1
|
Sharma V, Singh J, Kumar A, Kansara S, Akhtar MS, Khan MF, Aldosari SA, Mukherjee M, Sharma AK. Integrative experimental validation of concomitant miRNAs and transcription factors with differentially expressed genes in acute myocardial infarction. Eur J Pharmacol 2024; 971:176540. [PMID: 38552938 DOI: 10.1016/j.ejphar.2024.176540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Identification of concomitant miRNAs and transcription factors (TFs) with differential expression (DEGs) in MI is crucial for understanding holistic gene regulation, identifying key regulators, and precision in biomarker and therapeutic target discovery. We performed a comprehensive analysis using Affymetrix microarray data, advanced bioinformatic tools, and experimental validation to explore potential biomarkers associated with human pathology. The search strategy includes the identification of the GSE83500 dataset, comprising gene expression profiles from aortic wall punch biopsies of MI and non-MI patients, which were used in the present study. The analysis identified nine distinct genes exhibiting DEGs within the realm of MI. miRNA-gene/TF and TF-gene/miRNA regulatory relations were mapped to retrieve interacting hub genes to acquire an MI miRNA-TF co-regulatory network. Furthermore, an animal model of I/R-induced MI confirmed the involved gene based on quantitative RT-PCR and Western blot analysis. The consequences of the bioinformatic tool substantiate the inference regarding the presence of three key hub genes (UBE2N, TMEM106B, and CXADR), a central miRNA (hsa-miR-124-3p), and sixteen TFs. Animal studies support the involvement of predicted genes in the I/R-induced myocardial infarction assessed by RT-PCR and Western blotting. Thus, the final consequences suggest the involvement of promising molecular pathways regulated by TF (p53/NF-κB1), miRNA (hsa-miR-124-3p), and hub gene (UBE2N), which may play a key role in the pathogenesis of MI.
Collapse
Affiliation(s)
- Vikash Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Jitender Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Ashish Kumar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana, 122413, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Alfara, Abha, 62223, Saudi Arabia
| | - Mohd Faiyaz Khan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saad A Aldosari
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Arun K Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India.
| |
Collapse
|
2
|
Deciphering the Mechanism of Wogonin, a Natural Flavonoid, on the Proliferation of Pulmonary Arterial Smooth Muscle Cells by Integrating Network Pharmacology and In Vitro Validation. Curr Issues Mol Biol 2023; 45:555-570. [PMID: 36661523 PMCID: PMC9858126 DOI: 10.3390/cimb45010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Wogonin is one of the main active components of Scutellaria baicalensis, which has anti-inflammatory, anti-angiogenesis, and anti-fibrosis effects. Nevertheless, the effect of wogonin on pulmonary hypertension (PH) still lacks systematic research. This study aims to elucidate the potential mechanism of wogonin against PH through network pharmacology and further verify it through biological experiments in pulmonary arterial smooth muscle cells (PASMCs). The potential targets and pathways of wogonin against PH were predicted and analyzed by network pharmacology methods and molecular docking technology. Subsequently, the proliferation of PASMCs was induced by platelet-derived growth factor-BB (PDGF-BB). Cell viability and migration ability were examined. The method of Western blot was adopted to analyze the changes in related signaling pathways. Forty potential targets related to the effect of wogonin against PH were obtained. Based on the protein-protein interaction (PPI) network, gene-ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment, and molecular docking, it was shown that the effect of wogonin against PH is closely related to the proliferation of PASMCs and the hypoxia-inducible factor-1α (HIF-1α) pathway. A variety of results from biological experiments verified that wogonin can effectively inhibit the proliferation, migration, and phenotypic transformation of PDGF-BB-mediated PASMCs. In addition, the anti-proliferation effect of wogonin may be achieved by regulating HIF-1/ NADPH oxidase 4 (NOX4) pathway.
Collapse
|
3
|
Lopez-Crisosto C, Arias-Carrasco R, Sepulveda P, Garrido-Olivares L, Maracaja-Coutinho V, Verdejo HE, Castro PF, Lavandero S. Novel molecular insights and public omics data in pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166200. [PMID: 34144090 DOI: 10.1016/j.bbadis.2021.166200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension is a rare disease with high morbidity and mortality which mainly affects women of reproductive age. Despite recent advances in understanding the pathogenesis of pulmonary hypertension, the high heterogeneity in the presentation of the disease among different patients makes it difficult to make an accurate diagnosis and to apply this knowledge to effective treatments. Therefore, new studies are required to focus on translational and personalized medicine to overcome the lack of specificity and efficacy of current management. Here, we review the majority of public databases storing 'omics' data of pulmonary hypertension studies, from animal models to human patients. Moreover, we review some of the new molecular mechanisms involved in the pathogenesis of pulmonary hypertension, including non-coding RNAs and the application of 'omics' data to understand this pathology, hoping that these new approaches will provide insights to guide the way to personalized diagnosis and treatment.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile
| | - Raul Arias-Carrasco
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile
| | - Pablo Sepulveda
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Garrido-Olivares
- Cardiovascular Surgery, Division of Surgery, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile; Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
4
|
Lhomme A, Gilbert G, Pele T, Deweirdt J, Henrion D, Baudrimont I, Campagnac M, Marthan R, Guibert C, Ducret T, Savineau JP, Quignard JF. Stretch-activated Piezo1 Channel in Endothelial Cells Relaxes Mouse Intrapulmonary Arteries. Am J Respir Cell Mol Biol 2020; 60:650-658. [PMID: 30562052 DOI: 10.1165/rcmb.2018-0197oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In intrapulmonary arteries (IPA), endothelial cells (EC) respond to mechanical stimuli by releasing vasoactive factors to set the vascular tone. Piezo1, a stretch-activated, calcium-permeable channel, is a sensor of mechanical stress in EC. The present study was undertaken to investigate the implication of Piezo1 in the endothelium-dependent regulation of IPA tone and potential involvement of Piezo1 in pulmonary hypertension, the main disease of this circulation. IPA tone was quantified by means of a myograph in control Piezo1+/+ mice and in mice lacking endothelial Piezo1 (EC-Piezo1-/-). Endothelial intracellular calcium concentration ([Ca2+]i) and nitric oxide (NO) production were measured, in mouse or human EC, with Fluo-4 or DAF-FM probe, respectively. Immunofluorescent labeling and patch-clamp experiments revealed the presence of Piezo1 channels in EC. Yoda1, a Piezo1 agonist, induced an endothelium-dependent relaxation that was significantly reduced in pulmonary arteries in EC-Piezo1-/- compared with Piezo1+/+ mice. Yoda1 as well as mechanical stimulation (by osmotic stress) increased [Ca2+]i in mouse or human EC. Consequently, both stimuli increased the production of NO. NO and [Ca2+]i increases were reduced in EC from Piezo1-/- mice or in the presence of Piezo1 inhibitors. Furthermore, deletion of Piezo1 increased α-adrenergic agonist-mediated contraction. Finally, in chronically hypoxic mice, a model of pulmonary hypertension, Piezo1 still mediated arterial relaxation, and deletion of this channel did not impair the development of the disease. The present study thus demonstrates that endothelial Piezo1 contributes to intrapulmonary vascular relaxation by controlling endothelial [Ca2+]i and NO production and that this effect is still present in pulmonary hypertension.
Collapse
Affiliation(s)
- Audrey Lhomme
- 1 Université de Bordeaux and.,2 Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Guillaume Gilbert
- 1 Université de Bordeaux and.,2 Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Thomas Pele
- 1 Université de Bordeaux and.,2 Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Juliette Deweirdt
- 1 Université de Bordeaux and.,2 Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Daniel Henrion
- 3 MITOVASC Institut, UMR CNRS 6015, INSERM U1083, Université d'Angers, Angers, France; and
| | - Isabelle Baudrimont
- 1 Université de Bordeaux and.,2 Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Marilyne Campagnac
- 1 Université de Bordeaux and.,2 Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Roger Marthan
- 1 Université de Bordeaux and.,2 Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,4 CHU de Bordeaux, Bordeaux, France
| | - Christelle Guibert
- 1 Université de Bordeaux and.,2 Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Thomas Ducret
- 1 Université de Bordeaux and.,2 Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Jean-Pierre Savineau
- 1 Université de Bordeaux and.,2 Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Jean-François Quignard
- 1 Université de Bordeaux and.,2 Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Zha LH, Zhou J, Li TZ, Luo H, Zhang MQ, Li S, Yu ZX. NLRC3 inhibits MCT-induced pulmonary hypertension in rats via attenuating PI3K activation. J Cell Physiol 2019; 234:15963-15976. [PMID: 30767203 DOI: 10.1002/jcp.28255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) activation plays a critical role in the pulmonary vascular remodeling of pulmonary hypertension (PH). The nucleotide-oligomerization domain (NOD)-like receptor subfamily C3 (NLRC3) inhibits proliferation and inflammation via PI3K signaling in cancer. We previously showed NLRC3 was significantly reduced in PH patients, but the mechanism of function remains unclear. This study aimed to determine the potential role of NLRC3 in PH. We found that NLRC3 was downregulated in the pulmonary arteries of PH animal models and platelet-derived growth factor-BB (PDGF-BB) stimulated pulmonary arterial smooth muscle cells (PASMCs). NLRC3 pretreatment reduced right ventricular systolic pressure, attenuated pulmonary vascular remodeling and RVHI, and ameliorated proliferation, migration, and inflammation. Monocrotaline (MCT)- and PDGF-BB-mediated PI3K activation were suppressed by NLRC3 pretreatment. 740Y-P decreased the effect of NLRC3. Collectively, NLRC3 protected against MCT-induced rat PH and PDGF-BB-induced PASMC proliferation, migration, and inflammation through a mechanism involving PI3K inhibition. NLRC3 may have a therapeutic effect on PH and provide a promising therapeutic strategy for PH.
Collapse
Affiliation(s)
- Li-Huang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Zhou
- MedicalScience Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tang-Zhiming Li
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hui Luo
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Men-Qiu Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Sheng Li
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zai-Xin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|