1
|
Dalla Barba F, Soardi M, Mouhib L, Risato G, Akyürek EE, Lucon-Xiccato T, Scano M, Benetollo A, Sacchetto R, Richard I, Argenton F, Bertolucci C, Carotti M, Sandonà D. Modeling Sarcoglycanopathy in Danio rerio. Int J Mol Sci 2023; 24:12707. [PMID: 37628888 PMCID: PMC10454440 DOI: 10.3390/ijms241612707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sarcoglycanopathies, also known as limb girdle muscular dystrophy 3-6, are rare muscular dystrophies characterized, although heterogeneous, by high disability, with patients often wheelchair-bound by late adolescence and frequently developing respiratory and cardiac problems. These diseases are currently incurable, emphasizing the importance of effective treatment strategies and the necessity of animal models for drug screening and therapeutic verification. Using the CRISPR/Cas9 genome editing technique, we generated and characterized δ-sarcoglycan and β-sarcoglycan knockout zebrafish lines, which presented a progressive disease phenotype that worsened from a mild larval stage to distinct myopathic features in adulthood. By subjecting the knockout larvae to a viscous swimming medium, we were able to anticipate disease onset. The δ-SG knockout line was further exploited to demonstrate that a δ-SG missense mutant is a substrate for endoplasmic reticulum-associated degradation (ERAD), indicating premature degradation due to protein folding defects. In conclusion, our study underscores the utility of zebrafish in modeling sarcoglycanopathies through either gene knockout or future knock-in techniques. These novel zebrafish lines will not only enhance our understanding of the disease's pathogenic mechanisms, but will also serve as powerful tools for phenotype-based drug screening, ultimately contributing to the development of a cure for sarcoglycanopathies.
Collapse
Affiliation(s)
- Francesco Dalla Barba
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Michela Soardi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Leila Mouhib
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
- Randall Center for Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, UK
| | - Giovanni Risato
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Eylem Emek Akyürek
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Martina Scano
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Alberto Benetollo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy
| | - Isabelle Richard
- Genethon, F-91002 Evry, France
- INSERM, U951, INTEGRARE Research Unit, F-91002 Evry, France
| | - Francesco Argenton
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| |
Collapse
|
2
|
Mellai M, Annovazzi L, Boldorini R, Bertero L, Cassoni P, De Blasio P, Biunno I, Schiffer D. SEL1L plays a major role in human malignant gliomas. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 6:17-29. [PMID: 31111685 PMCID: PMC6966709 DOI: 10.1002/cjp2.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022]
Abstract
Suppressor of Lin-12-like (C. elegans) (SEL1L) participates in the endoplasmic reticulum-associated protein degradation pathway, malignant transformation and stem cell biology. We explored the role of SEL1L in 110 adult gliomas, of different molecular subtype and grade, in relation to cell proliferation, stemness, glioma-associated microglia/macrophages (GAMs), prognostic markers and clinical outcome. SEL1L protein expression was assessed by immunohistochemistry and Western blotting. Genetic and epigenetic alterations were detected by molecular genetics techniques. SEL1L was overexpressed in anaplastic gliomas (World Health Organization [WHO] grade III) and in glioblastoma (GB, WHO grade IV) with the highest labelling index (LI) in the latter. Immunoreactivity was significantly associated with histological grade (p = 0.002) and cell proliferation index Ki-67/MIB-1 (p = 0.0001). In GB, SEL1L co-localised with stemness markers Nestin and Sox2. Endothelial cells and vascular pericytes of proliferative tumour blood vessels expressed SEL1L suggesting a role in tumour neo-vasculature. GAMs consistently expressed SEL1L. SEL1L overexpression was significantly associated with TERT promoter mutations (p = 0.0001), EGFR gene amplification (p = 0.0013), LOH on 10q (p = 0.0012) but was mutually exclusive with IDH1/2 mutations (p = 0.0001). SEL1L immunoreactivity correlated with tumour progression and cell proliferation, conditioning poor patient survival and response to therapy. This study emphasises SEL1L as a potential biomarker for the most common subgroup of TERT mutant/EGFR amplified/IDH-WT GBs.
Collapse
Affiliation(s)
- Marta Mellai
- Dipartimento di Scienze della Salute, Scuola di Medicina, Università del Piemonte Orientale "A. Avogadro", Novara, Italy.,Fondazione Edo ed Elvo Tempia Valenta - ONLUS, Biella, Italy
| | - Laura Annovazzi
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Vercelli, Italy
| | - Renzo Boldorini
- Dipartimento di Scienze della Salute, Scuola di Medicina, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Luca Bertero
- Dipartimento di Scienze Mediche, Università degli Studi di Torino/Città della Salute e della Scienza, Torino, Italy
| | - Paola Cassoni
- Dipartimento di Scienze Mediche, Università degli Studi di Torino/Città della Salute e della Scienza, Torino, Italy
| | | | - Ida Biunno
- ISENET Biobanking, Milano, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Davide Schiffer
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Vercelli, Italy
| |
Collapse
|