1
|
Lin W, Lin Z, Wu L, Zheng Y, Xi H. NSUN2 facilitates tenogenic differentiation of rat tendon-derived stem cells via m5C methylation of KLF2. Regen Ther 2024; 26:792-799. [PMID: 39309399 PMCID: PMC11415532 DOI: 10.1016/j.reth.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Tendon-derived stem cells (TDSCs) play a critical role in tendon repair. N5-methylcytosine (m5C) is a key regulator of cellular processes such as differentiation. This study aimed to investigate the impact of m5C on TDSC differentiation and the underlying mechanism. Methods TDSCs were isolated from rats and identified, and a tendon injury rat model was generated. Tenogenic differentiation in vitro was evaluated using Sirius red staining and quantitative real-time polymerase chain reaction, while that in vivo was assessed using immunohistochemistry and hematoxylin‒eosin staining. m5C methylation was analyzed using methylated RNA immunoprecipitation, dual-luciferase reporter assay, and RNA stability assay. Results The results showed that m5C levels and NSUN2 expression were increased in TDSCs after tenogenic differentiation. Knockdown of NSUN2 inhibited m5C methylation of KLF2 and decreased its stability, which was recognized by YBX1. Moreover, interfering with KLF2 suppressed tenogenic differentiation of TDSCs, which could be abrogated by KLF2 overexpression. Additionally, TDSCs after NSUN2 overexpression contributed to ameliorating tendon injury in vivo. In conclusion, NSUN2 promotes tenogenic differentiation of TDSCs via m5C methylation of KLF2 and accelerates tendon repair. Conclusions The findings suggest that overexpression of NSUN2 can stimulate the differentiation ability of TDSCs, which can be used in the treatment of tendinopathy.
Collapse
Affiliation(s)
- Wei Lin
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
- Taizhou Integrated Traditional Chinese and Western Medicine Hospital in Zhejiang Province, Shangcheng Street, Zeguo Town, Wengling City, Zhejiang 317200, China
| | - Zhi Lin
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
| | - Lizhi Wu
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
| | - Youmao Zheng
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
| | - Huifeng Xi
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
| |
Collapse
|
2
|
Guo J, Tang H, Huang P, Ye X, Tang C, Shu Z, Guo J, Kang X, Shi Y, Zhou B, Liang T, Tang K. Integrative single-cell RNA and ATAC sequencing reveals that the FOXO1-PRDX2-TNF axis regulates tendinopathy. Front Immunol 2023; 14:1092778. [PMID: 37223090 PMCID: PMC10200929 DOI: 10.3389/fimmu.2023.1092778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Tendinopathy, the most common form of chronic tendon disorder, leads to persistent tendon pain and loss of function. Profiling the heterogeneous cellular composition in the tendon microenvironment helps to elucidate rational molecular mechanisms of tendinopathy. Methods and results In this study, through a multi-modal analysis, a single-cell RNA- and ATAC-seq integrated tendinopathy landscape was generated for the first time. We found that a specific cell subpopulation with low PRDX2 expression exhibited a higher level of inflammation, lower proliferation and migration ability, which not only promoted tendon injury but also led to microenvironment deterioration. Mechanistically, a motif enrichment analysis of chromatin accessibility showed that FOXO1 was an upstream regulator of PRDX2 transcription, and we confirmed that functional blockade of FOXO1 activity induced PRDX2 silencing. The TNF signaling pathway was significantly activated in the PRDX2-low group, and TNF inhibition effectively restored diseased cell degradation. Discussion We revealed an essential role of diseased cells in tendinopathy and proposed the FOXO1-PRDX2-TNF axis is a potential regulatory mechanism for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Junfeng Guo
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hong Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Pan Huang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiao Ye
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chuyue Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhao Shu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junfeng Guo
- Department of Stomatology, The 970th Hospital of the Joint Logistics Support Force, Yantai, China
| | - Xia Kang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Youxing Shi
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Binghua Zhou
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Taotao Liang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kanglai Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Wang H, Dai GC, Li YJ, Chen MH, Lu PP, Zhang YW, -Zhang M, Cao MM, Rui YF. Targeting Senescent Tendon Stem/Progenitor Cells to Prevent or Treat Age-Related Tendon Disorders. Stem Cell Rev Rep 2022; 19:680-693. [PMID: 36520409 DOI: 10.1007/s12015-022-10488-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Age-related tendon disorder, a primary motor system disease, is characterized by biological changes in the tendon tissue due to senescence and seriously affects the quality of life of the elderly. The pathogenesis of this disease is not well-understood. Tendon stem/progenitor cells (TSPCs) exhibit multi-differentiation capacity. These cells are important cellular components of the tendon because of their roles in tendon tissue homeostasis, remodeling, and repair. Previous studies revealed alterations in the biological characteristics and tenogenic differentiation potential of TSPCs in senescent tendon tissue, in turn contributing to insufficient differentiation of TSPCs into tenocytes. Poor tendon repair can result in age-related tendinopathies. Therefore, targeting of senescent TSPCs may restore the tenogenic differentiation potential of these cells and achieve homeostasis of the tendon tissue to prevent or treat age-related tendinopathy. In this review, we summarize the biological characteristics of TSPCs and histopathological changes in age-related tendinopathy, as well as the potential mechanisms through which TSPCs contribute to senescence. This information may promote further exploration of innovative treatment strategies to rescue TSPCs from senescence.
Collapse
Affiliation(s)
- Hao Wang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Guang-Chun Dai
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Ying-Juan Li
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Min-Hao Chen
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Pan-Pan Lu
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Yuan-Wei Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Ming -Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Mu-Min Cao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Yun-Feng Rui
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.
| |
Collapse
|
4
|
Wu B, Nakamura A. Deep Insight into the Role of MIF in Spondyloarthritis. Curr Rheumatol Rep 2022; 24:269-278. [PMID: 35809213 DOI: 10.1007/s11926-022-01081-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Pathological roles of macrophage migration inhibitory factor (MIF) have recently been demonstrated in spondyloarthritis (SpA) preclinical models, identifying MIF as a new treatment target for SpA. However, the specific contribution of MIF and therapeutic potential of MIF-targeted therapies to various tissue types affected by SpA are not well delineated. RECENT FINDINGS MIF and its cognate receptor CD74 are extensively involved in the pathogenesis of SpA including inflammation in the spine, joint, eyes, skin, and gut. The majority of the current evidence has consistently shown that MIF drives the inflammation in these distinct anatomical sites. In preclinical models, genetic deletion or blockade of MIF reduces the severity of inflammation. Although MIF is generally an upstream cytokine which regulates downstream effector cytokines, MIF also intensifies type 3 immunity by promoting helper T 17 (Th17) plasticity. MIF- or CD74-targeted therapies have also reported to be well tolerated in clinical trials for other diseases. Recent findings suggest that MIF-CD74 axis is a new therapeutic target for SpA to improve various clinical features. Clinical trials for MIF- or CD74-targeted therapies for SpA patients are warranted.
Collapse
Affiliation(s)
- Brian Wu
- Schroeder Arthritis Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| | - Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada. .,Krembil Research Institute, University Health Network, Toronto, ON, Canada. .,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada. .,Institute of Medical Science, Temerty Faculty of Medicine of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Shi L, Lu PP, Dai GC, Li YJ, Rui YF. Advanced glycation end productions and tendon stem/progenitor cells in pathogenesis of diabetic tendinopathy. World J Stem Cells 2021; 13:1338-1348. [PMID: 34630866 PMCID: PMC8474716 DOI: 10.4252/wjsc.v13.i9.1338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/26/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Tendinopathy is a challenging complication observed in patients with diabetes mellitus. Tendinopathy usually leads to chronic pain, limited joint motion, and even ruptured tendons. Imaging and histological analyses have revealed pathological changes in various tendons of patients with diabetes, including disorganized arrangement of collagen fibers, microtears, calcium nodules, and advanced glycation end product (AGE) deposition. Tendon-derived stem/ progenitor cells (TSPCs) were found to maintain hemostasis and to participate in the reversal of tendinopathy. We also discovered the aberrant osteochondrogenesis of TSPCs in vitro. However, the relationship between AGEs and TSPCs in diabetic tendinopathy and the underlying mechanism remain unclear. In this review, we summarize the current findings in this field and hypothesize that AGEs could alter the properties of tendons in patients with diabetes by regulating the proliferation and differentiation of TSPCs in vivo.
Collapse
Affiliation(s)
- Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ying-Juan Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
6
|
Kim DH, Noh SU, Chae SW, Kim SJ, Lee YT. Altered Differentiation of Tendon-Derived Stem Cells in Diabetic Conditions Mediated by Macrophage Migration Inhibitory Factor. Int J Mol Sci 2021; 22:ijms22168983. [PMID: 34445689 PMCID: PMC8396498 DOI: 10.3390/ijms22168983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
The purpose of our study was to evaluate the role of macrophage migration inhibitory factor (MIF) in the differentiation of tendon-derived stem cells (TdSCs) under hyperglycemic conditions. In the in vivo experiment, rats were classified into diabetic (DM) and non-DM groups depending on the intraperitoneal streptozotocin (STZ) or saline injection. Twelve-week after STZ injection, the supraspinatus tendon was harvested and prepared for histological evaluation and real-time reverse transcription polymerase chain reaction for osteochondrogenic (aggrecan, BMP-2, and Sox9) and tenogenic (Egr1, Mkx, scleraxis, type 1 collagen, and Tnmd) markers. For the in vitro experiment, TdSCs were isolated from healthy rat Achilles tendons. Cultured TdSCs were treated with methylglyoxal and recombinant MIF or MIF gene knockdown to determine the effect of hyperglycemic conditions and MIF on the differentiation function of TdSCs. These conditions were classified into four groups: hyperglycemic-control group, hyperglycemic-recombinant-MIF group, hyperglycemic-knockdown-MIF group, and normal-control group. The mRNA expression of osteochondrogenic and tenogenic markers was compared among the groups. In the in vivo experiment, the mRNA expression of all osteochondrogenic and tenogenic differentiation markers in the DM group was significantly higher and lower than that in the non-DM group, respectively. Similarly, in the in vitro experiments, the expression of all osteochondrogenic and tenogenic differentiation markers was significantly upregulated and downregulated, respectively, in the hyperglycemic-control group compared to that in the normal-control group. The hyperglycemic-knockdown-MIF group demonstrated significantly decreased expression of all osteochondrogenic differentiation markers and increased expression of only some tenogenic differentiation markers compared with the hyperglycemic-control group. In contrast, the hyperglycemic-recombinant-MIF group showed significantly increased expression of all osteochondrogenic differentiation markers, but no significant difference in any tenogenic marker level, compared to the hyperglycemic-control group. These results suggest that tendon homeostasis could be affected by hyperglycemic conditions, and MIF appears to alter the differentiation of TdSCs via enhancement of the osteochondrogenic differentiation in hyperglycemic conditions. These are preliminary findings, and must be confirmed in a further study.
Collapse
Affiliation(s)
- Du-Hwan Kim
- Department of Physical Medicine and Rehabilitation, College of Medicine, Chung-Ang University, Seoul 06973, Korea;
| | - Sun-Up Noh
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea;
| | - Seoung-Wan Chae
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea;
| | - Sang-Jun Kim
- Seoul Jun Research Center, Seoul Jun Rehabilitation Clinic, Seoul 06737, Korea;
| | - Yong-Taek Lee
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea;
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
- Correspondence: ; Tel.: +82-2-2001-2472
| |
Collapse
|
7
|
Huang Z, Yin Z, Xu J, Fei Y, Heng BC, Jiang X, Chen W, Shen W. Tendon Stem/Progenitor Cell Subpopulations and Their Implications in Tendon Biology. Front Cell Dev Biol 2021; 9:631272. [PMID: 33681210 PMCID: PMC7930382 DOI: 10.3389/fcell.2021.631272] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022] Open
Abstract
Tendon harbors a cell population that possesses stem cell characteristics such as clonogenicity, multipotency and self-renewal capacity, commonly referred to as tendon stem/progenitor cells (TSPCs). Various techniques have been employed to study how TSPCs are implicated in tendon development, homeostasis and healing. Recent advances in single-cell analysis have enabled much progress in identifying and characterizing distinct subpopulations of TSPCs, which provides a more comprehensive view of TSPCs function in tendon biology. Understanding the mechanisms of physiological and pathological processes regulated by TSPCs, especially a particular subpopulation, would greatly benefit treatment of diseased tendons. Here, we summarize the current scientific literature on the various subpopulations of TSPCs, and discuss how TSPCs can contribute to tissue homeostasis and pathogenesis, as well as examine the key modulatory signaling pathways that determine stem/progenitor cell state. A better understanding of the roles that TSPCs play in tendon biology may facilitate the development of novel treatment strategies for tendon diseases.
Collapse
Affiliation(s)
- Zizhan Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China.,Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Zi Yin
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,China Orthopedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Jialu Xu
- Department of Infectious Diseases, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China.,Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Boon Chin Heng
- School of Stomatology, Peking University, Beijing, China
| | - Xuesheng Jiang
- Department of Orthopedic Surgery, Huzhou Hospital, Zhejiang University, Huzhou, China
| | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China.,Institute of Sports Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,China Orthopedic Regenerative Medicine (CORMed), Hangzhou, China
| |
Collapse
|
8
|
Zhang J, Nie D, Williamson K, McDowell A, Hogan MV, Wang JHC. Moderate and intensive mechanical loading differentially modulate the phenotype of tendon stem/progenitor cells in vivo. PLoS One 2020; 15:e0242640. [PMID: 33373386 PMCID: PMC7771689 DOI: 10.1371/journal.pone.0242640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/13/2020] [Indexed: 11/18/2022] Open
Abstract
To examine the differential mechanobiological responses of specific resident tendon cells, we developed an in vivo model of whole-body irradiation followed by injection of either tendon stem/progenitor cells (TSCs) expressing green fluorescent protein (GFP-TSCs) or mature tenocytes expressing GFP (GFP-TNCs) into the patellar tendons of wild type C57 mice. Injected mice were subjected to short term (3 weeks) treadmill running, specifically moderate treadmill running (MTR) and intensive treadmill running (ITR). In MTR mice, both GFP-TSC and GFP-TNC injected tendons maintained normal cell morphology with elevated expression of tendon related markers collagen I and tenomodulin. In ITR mice injected with GFP-TNCs, cells also maintained an elongated shape similar to the shape found in normal/untreated control mice, as well as elevated expression of tendon related markers. However, ITR mice injected with GFP-TSCs showed abnormal changes, such as cell morphology transitioning to a round shape, elevated chondrogenic differentiation, and increased gene expression of non-tenocyte related genes LPL, Runx-2, and SOX-9. Increased gene expression data was supported by immunostaining showing elevated expression of SOX-9, Runx-2, and PPARγ. This study provides evidence that while MTR maintains tendon homeostasis by promoting the differentiation of TSCs into TNCs, ITR causes the onset of tendinopathy development by inducing non-tenocyte differentiation of TSCs, which may eventually lead to the formation of non-tendinous tissues in tendon tissue after long term mechanical overloading conditions on the tendon.
Collapse
Affiliation(s)
- Jianying Zhang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Daibang Nie
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Kelly Williamson
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Arthur McDowell
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Howard University College of Medicine, Washington D.C., United States of America
| | - MaCalus V. Hogan
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - James H-C. Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Kim SJ, Oh HW, Chang JW, Kim SJ. Recovery of Tendon Characteristics by Inhibition of Aberrant Differentiation of Tendon-Derived Stem Cells from Degenerative Tendinopathy. Int J Mol Sci 2020; 21:ijms21082687. [PMID: 32294907 PMCID: PMC7215446 DOI: 10.3390/ijms21082687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022] Open
Abstract
The inhibition of the aberrant differentiation of tendon-derived stem cells (TDSCs) is a major target for the regeneration of damaged tendon tissues, as tendinopathy can be caused by the aberrant differentiation of TDSCs. We investigated whether the possible aberrant differentiation of TDSCs can be prevented by using adequate inhibitors. TDSCs extracted from chemically induced tendinopathy and injury-with-overuse tendinopathy models were cultured with 18α-glycyrrhetinic acid (AGA) and T0070907 to block osteogenic differentiation and adipogenic differentiation, respectively. The optimal dose of AGA decreased the osteogenic-specific marker Runx2 (Runt-related transcription factor 2), and T0070907 blocked the adipogenic-specific marker peroxisome proliferator-activated receptor gamma (PPARγ) in mRNA levels. We also found that AGA induced tenogenic differentiation in mRNA levels. However, T0070907 did not affect the tenogenic differentiation and regenerative capacity of TDSCs. We expect that optimal doses of AGA and T0070907 can prevent tendinopathy by inhibiting osteogenic and adipogenic differentiation, respectively. In addition, AGA and T0070907 may play important roles in the treatment of tendinopathy.
Collapse
Affiliation(s)
- Sun Jeong Kim
- Department of Physical and Rehabilitation Medicine, Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
- R&D Center, ENCell Co. Ltd., Seoul 06072, Korea
| | - Hae Won Oh
- Division of Health Policy and Administration, School of Public Health, University of Illinois, Chicago, IL 60612, USA;
| | - Jong Wook Chang
- R&D Center, ENCell Co. Ltd., Seoul 06072, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
- Correspondence: (J.W.C.); (S.J.K.); Tel.: +82-2-3410-6048 (J.W.C.); +82-2-576-0100 (S.J.K.)
| | - Sang Jun Kim
- Seoul Jun Research Center, Seoul Jun Rehabilitation Clinic, Seoul 06737, Korea
- Correspondence: (J.W.C.); (S.J.K.); Tel.: +82-2-3410-6048 (J.W.C.); +82-2-576-0100 (S.J.K.)
| |
Collapse
|
10
|
Li K, Deng G, Deng Y, Chen S, Wu H, Cheng C, Zhang X, Yu B, Zhang K. High cholesterol inhibits tendon-related gene expressions in tendon-derived stem cells through reactive oxygen species-activated nuclear factor-κB signaling. J Cell Physiol 2019; 234:18017-18028. [PMID: 30825206 DOI: 10.1002/jcp.28433] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/25/2022]
Abstract
Clinical studies have indicated that increased serum cholesterol levels raised the risk of tendinopathy in hypercholesterolemia, but the effect of cholesterol on tendon-derived stem cells (TDSCs) and its underlying mechanism have not been studied. The purpose of this study is to investigate the association between cholesterol and tendinopathy in vitro and in vivo, and its underlying molecular mechanism as well. In TDSCs, the effect of cholesterol was assessed by quantitative polymerase chain reaction, western blot analysis, and immunofluorescence staining. Intracellular levels of reactive oxygen species (ROS) was detected, using flow cytometry. The link between nuclear factor (NF)-κB signaling and the effect of cholesterol was evaluated using a representative IκB kinase (IKK) inhibitor, BAY 11-7082. In addition, Achilles tendons from apolipoprotein E mice fed with a high-fat diet were histologically assessed using hematoxylin and eosin staining and immunohistochemistry. We found that high cholesterol apparently lowered the expression of tendon cell markers (collagen 1, scleraxis, tenomodulin), and elevated ROS levels via the NF-κB pathway both in vitro and in vivo. The ROS scavenger N-acetylcysteine (NAC) and BAY 11-7082 reversed the inhibiting effect of cholesterol on the tendon-related gene expressions of TDSCs. Moreover, NAC blocked cholesterol-induced phosphorylation of IκBα and p65. Significant histological alternation in vivo was shown in Achilles tendon in the hypercholesterolemic group. These results indicated that high cholesterol may inhibit the tendon-related gene expressions in TDSCs via ROS-activated NF-кB signaling, implying pathogenesis of tendinopathy in hypercholesterolemia and suggesting a new mechanism underlying hypercholesterolemia-induced tendinopathy.
Collapse
Affiliation(s)
- Kaiqun Li
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ganming Deng
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Bone and Joint Surgery, Baoan District People's Hospital of Shenzhen, Shenzhen, China
| | - Ye Deng
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siwei Chen
- Department of Orthopaedics and Traumatology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai, China
| | - Hangtian Wu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Caiyu Cheng
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianrong Zhang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kairui Zhang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Kim SJ, Tatman PD, Song DH, Gee AO, Kim DH, Kim SJ. Nanotopographic cues and stiffness control of tendon-derived stem cells from diverse conditions. Int J Nanomedicine 2018; 13:7217-7227. [PMID: 30510414 PMCID: PMC6231514 DOI: 10.2147/ijn.s181743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Tendon-derived stem cells (TDSCs) are key factors associated with regeneration and healing in tendinopathy. The aim of this study was to investigate the effects of mechanical stiffness and topographic signals on the differentiation of TDSCs depending on age and pathological conditions. Materials and methods We compared TDSCs extracted from normal tendon tissues with TDSCs from tendinopathic Achilles tendon tissues of Sprague Dawley rats in vitro and TDSCs cultured on nanotopographic cues and substrate stiffness to determine how to control the TDSCs. The tendinopathy model was created using a chemical induction method, and the tendon injury model was created via an injury-and-overuse method. Norland Optical Adhesive 86 (NOA86) substrate with 2.48 GPa stiffness with and without 800 nm-wide nanogrooves and a polyurethane substrate with 800 nm-wide nanogrooves were used. Results TDSCs from 5-week-old normal tendon showed high expression of type III collagen on the flat NOA86 substrate. In the 15-week normal tendon model, expression of type III collagen was high in TDSCs cultured on the 800 nm NOA86 substrates. However, in the 15-week tendon injury model, expression of type III collagen was similar irrespective of nanotopographic cues or substrate stiffness. The expression of type I collagen was also independent of nanotopographic cues and substrate stiffness in the 15-week normal and tendon injury models. Gene expression of scleraxis was increased in TDSCs cultured on the flat NOA86 substrate in the 5-week normal tendon model (P=0.001). In the 15-week normal tendon model, scleraxis was highly expressed in TDSCs cultured on the 800 nm and flat NOA86 substrate (P=0.043). However, this gene expression was not significantly different between the substrates in the 5-week tendinopathy and 15-week tendon injury models. Conclusion Development and maturation of tendon are enhanced when TDSCs from normal tendons were cultured on stiff surface, but not when the TDSCs came from pathologic models. Therapeutic applications of TDSCs need to be flexible based on tendon age and tendinopathy.
Collapse
Affiliation(s)
- Sun Jeong Kim
- Department of Physical and Rehabilitation Medicine, Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea,
| | - Philip D Tatman
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Da-Hyun Song
- Department of Physical and Rehabilitation Medicine, Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea,
| | - Albert O Gee
- Department of Orthopedic Surgery and Sports Medicine, University of Washington, Seattle, WA, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sang Jun Kim
- Department of Physical and Rehabilitation Medicine, Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea,
| |
Collapse
|