1
|
Stipp MC, Acco A. c-Myc-targeted therapy in breast cancer: A review of fundamentals and pharmacological Insights. Gene 2025:149209. [PMID: 39755262 DOI: 10.1016/j.gene.2024.149209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/06/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
The oncoprotein c-Myc is expressed in all breast cancer subtypes, but its expression is higher in triple-negative breast cancer (TNBC) compared to estrogen receptor (ER+), progesterone receptor (PR+), or human epidermal growth factor receptor 2 (HER2+) positive tumors. The c-Myc gene is crucial for tumor progression and therapy resistance, impacting cell proliferation, differentiation, senescence, angiogenesis, immune evasion, metabolism, invasion, autophagy, apoptosis, chromosomal instability, and protein biosynthesis. Targeting c-Myc has emerged as a potential therapeutic strategy for TNBC, a highly aggressive and deadly breast cancer form. This review highlights c-Myc as a pharmacological target, discussing antitumor compounds in preclinical and clinical trials. Notably, the c-Myc inhibitor OMO-103 has shown promise in a Phase II clinical trial for advanced cancer patients. Further research is needed to develop new drugs targeting this gene, protein, or its pathways, and additional studies on cancer patients are encouraged.
Collapse
Affiliation(s)
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Wang W, Liu L, Zhu J, Xing Y, Jiao S, Wu Z. AI-Enhanced Visual-Spectral Synergy for Fast and Ultrasensitive Biodetection of Breast Cancer-Related miRNAs. ACS NANO 2024; 18:6266-6275. [PMID: 38252138 DOI: 10.1021/acsnano.3c10543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
In biomedical testing, artificial intelligence (AI)-enhanced analysis has gradually been applied to the diagnosis of certain diseases. This research employs AI algorithms to refine the precision of integrative detection, encompassing both visual results and fluorescence spectra from lateral flow assays (LFAs), which signal the presence of cancer-linked miRNAs. Specifically, the color shift of gold nanoparticles (GNPs) is paired with the red fluorescence from nitrogen vacancy color centers (NV-centers) in fluorescent nanodiamonds (FNDs) and is integrated into LFA strips. While GNPs amplify the fluorescence of FNDs, in turn, FNDs enhance the color intensity of GNPs. This reciprocal intensification of fluorescence and color can be synergistically augmented with AI algorithms, thereby improving the detection sensitivity for early diagnosis. Supported by the detection platform based on this strategy, the fastest detection results with a limit of detection (LOD) at the fM level and the R2 value of ∼0.9916 for miRNA can be obtained within 5 min. Meanwhile, by labeling the capture probes for miRNA-21 and miRNA-96 (both of which are early indicators of breast cancer) on separate T-lines, simultaneous detection of them can be achieved. The miRNA detection methods employed in this study may potentially be applied in the future for the early detection of breast cancer.
Collapse
Affiliation(s)
- Wei Wang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Jianxiong Zhu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Songlong Jiao
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
3
|
Abdullaev B, Rasyid SA, Ali E, Al-Dhalimy AMB, Mustafa YF, Fenjan MN, Misra N, Al-Musawi SG, Alawadi A, Alsalamy A. Effective exosomes in breast cancer: focusing on diagnosis and treatment of cancer progression. Pathol Res Pract 2024; 253:154995. [PMID: 38113765 DOI: 10.1016/j.prp.2023.154995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Breast cancer (BC) is the most prevalent aggressive malignant tumor in women worldwide and develops from breast tissue. Although cutting-edge treatment methods have been used and current mortality rates have decreased, BC control is still not satisfactory. Clarifying the underlying molecular mechanisms will help clinical options. Extracellular vesicles known as exosomes mediate cellular communication by delivering a variety of biomolecules, including proteins, oncogenes, oncomiRs, and even pharmacological substances. These transferable bioactive molecules can alter the transcriptome of target cells and affect signaling pathways that are related to tumors. Numerous studies have linked exosomes to BC biology, including therapeutic resistance and the local microenvironment. Exosomes' roles in tumor treatment resistance, invasion, and BC metastasis are the main topics of discussion in this review.
Collapse
Affiliation(s)
- Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Tashkent, Uzbekistan; Department of Oncology, School of Medicine, Central Asian University, Tashkent, Uzbekistan.
| | - Sri Anggarini Rasyid
- Faculty of Science and Technology, Mandala Waluya University, Kendari, South East Sulawesi, Indonesia.
| | - Eyhab Ali
- college of chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Iraq
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, India
| | | | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Iraq
| |
Collapse
|
4
|
Nogueras Pérez R, Heredia-Nicolás N, de Lara-Peña L, López de Andrés J, Marchal JA, Jiménez G, Griñán-Lisón C. Unraveling the Potential of miRNAs from CSCs as an Emerging Clinical Tool for Breast Cancer Diagnosis and Prognosis. Int J Mol Sci 2023; 24:16010. [PMID: 37958993 PMCID: PMC10647353 DOI: 10.3390/ijms242116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer in women and the second most common cancer globally. Significant advances in BC research have led to improved early detection and effective therapies. One of the key challenges in BC is the presence of BC stem cells (BCSCs). This small subpopulation within the tumor possesses unique characteristics, including tumor-initiating capabilities, contributes to treatment resistance, and plays a role in cancer recurrence and metastasis. In recent years, microRNAs (miRNAs) have emerged as potential regulators of BCSCs, which can modulate gene expression and influence cellular processes like BCSCs' self-renewal, differentiation, and tumor-promoting pathways. Understanding the miRNA signatures of BCSCs holds great promise for improving BC diagnosis and prognosis. By targeting BCSCs and their associated miRNAs, researchers aim to develop more effective and personalized treatment strategies that may offer better outcomes for BC patients, minimizing tumor recurrence and metastasis. In conclusion, the investigation of miRNAs as regulators of BCSCs opens new directions for advancing BC research through the use of bioinformatics and the development of innovative therapeutic approaches. This review summarizes the most recent and innovative studies and clinical trials on the role of BCSCs miRNAs as potential tools for early diagnosis, prognosis, and resistance.
Collapse
Affiliation(s)
- Raquel Nogueras Pérez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
| | - Noelia Heredia-Nicolás
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
| | - Laura de Lara-Peña
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|
5
|
Li J, Peng S, Zou X, Geng X, Wang T, Zhu W, Xia T. Value of negatively correlated miR-205-5p/ HMGB3 and miR-96-5p/ FOXO1 on the diagnosis of breast cancer and benign breast diseases. CANCER PATHOGENESIS AND THERAPY 2023; 1:159-167. [PMID: 38327836 PMCID: PMC10846318 DOI: 10.1016/j.cpt.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Accepted: 04/20/2023] [Indexed: 02/09/2024]
Abstract
Background MicroRNA (miRNA) and mRNA levels in matching specimens were used to identify miRNA-mRNA interactions. We aimed to integrate transcriptome, immunophenotype, methylation, mutation, and survival data analyses to examine the profiles of miRNAs and target mRNAs and their associations with breast cancer (BC) diagnosis. Methods Based on the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA), differentially expressed miRNAs and targeted mRNAs were screened from experimentally verified miRNA-target interaction databases using Pearson's correlation analysis. We used real-time quantitative reverse transcription polymerase chain reaction to verify BC and benign disease samples, and logistic regression analysis was used to establish a diagnostic model based on miRNAs and target mRNAs. Receiver operating characteristic curve analysis was performed to test the ability to recognize the miRNA-mRNA pairs. Next, we investigated the complex interactions between miRNA-mRNA regulatory pairs and phenotypic hallmarks. Results We identified 27 and 359 dysregulated miRNAs and mRNAs, respectively, based on the GEO and TCGA databases. Using Pearson's correlation analysis, 10 negative miRNA-mRNA regulatory pairs were identified after screening both databases, and the related miRNA and target mRNA levels were assessed in 40 BC tissues and 40 benign breast disease tissues. Two key regulatory pairs (miR-205-5p/High mobility group box 3 (HMGB3) and miR-96-5p/Forkhead Box O1 (FOXO1)) were selected to establish the diagnostic model. They also had utility in survival and clinical analyses. Conclusions A diagnostic model including two miRNAs and their respective target mRNAs was established to distinguish between BC and benign breast diseases. These markers play essential roles in BC pathogenesis.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Shuang Peng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuan Zou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032 China
| | - Xiangnan Geng
- Department of Clinical Engineering, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tongshan Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
6
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
7
|
Feng J, Liu Y, Fang T, Zhu J, Wang G, Li J. Hematological and neurological expressed 1 (HN1) activates c-Myc signaling by inhibiting ubiquitin-mediated proteasomal degradation of c-Myc in hepatocellular carcinoma. Cell Biol Int 2023; 47:560-572. [PMID: 36403281 DOI: 10.1002/cbin.11957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022]
Abstract
Hepatocellular carcinoma (HCC) has a poor prognosis due to the usually advanced stage at diagnosis. Sustained activation of the MYC oncogene is implicated in the development of HCC; however, the molecular mechanisms of MYC deregulation in HCC are poorly understood. Here, real-time PCR and western blotting were used to measure the expression of hematological and neurological expressed 1 (HN1) in HCC cells. Expression of HN1 and MYC in clinical specimens was analyzed using immunohistochemistry. The role of HN1 in HCC proliferation, migration, and invasion was explored in vitro and in vivo. MYC expression was measured using real-time PCR and western blotting. MYC transcriptional activity was assessed using a luciferase reporter system. Expression of MYC target genes was quantified using real-time PCR. Protein interaction between MYC and HN1 was assessed using co-immunoprecipitation and western blotting. We identified HN1 as a novel regulatory factor of the glycogen synthase kinase (GSK) 3β-MYC axis. HN1 expression is elevated in liver tumor tissues and cells, and significantly correlates with poor survival in HCC patients. Upregulation of HN1 promotes, and silencing of HN1 represses, the proliferation and metastasis of liver cancer cells in vitro and in vivo. Moreover, our results demonstrate that HN1 sustains stabilization and persistent activity of MYC via interaction with GSK3β in HCC. Importantly, the tumor-promoting effects of HN1 on HCC cells were attenuated by suppressing MYC. In conclusion, constitutive activation of MYC by HN1 promotes the progression of HCC; therefore, HN1 might be a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Jutao Feng
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanmin Liu
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tianling Fang
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinrong Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoying Wang
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Li
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Xiao X, Chen H, Yang L, Xie G, Shimuzu R, Murai A. Concise review: Cancer cell reprogramming and therapeutic implications. Transl Oncol 2022; 24:101503. [PMID: 35933935 PMCID: PMC9364012 DOI: 10.1016/j.tranon.2022.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
The cancer stem cell (CSC) act as tumor initiating cells. Reprogramming technology can convert cells into CSCs. Metabolic reprogramming is critical for CSCs. MiRNA can mediate cancer cell reprogramming as emerging alternatives.
The cancer stem cell (CSC) hypothesis postulates that cancer originates from the malignant transformation of stem cells and is considered to apply to a variety of cancers. Additionally, cancer cells alter metabolic processes to sustain their characteristic uncontrolled growth and proliferation. Further, microRNAs (miRNAs) are found to be involved in acquisition of stem cell-like properties, regulation and reprogramming of cancer cells during cancer progression through its post-transcriptional-regulatory activity. In this concise review, we aim to integrate the current knowledge and recent advances to elucidate the mechanisms involved in the regulation of cell reprogramming and highlights the potential therapeutic implications for the future.
Collapse
Affiliation(s)
- Xue Xiao
- Laboratory Department of xingouqiao Street Community Health Service Center, Qingshan District, Wuhan City, Hubei Province, China
| | - Hua Chen
- Laboratory Department of community health service station, Wuhan Engineering University, Wuhan City, Hubei Province, China
| | - Lili Yang
- Laboratory Department of xingouqiao Street Community Health Service Center, Qingshan District, Wuhan City, Hubei Province, China
| | - Guoping Xie
- Laboratory of the second staff hospital of Wuhan Iron and steel (Group) Company, Wuhan City, Hubei Province, China
| | - Risa Shimuzu
- Department of medicine and molecular science, Gunma University, Maebeshi, Japan
| | - Akiko Murai
- Department of Gynecology Oncology, University of Chicago, , 5841 South Maryland Ave, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Mohamed AA, Allam AE, Aref AM, Mahmoud MO, Eldesoky NA, Fawazy N, Sakr Y, Sobeih ME, Albogami S, Fayad E, Althobaiti F, Jafri I, Alsharif G, El-Sayed M, Abdelgeliel AS, Abdel Aziz RS. Evaluation of Expressed MicroRNAs as Prospective Biomarkers for Detection of Breast Cancer. Diagnostics (Basel) 2022; 12:diagnostics12040789. [PMID: 35453838 PMCID: PMC9026478 DOI: 10.3390/diagnostics12040789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Early detection and screening of breast cancer (BC) might help improve the prognosis of BC patients. This study evaluated the use of serum microRNAs (miRs) as non-invasive biomarkers in BC patients. Methods: Using quantitative real-time polymerase chain reaction, we evaluated the serum expression of four candidate miRs (miR-155, miR-373, miR-10b, and miR-34a) in 99 Egyptian BC patients and 40 healthy subjects (as a control). The miRs expression was correlated with clinicopathological data. In addition, the sensitivity and specificity of the miRs were determined using receiver operating characteristic (ROC) curve analysis. Results: Serum miR-155, miR-373, and miR-10b expression were significantly upregulated (p < 0.001), while serum miR-34a was downregulated (p < 0.00) in nonmetastatic (M0) BC patients compared to the control group. In addition, serum miR-155 and miR-10b were upregulated in BC patients with large tumor sizes and extensive nodal involvement (p < 0.001). ROC curve analysis showed high diagnostic accuracy (area under the curve = 1.0) when the four miRs were combined. Serum miR-373 was significantly upregulated in the human epidermal growth factor 2−negative (p < 0.001), estrogen receptor−positive (p < 0.005), and progesterone receptor (PR)-positive (p < 0.024) in BC patients, and serum miR-155 was significantly upregulated in PR-negative (p < 0.001) BC patients while both serum miR-155 and miR-373 were positively correlated with the tumor grade. Conclusions: Circulating serum miR-155, miR-373, miR-10b, and miR-34a are potential biomarkers for early BC detection in Egyptian patients and their combination shows high sensitivity and specificity.
Collapse
Affiliation(s)
- Amal Ahmed Mohamed
- Department of Biochemistry and Molecular Biology, National Hepatology and Tropical Medicine Research Institute, Cairo 11511, Egypt;
| | - Ahmed E. Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
- Correspondence: (A.E.A.); (M.E.-S.)
| | - Ahmed M. Aref
- Faculty of Biotechnology, Modern Sciences and Arts University (MSA), Cairo 11511, Egypt;
| | - Maha Osama Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11511, Egypt;
| | - Noha A. Eldesoky
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo 11511, Egypt;
| | - Naglaa Fawazy
- Department of Clinical Pathology, National Institute of Diabetes & Endocrinology, Cairo 11511, Egypt; (N.F.); (Y.S.)
| | - Yasser Sakr
- Department of Clinical Pathology, National Institute of Diabetes & Endocrinology, Cairo 11511, Egypt; (N.F.); (Y.S.)
| | | | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.A.); (E.F.); (F.A.); (I.J.)
| | - Eman Fayad
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.A.); (E.F.); (F.A.); (I.J.)
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.A.); (E.F.); (F.A.); (I.J.)
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.A.); (E.F.); (F.A.); (I.J.)
| | - Ghadi Alsharif
- College of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia;
| | - Marwa El-Sayed
- Department of Microbiology and Immunology, Faculty of Medicine, South Valley University, Qena 83523, Egypt
- Correspondence: (A.E.A.); (M.E.-S.)
| | - Asmaa Sayed Abdelgeliel
- Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt;
| | - Rania S. Abdel Aziz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo 11976, Egypt;
| |
Collapse
|
10
|
Alexandra T, Maria G, Charalampos T, Eleni Z, George ZC, Nikolaos MV. Exosomes in breast cancer management. Where do we stand? A literature review. Biol Cell 2022; 114:109-122. [PMID: 35080041 DOI: 10.1111/boc.202100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Exosomes constitute cellular molecular fingertips that participate in intercellular communication both in health and disease states. Hence, exosomes emerge as critical mediators of cancer development and progression, as well as potential biomarkers and novel therapeutic targets. OBJECTIVE To review literature data regarding applications of circulating exosomes in breast cancer management. METHODS This is a literature review of relevant published studies until April 2020 in PubMed and Google Scholar databases. Original papers in the English language concerning exosome related studies were included. RESULTS Exosomes represent molecular miniatures of their parent cells. Several homeostatic mechanisms control exosomal secretion and synthesis. Exosomal exchange among cells creates an intricate intercellular crosstalk orchestrating almost every tissue process, as well as carcinogenesis. Available data highlight exosomes as major mediators of cancer development and progression. The secretion of specific exosomal molecules, particularly miRNAs, correlates with the underlying processes and can be used as a means of tumor detection and prognostic assessment. CONCLUSIONS Exosomal miRNAs expression profiles and levels closely relate to cancer extent, type and prognosis. Deep comprehension of such correlations and systematization of experimental outcomes will offer a novel approach in cancer detection and management. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Triantafyllou Alexandra
- 1st Propaedeutic Surgical Department, Hippocration General Hospital, National and Kapodistrian University of Athens, Greece
| | - Gazouli Maria
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Theodoropoulos Charalampos
- 1st Propaedeutic Surgical Department, Hippocration General Hospital, National and Kapodistrian University of Athens, Greece
| | - Zografos Eleni
- 1st Propaedeutic Surgical Department, Hippocration General Hospital, National and Kapodistrian University of Athens, Greece
| | - Zografos C George
- 1st Propaedeutic Surgical Department, Hippocration General Hospital, National and Kapodistrian University of Athens, Greece
| | - Michalopoulos V Nikolaos
- 1st Propaedeutic Surgical Department, Hippocration General Hospital, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
11
|
Flowers AE, Gonzalez TL, Joshi NV, Eisman LE, Clark EL, Buttle RA, Sauro E, DiPentino R, Lin Y, Wu D, Wang Y, Santiskulvong C, Tang J, Lee B, Sun T, Chan JL, Wang ET, Jefferies C, Lawrenson K, Zhu Y, Afshar Y, Tseng HR, Williams J, Pisarska MD. Sex differences in microRNA expression in first and third trimester human placenta†. Biol Reprod 2021; 106:551-567. [PMID: 35040930 DOI: 10.1093/biolre/ioab221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/09/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal and fetal pregnancy outcomes related to placental function vary based on fetal sex, which may be due to sexually dimorphic epigenetic regulation of RNA expression. We identified sexually dimorphic miRNA expression throughout gestation in human placentae. Next-generation sequencing identified miRNA expression profiles in first and third trimester uncomplicated pregnancies using tissue obtained at chorionic villous sampling (n = 113) and parturition (n = 47). Sequencing analysis identified 986 expressed mature miRNAs from female and male placentae at first and third trimester (baseMean>10). Of these, 11 sexually dimorphic (FDR < 0.05) miRNAs were identified in the first and 4 in the third trimester, all upregulated in females, including miR-361-5p, significant in both trimesters. Sex-specific analyses across gestation identified 677 differentially expressed (DE) miRNAs at FDR < 0.05 and baseMean>10, with 508 DE miRNAs in common between female-specific and male-specific analysis (269 upregulated in first trimester, 239 upregulated in third trimester). Of those, miR-4483 had the highest fold changes across gestation. There were 62.5% more female exclusive differences with fold change>2 across gestation than male exclusive (52 miRNAs vs 32 miRNAs), indicating miRNA expression across human gestation is sexually dimorphic. Pathway enrichment analysis identified significant pathways that were differentially regulated in first and third trimester as well as across gestation. This work provides the normative sex dimorphic miRNA atlas in first and third trimester, as well as the sex-independent and sex-specific placenta miRNA atlas across gestation, which may be used to identify biomarkers of placental function and direct functional studies investigating placental sex differences.
Collapse
Affiliation(s)
- Amy E Flowers
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tania L Gonzalez
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nikhil V Joshi
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Laura E Eisman
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ekaterina L Clark
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rae A Buttle
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erica Sauro
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosemarie DiPentino
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yayu Lin
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chintda Santiskulvong
- CS Cancer Applied Genomics Shared Resource, CS Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jie Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bora Lee
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tianyanxin Sun
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica L Chan
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Erica T Wang
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Caroline Jefferies
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yalda Afshar
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - John Williams
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
12
|
Farré PL, Duca RB, Massillo C, Dalton GN, Graña KD, Gardner K, Lacunza E, De Siervi A. MiR-106b-5p: A Master Regulator of Potential Biomarkers for Breast Cancer Aggressiveness and Prognosis. Int J Mol Sci 2021; 22:ijms222011135. [PMID: 34681793 PMCID: PMC8539154 DOI: 10.3390/ijms222011135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BCa) is the leading cause of death by cancer in women worldwide. This disease is mainly stratified in four subtypes according to the presence of specific receptors, which is important for BCa aggressiveness, progression and prognosis. MicroRNAs (miRNAs) are small non-coding RNAs that have the capability to modulate several genes. Our aim was to identify a miRNA signature deregulated in preclinical and clinical BCa models for potential biomarker discovery that would be useful for BCa diagnosis and/or prognosis. We identified hsa-miR-21-5p and miR-106b-5p as up-regulated and hsa-miR-205-5p and miR-143-3p as down-regulated in BCa compared to normal breast or normal adjacent (NAT) tissues. We established 51 shared target genes between hsa-miR-21-5p and miR-106b-5p, which negatively correlated with the miRNA expression. Furthermore, we assessed the pathways in which these genes were involved and selected 12 that were associated with cancer and metabolism. Additionally, GAB1, GNG12, HBP1, MEF2A, PAFAH1B1, PPP1R3B, RPS6KA3 and SESN1 were downregulated in BCa compared to NAT. Interestingly, hsa-miR-106b-5p was up-regulated, while GAB1, GNG12, HBP1 and SESN1 were downregulated in aggressive subtypes. Finally, patients with high levels of hsa-miR-106b-5 and low levels of the abovementioned genes had worse relapse free survival and worse overall survival, except for GAB1.
Collapse
Affiliation(s)
- Paula Lucía Farré
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina; (P.L.F.); (R.B.D.); (C.M.); (G.N.D.); (K.D.G.)
| | - Rocío Belén Duca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina; (P.L.F.); (R.B.D.); (C.M.); (G.N.D.); (K.D.G.)
| | - Cintia Massillo
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina; (P.L.F.); (R.B.D.); (C.M.); (G.N.D.); (K.D.G.)
| | - Guillermo Nicolás Dalton
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina; (P.L.F.); (R.B.D.); (C.M.); (G.N.D.); (K.D.G.)
| | - Karen Daniela Graña
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina; (P.L.F.); (R.B.D.); (C.M.); (G.N.D.); (K.D.G.)
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th Street, New York, NY 10032, USA;
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires B1900, Argentina;
| | - Adriana De Siervi
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina; (P.L.F.); (R.B.D.); (C.M.); (G.N.D.); (K.D.G.)
- Correspondence: ; Tel.: +54-11-4783-2869 (ext. 1206)
| |
Collapse
|
13
|
Luo Z, Yang Y, Li D, Yu L, Liu N, Li L, Ma Y. Circular RNA 0086996 regulates growth and migration of osteosarcoma cells via miR-125b-5p. Pathol Res Pract 2020; 216:153230. [PMID: 33053498 DOI: 10.1016/j.prp.2020.153230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022]
Abstract
Circular RNAs (CircRNAs) have been found to be critical in tumorigenesis; however, the role of CircRNAs in osteosarcoma is to be further studied. In this study, we preliminarily identified the up-expressed CircRNAs and its downstream microRNA in osteosarcoma and investigated its potential regulation mechanism. Hsa_circ_0086996 (Circ_0086996) was found to upregulated in tumor tissue compared to adjacent tissue. Circ_0086996 was significantly overexpressed in osteosarcoma tissue, as well as in osteosarcoma cell lines of SAOS2 and MG-63. Circ_0086996 knockdown significantly suppressed cell proliferation, migration, and invasion. Circ_0086996 knockdown also induced cell cycle arrest in G0/G1 phaseand promoted cell apoptosis in SAOS2 and MG-63 cells. Bioinformatics analysis revealed that miR-125b-5p might be of complementary binding region with Circ_0086996, which was confirmed by dual-luciferase reporter assay. Moreover, Circ_0086996 could reverse the effect of miR-125b-5p, as knockdown of Circ_0086996 or application of miR-125b-5p both can inhibit cell proliferation, migration, invasion and promote cell apoptosis and cell cycle arrest. Our study discovers that Circ_0086996 acts as miR-125b-5p sponge to mediate the tumorigenicity, which could act as a potential biomarker for the osteosarcoma and provides a novel insight for the mechanism in osteosarcoma.
Collapse
Affiliation(s)
- Zhanpeng Luo
- Department of Orthopedic, The 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| | - Yi Yang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Dawei Li
- Department of Orthopedic, The 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| | - Long Yu
- Department of Orthopedic, The 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| | - Ning Liu
- Department of Orthopedic, The 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| | - Litao Li
- Department of Orthopedic, The 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| | - Yuanzheng Ma
- Department of Orthopedic, The 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China.
| |
Collapse
|
14
|
Gao J, Yuan Y, Zhang L, Yu S, Lu J, Feng J, Hu S. Inhibition of ZEB1-AS1 confers cisplatin sensitivity in breast cancer by promoting microRNA-129-5p-dependent ZEB1 downregulation. Cancer Cell Int 2020; 20:90. [PMID: 32210737 PMCID: PMC7092489 DOI: 10.1186/s12935-020-1164-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/04/2020] [Indexed: 11/22/2022] Open
Abstract
Background Breast cancer is the leading cause of cancer-related mortality in women worldwide. Long non-coding RNAs (lncRNAs) are of critical importance in tumor drug resistance. Herein, this study aims to determine the roles of lncRNA ZEB1-AS1 in drug resistance of breast cancer involving microRNA-129-5p (miR-129-5p) and ZEB1. Methods Microarray-based gene expression profiling of breast cancer was conducted to identify the differentially expressed lncRNAs. ZEB1 expression was measured in adjacent and cancerous tissues. Next, MCF-7 and MDA-MB-231 cells were treated with a series of inhibitor, mimic or siRNA to clarify the roles of lncRNA ZEB1-AS1 and miR-129-5p in drug resistance of breast cancer. Then the target relationship of miR-129-5p with lncRNA ZEB1-AS1 and ZEB1 was verified. The expression patterns of miR-129-5p, lncRNA ZEB1-AS1, Bcl-2, MDR-1, ZEB1 and corresponding proteins were evaluated. Moreover, the apoptosis and drug resistance of MCF-7 cell were detected by CCK-8 and flow cytometry respectively. Results LncRNA ZEB1-AS1 was observed to be an upregulated lncRNA in breast cancer, and ZEB1 overexpression was noted in breast cancerous tissues. MiR-129-5p was revealed to specifically bind to both ZEB1 and lncRNA ZEB1-AS1. Moreover, the expression levels of ZEB1-AS1, ZEB1, Bcl-2, MDR-1, and corresponding proteins were decreased, but the expression of miR-129-5p was increased with transfection of miR-129-5p mimic and lncRNA ZEB1-AS1 siRNA. Besides, drug resistance to cisplatin was inhibited, and cell apoptosis was promoted in breast cancer after transfection of miR-129-5p mimic, lncRNA ZEB1-AS1 siRNA, and ZEB1 siRNA. Conclusion In conclusion, the study provides evidence that lncRNA ZEB1-AS1 silencing protects against drug resistance in breast cancer by promoting miR-129-5p-dependent ZEB1 downregulation. It may serve as a novel therapeutic target in breast cancer treatment.
Collapse
Affiliation(s)
- Jin Gao
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baiziting, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yuan Yuan
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baiziting, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Lili Zhang
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baiziting, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Shaorong Yu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baiziting, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baiziting, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baiziting, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Sainan Hu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baiziting, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Wang Z, Wang X. miR-122-5p promotes aggression and epithelial-mesenchymal transition in triple-negative breast cancer by suppressing charged multivesicular body protein 3 through mitogen-activated protein kinase signaling. J Cell Physiol 2020; 235:2825-2835. [PMID: 31541468 DOI: 10.1002/jcp.29188] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is highly metastatic and frequently has a poor prognosis. The lack of comprehension of TNBC and gene therapy targets has led to limitedly effective treatment for TNBC. This study was conducted to better understand the molecular mechanism behind TNBC progression, and to find out promising gene therapy targets for TNBC. Herein the influence of miR-122-5p's binding charged multivesicular body protein 3 (CHMP3) 3'-untranslated region (3'-UTR) on in TNBC cells was investigated. in vitro experiments quantitative real-time polymerase chain reaction, immunoblot analysis, dual-luciferase reporter gene assay, cell counting assay, transwell invasion assay, and flow cytometry-determined cell apoptosis assay were employed. We also used TargetScan Human 7.2 database to find out the target relationship between miR-122-5p and CHMP3 3'-UTR. TImer algorithm was used to provide an overview of the expression of CHMP3 gene across human pan-cancer, to predict the survival outcome of breast cancer patients, and to predict the correlation between CHMP3 gene expression and epithelial-mesenchymal transition (EMT) and mitogen-activated protein kinase (MAPK)-related gene expression. CHMP3 gene was significantly downregulated across a wide range of human cancers including breast cancer (BRCA). A higher level of CHMP3 gene predicted a better 3- and 5-year survival outcome of patients with BRCA. In our experiments, miR-122-5p was significantly upregulated and CHMP3 gene was significantly downregulated in TNBC cells compared with normal cell line. miR-122-5p mimics enhanced TNBC cell viability, proliferation, and invasion whereas the upregulation of CHMP3 gene led to an opposite outcome. Forced expression of miR-122-5p suppressed cell apoptosis, compelled EMT and MAPK signaling whereas forced expression of CHMP3 did the opposite. We then conclude that miR-122-5p promotes aggression and EMT in TNBC by suppressing CHMP3 through MAPK signaling.
Collapse
Affiliation(s)
- Zheng Wang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Luo ZB, Lai GE, Jiang T, Cao CL, Peng T, Liu FE. A Competing Endogenous RNA Network Reveals Novel lncRNA, miRNA and mRNA Biomarkers With Diagnostic and Prognostic Value for Early Breast Cancer. Technol Cancer Res Treat 2020; 19:1533033820983293. [PMID: 33371806 PMCID: PMC7871288 DOI: 10.1177/1533033820983293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This study aims to reveal early breast cancer (BC) specific competing endogenous RNA (ceRNA) network through the expression profiles of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and mRNAs. METHODS Based on The Cancer Genome Atlas (TCGA), we obtained the differentially expressed mRNAs, miRNAs, and lncRNAs (DEmRNAs, DEmiRNAs and DElncRNAs) between early BC and normal samples. The lncRNA-miRNA-mRNA interaction network was constructed using Cytoscape. Functional enrichment were performed using GeneCoDis3. The expression of selected genes were validated by qRT-PCR. Based on the published dataset, we validated the result of TCGA integration analysis. The diagnostic and prognostic value of candidate genes was evaluated by ROC curve analysis and survival analysis, respectively. RESULTS Totally, 1207 DEmRNAs, 194 DElncRNAs and 37 DEmiRNAs were obtained. Functional enrichment analysis results showed that all of DEmRNAs were enriched in pathway of cytokine-cytokine receptor interaction, PPAR signaling pathway and pathways in cancer. The DEmRNA-DEmiRNA-DElncRNA interaction network in early BC was consisted of 23 DEmiRNAs, 95 DElncRNAs and 309 DEmRNAs. Among ceRNA network, IL-6-hsa-miR-182-5p-ADAMTS9-AS1 interactions, LIFR-hsa-miR-21-5p-ADAMTS9-AS1 interactions and MMP1/MMP11-hsa-miR-145-5p-CDKN2B-AS1 interactions were speculated to involve in the development of early BC. The qRT-PCR results were consistent with our integrated analysis. Except for ADAMTS9-AS1 and CDKN2B-AS1, expression of the others results in the Gene Expression Omnibus (GEO) dataset were generally consistent with TCGA integrated analysis. The area under curve (AUC) of the ADAMTS9-AS1, CDKN2B-AS1, IL-6, MMP11, hsa-miR-145-5p and hsa-miR-182-5p were 0.947, 0.862, 0.842, 0.993, 0.960 and 0.944, and the specificity and sensitivity of the 6 biomarkers were 83.4% and 95.6%, 72.2% and 90.3%, 80.1% and 74.3%, 96.2% and 96.5%, 90.1% and 92.3%, and 88.7% and 90.4%, respectively. In addition, IL-6 had potential prognostic value for early BC. CONCLUSION These findings may provide novel insights into the lncRNA-miRNA-mRNA network and uncover potential therapeutic targets in early BC.
Collapse
Affiliation(s)
- Zhong-Bing Luo
- Department of Breast Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou of Jiangxi Province, China
| | - Gui-E Lai
- Department of Breast Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou of Jiangxi Province, China
| | - Tao Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou of Jiangxi Province, China
| | - Chuan-Lin Cao
- Department of Breast Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou of Jiangxi Province, China
| | - Tao Peng
- Department of Breast Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou of Jiangxi Province, China
| | - Feng-En Liu
- Department of Breast Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou of Jiangxi Province, China
| |
Collapse
|
17
|
Najminejad H, Kalantar SM, Abdollahpour‐Alitappeh M, Karimi MH, Seifalian AM, Gholipourmalekabadi M, Sheikhha MH. Emerging roles of exosomal miRNAs in breast cancer drug resistance. IUBMB Life 2019; 71:1672-1684. [DOI: 10.1002/iub.2116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Hamid Najminejad
- Department of Medical GeneticsShahid Sadoughi University of Medical Sciences Yazd Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center for InfertilityShahid Sadoughi University of Medical Sciences Yazd Iran
| | | | | | - Alexander M. Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd)The London BioScience Innovation Centre London UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research CentreIran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical Sciences Tehran Iran
| | - Mohammad Hasan Sheikhha
- Research and Clinical Center for InfertilityShahid Sadoughi University of Medical Sciences Yazd Iran
| |
Collapse
|
18
|
MicroRNA-155 regulates lipopolysaccharide-induced mucin 5AC overproduction via a suppressor of cytokine signaling 1-mediated mechanism in human bronchial epithelial cells. Respir Physiol Neurobiol 2019; 264:12-18. [DOI: 10.1016/j.resp.2019.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 01/15/2023]
|
19
|
You F, Luan H, Sun D, Cui T, Ding P, Tang H, Sun D. miRNA-106a Promotes Breast Cancer Cell Proliferation, Clonogenicity, Migration, and Invasion Through Inhibiting Apoptosis and Chemosensitivity. DNA Cell Biol 2019; 38:198-207. [PMID: 30570350 DOI: 10.1089/dna.2018.4282] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Faping You
- Department of Breast/Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Hong Luan
- Department of Medical, Shengli Oilfield Central Hospital, Dongying, China
| | - Dan Sun
- Department of Geriatric Ward, Shengli Oilfield Central Hospital, Dongying, China
| | - Tao Cui
- Department of Breast/Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Pengpeng Ding
- Department of Breast/Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Haitao Tang
- Department of Breast/Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Diwen Sun
- Department of Breast/Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
20
|
Liu X, Weng Y, Liu P, Sui Z, Zhou L, Huang Y, Zhang L, Zhang Y, Tan X. Identification of PGAM1 as a putative therapeutic target for pancreatic ductal adenocarcinoma metastasis using quantitative proteomics. Onco Targets Ther 2018; 11:3345-3357. [PMID: 29922073 PMCID: PMC5995415 DOI: 10.2147/ott.s162470] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is an aggressive gastrointestinal cancer characterized by an extremely low survival rate because of early metastasis. Identifying satisfactory therapeutic targets associated with metastasis is crucial to improve the treatment effect of PDAC. Materials and methods In this research, we used stable isotope labeling by amino acids in cell culture, 1-dodecyl-3-methylimidazolium chloride-assisted sample preparation method preparing protein sample and nano-reversed-phase liquid chromatography-mass spectrometry/mass spectrometry analysis to perform the comparative proteomics of two homologous hamster pancreatic cancer cell lines that are different in metastatic ability: PC-1.0 (highly metastatic) and PC-1 (weakly metastatic). Verifications are through immunohistochemistry on clinical human PDAC pathologic tissues as well as by Western blot of human pancreatic cancer cell lines. siRNA silencing methods were used to study the effect of molecules on invasion and metastasis of pancreatic cancer cell lines. Results Bioinformatic analysis indicated that a total of 141 differentially expressed proteins (82 upregulated and 59 downregulated in PC-1.0 cells) were identified showing obviously differential expression (>1.5-fold change). These differentially expressed proteins were involved in a number of different biologic functions, metabolic pathways, and pathophysiologic processes. Phosphoglycerate mutase 1 (PGAM1) and HSPE1 are the top two upregulated proteins, and PDIA3 and CALR are the top two downregulated proteins in PC-1.0 cells compared to PC-1 cells. PGAM1 and HSPE1 showed higher expressions in PDAC tissue with clinical metastasis and highly metastatic pancreatic cancer cell lines PC-1.0 and Aspc-1. PDIA3 and CALR showed higher expressions in weakly metastatic pancreatic cancer cell lines PC-1 and Capan-2. The Western blot results were consistent with the MS quantification data. Silencing PGAM1 was found to decrease the migration and invasion of pancreatic cancer cell lines with statistical significance, especially in highly metastatic PC-1.0 and Aspc-1 cell lines. Conclusion These data indicated that PGAM1 may be a potential therapeutic target for PDAC metastasis.
Collapse
Affiliation(s)
- Xinlu Liu
- First Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yejing Weng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Peng Liu
- First Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Lei Zhou
- First Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yinpeng Huang
- First Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Xiaodong Tan
- First Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|