
- Joseph Bidwell
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, USA.
| | - Sarah A Tersey
- Department of Pediatrics, Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Michele Adaway
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
| | - Robert N Bone
- Department of Pediatrics, Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
- Center for Diabetes and Metabolic Disease and the Wells Center for Pediatric Research, IUSM, Indianapolis, IN, 46202, USA
| | - Amy Creecy
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis (IUPUI), Indianapolis, IN, 46202, USA
| | - Angela Klunk
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
| | - Emily G Atkinson
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
| | - Ronald C Wek
- Department of Biochemistry & Molecular Biology, IUSM, Indianapolis, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, USA
| | - Joseph M Wallace
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, USA.
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis (IUPUI), Indianapolis, IN, 46202, USA.
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA.
- Center for Diabetes and Metabolic Disease and the Wells Center for Pediatric Research, IUSM, Indianapolis, IN, 46202, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, USA.
| |
Collapse
|
5
|
Graeff-Armas LA, Silverman E, Recker RR. Future studies using histomorphometry in type 1 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2021; 28:371-376. [PMID: 34183539 PMCID: PMC8244993 DOI: 10.1097/med.0000000000000644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW This article reviews the current state of research in type 1 diabetes and bone, focusing on human bone turnover markers and histomorphometry. RECENT FINDINGS Bone turnover markers have been used for decades to document static bone turnover status in a variety of diseases but especially in diabetes. Two new studies focus on dynamic testing conditions to examine the acute effects of insulin and exercise on bone turnover. Publications of human bone histomorphometry in type 1 diabetes are few but there are several new studies currently underway. SUMMARY Here, we review the most recent literature on human bone turnover markers and histomorphometry. Low bone turnover is thought to be a major underlying factor in bone fragility in T1DM. Further studies in human transilial bone biopsies will be helpful in determining the mechanisms.
Collapse
Affiliation(s)
- Laura A. Graeff-Armas
- Department of Diabetes, Endocrinology & Metabolism, University of Nebraska Medical Center, 984130 Nebraska Medical Center, Omaha, NE 68198-4130
| | - Emily Silverman
- Department of Diabetes, Endocrinology & Metabolism, University of Nebraska Medical Center, 984130 Nebraska Medical Center, Omaha, NE 68198-4130
| | - Robert R. Recker
- Creighton University Osteoporosis Research Center, 6829 N 72nd Street, Suite 7400, Omaha, NE 68122
| |
Collapse
|
6
|
Chen M, Li Y, Huang X, Gu Y, Li S, Yin P, Zhang L, Tang P. Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis. Bone Res 2021; 9:21. [PMID: 33753717 PMCID: PMC7985324 DOI: 10.1038/s41413-021-00138-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis and osteogenesis are coupled. However, the cellular and molecular regulation of these processes remains to be further investigated. Both tissues have recently been recognized as endocrine organs, which has stimulated research interest in the screening and functional identification of novel paracrine factors from both tissues. This review aims to elaborate on the novelty and significance of endocrine regulatory loops between bone and the vasculature. In addition, research progress related to the bone vasculature, vessel-related skeletal diseases, pathological conditions, and angiogenesis-targeted therapeutic strategies are also summarized. With respect to future perspectives, new techniques such as single-cell sequencing, which can be used to show the cellular diversity and plasticity of both tissues, are facilitating progress in this field. Moreover, extracellular vesicle-mediated nuclear acid communication deserves further investigation. In conclusion, a deeper understanding of the cellular and molecular regulation of angiogenesis and osteogenesis coupling may offer an opportunity to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ya Gu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Shang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| |
Collapse
|
7
|
Beato S, Toledo-Solís FJ, Fernández I. Vitamin K in Vertebrates' Reproduction: Further Puzzling Pieces of Evidence from Teleost Fish Species. Biomolecules 2020; 10:E1303. [PMID: 32917043 PMCID: PMC7564532 DOI: 10.3390/biom10091303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Vitamin K (VK) is a fat-soluble vitamin that vertebrates have to acquire from the diet, since they are not able to de novo synthesize it. VK has been historically known to be required for the control of blood coagulation, and more recently, bone development and homeostasis. Our understanding of the VK metabolism and the VK-related molecular pathways has been also increased, and the two main VK-related pathways-the pregnane X receptor (PXR) transactivation and the co-factor role on the γ-glutamyl carboxylation of the VK dependent proteins-have been thoroughly investigated during the last decades. Although several studies evidenced how VK may have a broader VK biological function than previously thought, including the reproduction, little is known about the specific molecular pathways. In vertebrates, sex differentiation and gametogenesis are tightly regulated processes through a highly complex molecular, cellular and tissue crosstalk. Here, VK metabolism and related pathways, as well as how gametogenesis might be impacted by VK nutritional status, will be reviewed. Critical knowledge gaps and future perspectives on how the different VK-related pathways come into play on vertebrate's reproduction will be identified and proposed. The present review will pave the research progress to warrant a successful reproductive status through VK nutritional interventions as well as towards the establishment of reliable biomarkers for determining proper nutritional VK status in vertebrates.
Collapse
Affiliation(s)
- Silvia Beato
- Campus de Vegazana, s/n, Universidad de León (ULE), 24071 León, Spain;
| | - Francisco Javier Toledo-Solís
- Consejo Nacional de Ciencia y Tecnología (CONACYT, México), Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, C.P. 03940 Ciudad de Mexico, Mexico;
- Department of Biology and Geology, University of Almería, 04120 Almería, Spain
| | - Ignacio Fernández
- Center for Aquaculture Research, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, s/n, 40196 Zamarramala, Segovia, Spain
| |
Collapse
|
8
|
Russo V, Chen R, Armamento-Villareal R. Hypogonadism, Type-2 Diabetes Mellitus, and Bone Health: A Narrative Review. Front Endocrinol (Lausanne) 2020; 11:607240. [PMID: 33537005 PMCID: PMC7848021 DOI: 10.3389/fendo.2020.607240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
One of the complications from chronic hyperglycemia and insulin resistance due to type 2 diabetes mellitus (T2DM) on the hypothalamic-pituitary-gonadal axis in men is the high prevalence of hypogonadotropic hypogonadism (HH). Both T2DM and hypogonadism are associated with impaired bone health and increased fracture risk but whether the combination results in even worse bone disease than either one alone is not well-studied. It is possible that having both conditions predisposes men to an even greater risk for fracture than either one alone. Given the common occurrence of HH or hypogonadism in general in T2DM, a significant number of men could be at risk. To date, there is very little information on the bone health men with both hypogonadism and T2DM. Insulin resistance, which is the primary defect in T2DM, is associated with low testosterone (T) levels in men and may play a role in the bidirectional relationship between these two conditions, which together may portend a worse outcome for bone. The present manuscript aims to review the available evidences on the effect of the combination of hypogonadism and T2DM on bone health and metabolic profile, highlights the possible metabolic role of the skeleton, and examines the pathways involved in the interplay between bone, insulin resistance, and gonadal steroids.
Collapse
Affiliation(s)
- Vittoria Russo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Rui Chen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
- *Correspondence: Reina Armamento-Villareal,
| |
Collapse
|
9
|
Altered foetoplacental vascular endothelial signalling to insulin in diabesity. Mol Aspects Med 2019; 66:40-48. [DOI: 10.1016/j.mam.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022]
|
10
|
Kusuyama J, Amir MS, Albertson BG, Bandow K, Ohnishi T, Nakamura T, Noguchi K, Shima K, Semba I, Matsuguchi T. JNK inactivation suppresses osteogenic differentiation, but robustly induces osteopontin expression in osteoblasts through the induction of inhibitor of DNA binding 4 (Id4). FASEB J 2019; 33:7331-7347. [PMID: 30884976 DOI: 10.1096/fj.201802465r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Osteoblasts are versatile cells involved in multiple whole-body processes, including bone formation and immune response. Secretory amounts and patterns of osteoblast-derived proteins such as osteopontin (OPN) and osteocalcin (OCN) modulate osteoblast function. However, the regulatory mechanism of OPN and OCN expression remains unknown. Here, we demonstrate that p54/p46 c-jun N-terminal kinase (JNK) inhibition suppresses matrix mineralization and OCN expression but increases OPN expression in MC3T3-E1 cells and primary osteoblasts treated with differentiation inducers, including ascorbic acid, bone morphogenic protein-2, or fibroblast growth factor 2. Preinhibition of JNK before the onset of differentiation increased the number of osteoblasts that highly express OPN but not OCN (OPN-OBs), indicating that JNK affects OPN secretory phenotype at the early stage of osteogenic differentiation. Additionally, we identified JNK2 isoform as being critically involved in OPN-OB differentiation. Microarray analysis revealed that OPN-OBs express characteristic transcription factors, cell surface markers, and cytokines, including glycoprotein hormone α2 and endothelial cell-specific molecule 1. Moreover, we found that inhibitor of DNA binding 4 is an important regulator of OPN-OB differentiation and that dual-specificity phosphatase 16, a JNK-specific phosphatase, functions as an endogenous regulator of OPN-OB induction. OPN-OB phenotype was also observed following LPS from Porphyromonas gingivalis stimulation during osteogenic differentiation. Collectively, these results suggest that the JNK-Id4 signaling axis is crucial in the control of OPN and OCN expression during osteoblastic differentiation.-Kusuyama, J., Amir, M. S., Albertson, B. G., Bandow, K., Ohnishi, T., Nakamura, T., Noguchi, K., Shima, K., Semba, I., Matsuguchi, T. JNK inactivation suppresses osteogenic differentiation, but robustly induces osteopontin expression in osteoblasts through the induction of inhibitor of DNA binding 4 (Id4).
Collapse
Affiliation(s)
- Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Muhammad Subhan Amir
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya, Indonesia
| | - Brent G Albertson
- Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenjiro Bandow
- Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Saitama, Japan; and
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiaki Nakamura
- Department of Periodontology, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kaori Shima
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ichiro Semba
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
11
|
Barale M, Cappiello V, Ghigo E, Procopio M. Increased frequency of impaired fasting glucose and isolated systolic hypertension in Paget's disease of bone. Endocrine 2019; 63:385-390. [PMID: 30284104 DOI: 10.1007/s12020-018-1771-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/24/2018] [Indexed: 11/27/2022]
Abstract
PURPOSE Scanty data about glucose metabolism and hypertension have been reported in Paget's disease of bone (PDB) to be related with increased cardiovascular mortality. The aim of the present study was to evaluate glucose and blood pressure levels in PDB, looking for their association with disease severity. METHODS We performed an observational cross-sectional study in 54 patients with PDB and 54 age, sex and BMI-matched controls. Glucose and blood pressure levels and parameters of bone and mineral metabolism were assessed. RESULTS Patients with PDB showed increased glucose levels (6.3 ± 1.7 vs 5.3 ± 1.4 mmol/l, p < 0.001) and prevalence of impaired fasting glucose (14.8%, 5.3-24.3 vs 1.9%, 0-5.4, p < 0.02) as well as enhanced systolic blood pressure (145.9 ± 21.3 vs 132.9 ± 18.9 mmHg, p < 0.005), pulse pressure (69.6 ± 20.0 vs 56.0 ± 16.9 mmHg, p < 0.01) and prevalence of isolated systolic hypertension (46.3%, 33.0-59.6 vs 16.7%, 6.7-26.6, p < 0.003) in comparison to controls. Moreover, we found a positive association of (1) glucose levels with ionized calcium and bone alkaline phosphatase; (2) both systolic and pulse pressure with total and bone alkaline phosphatase (p < 0.05). By multiple linear regression analysis (R2 = 0.26; p < 0.05) serum ionized calcium correlated with glucose levels (β = 0.44; p < 0.04), after adjusting for age and BMI. CONCLUSIONS Our study shows increased fasting glucose, systolic and pulse pressure levels as well as enhanced prevalence of impaired fasting glucose and isolated systolic hypertension in PDB, potentially accounting for increased cardiovascular mortality. Furthermore, our findings suggest high serum calcium and/or increased bone alkaline phosphatase as a link between PDB and cardio-metabolic disorders.
Collapse
Affiliation(s)
- Marco Barale
- Department of General and Specialty Medicine, Division of Endocrinology, Diabetology and Metabolic Diseases, Molinette Hospital, University of Turin-Cso Dogliotti, Turin, 14-10126, Italy.
| | - Vincenzo Cappiello
- Department of General and Specialty Medicine, Division of Endocrinology, Diabetology and Metabolic Diseases, Molinette Hospital, University of Turin-Cso Dogliotti, Turin, 14-10126, Italy
| | - Ezio Ghigo
- Department of General and Specialty Medicine, Division of Endocrinology, Diabetology and Metabolic Diseases, Molinette Hospital, University of Turin-Cso Dogliotti, Turin, 14-10126, Italy
| | - Massimo Procopio
- Department of General and Specialty Medicine, Division of Endocrinology, Diabetology and Metabolic Diseases, Molinette Hospital, University of Turin-Cso Dogliotti, Turin, 14-10126, Italy
| |
Collapse
|
12
|
Abstract
Vitamin D is a principal factor required for mineral and skeletal homeostasis. Vitamin D deficiency during development causes rickets and in adults can result in osteomalacia and increased risk of fracture. 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D, is responsible for the biological actions of vitamin D which are mediated by the vitamin D receptor (VDR). Mutations in the VDR result in early-onset rickets and low calcium and phosphate, indicating the essential role of 1,25(OH)2D3/VDR signaling in the regulation of mineral homeostasis and skeletal health. This chapter summarizes our current understanding of the production of the vitamin D endocrine hormone, 1,25(OH)2D3, and the actions of 1,25(OH)2D3 which result in the maintenance of skeletal homeostasis. The primary role of 1,25(OH)2D3 is to increase calcium absorption from the intestine and thus to increase the availability of calcium for bone mineralization. Specific actions of 1,25(OH)2D3 on the intestine, kidney, and bone needed to maintain calcium homeostasis are summarized, and the impact of vitamin D status on bone health is discussed.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Shanshan Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jessica DeLa Cruz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Lieve Verlinden
- Clinical and Experimental Medicine and Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Clinical and Experimental Medicine and Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Traghella I, Mastorci F, Pepe A, Pingitore A, Vassalle C. Nontraditional Cardiovascular Biomarkers and Risk Factors: Rationale and Future Perspectives. Biomolecules 2018; 8:E40. [PMID: 29914099 PMCID: PMC6023023 DOI: 10.3390/biom8020040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
The primary prevention of cardiovascular (CV) disease depends on the capacity to identify subjects at higher risk long before the occurrence of CV clinical manifestations. Traditional risk factors do not cover fully prediction of individual risk. Moreover, there is an area of gray for patients at intermediate CV risk, which offers wide margins of improvement. These observations highlight the need for new additive tools for a more accurate risk stratification. An increasing number of candidate biomarkers have been identified to predict CV risk and events, although they generally give only a moderate increase when added to currently available predictive scores. The approach utilizing a relative small number of biomarkers in multiple combinations, but only weakly related to each other or unrelated, thus belonging to independent-pathways, and so able to catch the multidimensional characteristic of atherosclerosis, appears promising. We discuss vitamin D and bone turnover biomarkers, hepatitis C virus, and psycho-emotional factors that may reflect alternative pathways over those generally considered for atherosclerosis (e.g., aspects directly related to inflammation and thrombosis). These new biomarkers could facilitate a more accurate assessment of CV risk stratification if incorporated in the current risk assessment algorithms.
Collapse
Affiliation(s)
- Irene Traghella
- Fondazione G. Monasterio CNR-Regione Toscana and Institute of Clinical Physiology, CNR San Cataldo Research Area, via Moruzzi, 1, 56124 Pisa, Italy.
| | - Francesca Mastorci
- Institute of Clinical Physiology, CNR San Cataldo Research Area, via Moruzzi, 1, 56124 Pisa, Italy.
| | - Alessia Pepe
- Fondazione G. Monasterio CNR-Regione Toscana and Institute of Clinical Physiology, CNR San Cataldo Research Area, via Moruzzi, 1, 56124 Pisa, Italy.
| | - Alessandro Pingitore
- Institute of Clinical Physiology, CNR San Cataldo Research Area, via Moruzzi, 1, 56124 Pisa, Italy.
| | - Cristina Vassalle
- Fondazione G. Monasterio CNR-Regione Toscana and Institute of Clinical Physiology, CNR San Cataldo Research Area, via Moruzzi, 1, 56124 Pisa, Italy.
| |
Collapse
|