1
|
Li J, Yin S, Zhou L, Nezamzadeh-Ejhieh A, Pan Y, Qiu L, Liu J, Zhou Z. Advances in the study of metal-organic frameworks and their biomolecule composites for osteoporosis therapeutic applications. Biomater Sci 2024; 12:5912-5932. [PMID: 39440387 DOI: 10.1039/d4bm01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
With the population aging, osteoporosis (OP) is becoming more and more common, seriously affecting patients' quality of life and their families, and how to prevent and treat osteoporosis has become a hot topic. However, the current conventional method of treating OP is oral anti-osteoporosis medication, which has drawbacks such as first-pass elimination and gastrointestinal adverse effects. At the same time, osteoporosis can lead to microbial infections and the need to promote angiogenesis for bone healing, among other needs that often cannot be met with conventional treatments, and there is a risk of resistance to oral antibiotics for microbial infections. Metal-organic frameworks (MOFs) having a high specific surface area, high porosity, controlled degradation, and variable composition; they can not only be used as a carrier to control drug release, but can also play multiple roles in the treatment of OP and microbial infections by releasing metal ions, etc., so they have inherent advantages for OP, which is a disease that requires long-term treatment. Therefore, this paper reviews the research progress of MOFs and their biomacromolecular composites in therapeutic applications for osteoporosis, categorized by MOF type, and briefly describes the mechanism of osteoporosis, and different synthesis methods of MOFs and MOF-based composites, and finally presents the main existing problems and future perspectives, aiming to make MOFs more helpful for OP treatment.
Collapse
Affiliation(s)
- Jiahui Li
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Shihai Yin
- Hand Surgery Department, Liaobu Hospital, Dongguan, 523400, China
| | - Luyi Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | | | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Longhai Qiu
- Department of Traumatology and Orthopaedic Surgery, Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Zhikun Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| |
Collapse
|
2
|
Shi X, Fu Q, Mao J, Yang J, Chen Y, Lu J, Chen A, Lu N. Integration of single-cell and RNA-seq data to explore the role of focal adhesion-related genes in osteoporosis. J Cell Mol Med 2024; 28:e18271. [PMID: 38534087 DOI: 10.1111/jcmm.18271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Integrin-based focal adhesion is one of the major mechanosensory in osteocytes. The aim of this study was to mine the hub genes associated with focal adhesion and investigate their roles in osteoporosis based on the data of single-cell RNA sequencing and RNA-sequencing. Two hub genes (FAM129A and RNF24) with the same expression trend and AUC values greater than 0.7 in both GSE56815 and GSE56116 cohorts were uncovered. The nomogram was created to predict the risk of OP based on two hub genes. Subsequently, the competing endogenous RNA network was established based on two hub genes, 14 microRNAs and five long noncoding RNAs. Meanwhile, transcription factors-hub gene network was established based on two hub genes and 14 TFs. Finally, 73 drugs were predicted, of which there were 13 drugs targeting FAM129A and 66 drugs targeting RNF24. In both mouse and human blood samples, FAM129A expression was decreased in granulocytes and RNF24 expression was increased in monocytes. In the mouse experiment, FAM129A and anti-RNF24 were found to partially alleviate the progression of osteoporosis. In conclusion, two hub genes related to focal adhesion were identified by combined scRNA-seq and RNA-seq analyses, which might supply a new insight for the treatment and evaluation of OP.
Collapse
Affiliation(s)
- Xiaojian Shi
- Department of Orthopedic Trauma Surgery, Haimen People's Hospital, Nantong, Jiangsu, China
| | - Qiang Fu
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Jianyu Mao
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Jiajie Yang
- Department of Orthopedic Trauma Surgery, Haimen People's Hospital, Nantong, Jiangsu, China
| | - Ye Chen
- Department of Orthopedic Trauma Surgery, Haimen People's Hospital, Nantong, Jiangsu, China
| | - Jiajia Lu
- Department of Orthopedic Trauma Surgery, Haimen People's Hospital, Nantong, Jiangsu, China
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
- Department of Orthopedic Trauma Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Aimin Chen
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
- Department of Orthopedic Trauma Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Lu
- Department of Orthopedic Trauma Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Di Vito A, Chiarella E, Sovereto J, Bria J, Perrotta ID, Salatino A, Baudi F, Sacco A, Antonelli A, Biamonte F, Barni T, Giudice A. Novel insights into the pharmacological modulation of human periodontal ligament stem cells by the amino-bisphosphonate Alendronate. Eur J Cell Biol 2023; 102:151354. [PMID: 37604089 DOI: 10.1016/j.ejcb.2023.151354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
Alendronate (ALN) is a second-generation bisphosphonate widely used for osteoporosis and cancer-induced bone lesions. Many studies have confirmed a strong relationship between osteonecrosis of the jaws (ONJ) development and oral bisphosphonates, especially ALN, although the molecular mechanisms underlying this pathology have not yet been elucidated. The reduction in bone turnover and vascularization usually observed in ONJ are the result of ALN action on different cell types harboured in oral microenvironment, such as osteoclasts, endothelial cells, and periodontal ligament stem cells (PDLSCs). In this perspective, the present study aims to investigate the effects of different ALN concentrations (2 μM, 5 μM, 10 μM, 25 μM, 50 μM) on the phenotype and functional properties of human PDLSCs (hPDLSCs). hPDLSCs showed a decrease in cell viability (MTT assay) only when treated with ALN concentration of 10 μM or larger for 48 h and 72 h. Cell cycle analysis revealed a moderate increase in proportion of S-phase cells after exposure to low ALN concentration (2-5 μM), an effect that was reverted after exposure to 10-50 μM ALN. Conversely, cell death was evidenced via Annexin V/PI assay at very high concentration of ALN (50 μM) after 4 days of treatment. In addition, we explored whether the effects of ALN on hPDLSCs growth and survival can be mediated by its ability to modulate oxidative stress. To this, we quantified the intracellular ROS amount and lipid peroxidation by using DCF probe and Bodipy staining, respectively. Flow cytometry analysis showed that ALN induced a dose-dependent reduction of intracellular oxidative stress and lipid peroxidation upon treatment with low concentrations at both 48 h and 72 h. Increased levels of oxidative stress was reported at 50 μM ALN and was also confirmed via TEM analysis. Despite the stability of the cellular immunophenotype, hPDLSCs showed impaired mobility after ALN exposure. Chronic exposure (7-14 days) to ALN in the range of 2-10 μM significantly decreased the expression of the differentiation-related factors ALP, RUNX2, COLI, and OPN as well as the osteogenic ability of hPDLSCs compared with untreated cells. Conversely, higher doses were found to be neutral. Our findings indicated that the effects of ALN on hPDLSCs behavior are dose-dependent and suggest a role for oxidative stress in ALN-induced cell death that may lead to novel therapeutic approaches for ONJ.
Collapse
Affiliation(s)
- Anna Di Vito
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy.
| | - Emanuela Chiarella
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - Jessica Sovereto
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - Jessica Bria
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, University of Calabria, Cosenza, Italy
| | | | - Francesco Baudi
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - Alessandro Sacco
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | | | - Flavia Biamonte
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - Tullio Barni
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, University Magna Graecia of Catanzaro, Italy
| |
Collapse
|
4
|
Wen ZQ, Lin J, Xie WQ, Shan YH, Zhen GH, Li YS. Insights into the underlying pathogenesis and therapeutic potential of endoplasmic reticulum stress in degenerative musculoskeletal diseases. Mil Med Res 2023; 10:54. [PMID: 37941072 PMCID: PMC10634069 DOI: 10.1186/s40779-023-00485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Degenerative musculoskeletal diseases are structural and functional failures of the musculoskeletal system, including osteoarthritis, osteoporosis, intervertebral disc degeneration (IVDD), and sarcopenia. As the global population ages, degenerative musculoskeletal diseases are becoming more prevalent. However, the pathogenesis of degenerative musculoskeletal diseases is not fully understood. Previous studies have revealed that endoplasmic reticulum (ER) stress is a stress response that occurs when impairment of the protein folding capacity of the ER leads to the accumulation of misfolded or unfolded proteins in the ER, contributing to degenerative musculoskeletal diseases. By affecting cartilage degeneration, synovitis, meniscal lesion, subchondral bone remodeling of osteoarthritis, bone remodeling and angiogenesis of osteoporosis, nucleus pulposus degeneration, annulus fibrosus rupture, cartilaginous endplate degeneration of IVDD, and sarcopenia, ER stress is involved in the pathogenesis of degenerative musculoskeletal diseases. Preclinical studies have found that regulation of ER stress can delay the progression of multiple degenerative musculoskeletal diseases. These pilot studies provide foundations for further evaluation of the feasibility, efficacy, and safety of ER stress modulators in the treatment of musculoskeletal degenerative diseases in clinical trials. In this review, we have integrated up-to-date research findings of ER stress into the pathogenesis of degenerative musculoskeletal diseases. In a future perspective, we have also discussed possible directions of ER stress in the investigation of degenerative musculoskeletal disease, potential therapeutic strategies for degenerative musculoskeletal diseases using ER stress modulators, as well as underlying challenges and obstacles in bench-to-beside research.
Collapse
Affiliation(s)
- Ze-Qin Wen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jun Lin
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215001, China
| | - Wen-Qing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yun-Han Shan
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ge-Hua Zhen
- Department of Orthopaedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Ma S, Xu S, Li M, Du Y, Tian G, Deng J, Zhang W, Wei P, Zhao B, Zhang X, Liu Z, Wang Y. A Bone Targeting Nanoparticle Loaded OGP to Restore Bone Homeostasis for Osteoporosis Therapy. Adv Healthc Mater 2023; 12:e2300560. [PMID: 37562069 DOI: 10.1002/adhm.202300560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/27/2023] [Indexed: 08/12/2023]
Abstract
Restoring bone homeostasis is the key to the treatment of osteoporosis. How to increase osteogenic ability or inhibit osteoclast activity has always been a topic of great concern. In recent years, short peptides with biological activity have received great attention in bone repair. However, the application of short peptides is still limited due to the lack of a stable and targeted delivery system. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles modified by alendronate (AL) to transport osteogenic peptides (OGP) (AL-PLGA@P NPs) are designed. Benefiting from the high affinity of AL for hydroxyapatite, AL-PLGA@P NPs have the ability to target bone. In this delivery system, OGP that promotes osteogenesis synergizes with AL, which inhibits osteoclasts, to regulate bone homeostasis, which gives them more advantages in the treatment of osteoporosis. The data shows that nanoparticles can selectively deliver peptides to the bone surface without systemic toxicity. Moreover, nanoparticles can upregulate osteogenesis-related factors (ALP, Runx-2, and BMP2) and downregulate osteoclast-related factors (TRAP and CTSK) in vitro. With AL-PLGA@P NPs, bone microarchitecture and bone mass are improved in ovariectomized osteoporosis rats. Therefore, this study proposes a novel osteoporosis-based drug system that effectively improves bone density.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of Stomatology, The Second Hospital of Tianjin medical university, Tianjin, 300211, China
| | - Shendan Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| | - Minting Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| | - Yaqi Du
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| | - Guangjie Tian
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| | - Wenyi Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co. Ltd., Beijing, 102600, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co. Ltd., Beijing, 102600, China
| | - Xuesong Zhang
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Zihao Liu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| | - Yonglan Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| |
Collapse
|
6
|
Zhang Z, Ding P, Meng Y, Lin T, Zhang Z, Shu H, Ma J, Cohen Stuart M, Gao Y, Wang J, Zhou X. Rational polyelectrolyte nanoparticles endow preosteoclast-targeted siRNA transfection for anabolic therapy of osteoporosis. SCIENCE ADVANCES 2023; 9:eade7379. [PMID: 36888701 PMCID: PMC9995075 DOI: 10.1126/sciadv.ade7379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Targeted transfection of siRNA to preosteoclasts features the potential of anti-osteoporosis, yet challenge arises from the development of satisfied delivery vehicles. Here, we design a rational core-shell nanoparticle (NP) composed of cationic and responsive core for controlled load and release of small interfering RNA (siRNA) and compatible polyethylene glycol shell modified with alendronate for enhanced circulation and bone-targeted delivery of siRNA. The designed NPs perform well on transfection of an active siRNA (siDcstamp) that interferes Dcstamp mRNA expression, leading to impeded preosteoclast fusion and bone resorption, as well as promoted osteogenesis. In vivo results corroborate the abundant siDcstamp accumulation on bone surfaces and the enhanced trabecular bone mass volume and microstructure in treating osteoporotic OVX mice by rebalancing bone resorption, formation, and vascularization. Our study validates the hypothesis that satisfied transfection of siRNA enables preserved preosteoclasts that regulate bone resorption and formation simultaneously as potential anabolic treatment for osteoporosis.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China
| | - Peng Ding
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China
| | - Tao Lin
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China
| | - Zhanrong Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China
| | - Haoming Shu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China
| | - Jun Ma
- Department of Orthopedics, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Martien Cohen Stuart
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Gao
- Department of Orthopedics, The Fourth Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100048, China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China
- Translational research center of orthopedics, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
7
|
Nitrogen-Containing Bisphosphonates Downregulate Cathepsin K and Upregulate Annexin V in Osteoclasts Cultured In Vitro. Int J Dent 2023; 2023:2960941. [PMID: 36866025 PMCID: PMC9974278 DOI: 10.1155/2023/2960941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Introduction Bisphosphonates are widely used in the treatment of osteoporosis; however, they are associated with the serious adverse event of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Aim The aim of this study is to assess the effects of nitrogen-containing bisphosphonates (N-PHs) on the synthesis of IL-1β, TNF-α, sRANKL, cathepsin K, and annexin V in bone cells cultured in vitro. Materials and Methods Osteoblasts and bone marrow-derived osteoclasts were cultured in vitro, subjected to treatment with alendronate, risedronate, or ibandronate at a concentration of 10-5 M for 0 to 96 h and then assayed for IL-1β, sRANKL, and TNF-α production by ELISA. Cathepsin K and Annexin V-FITC staining in osteoclasts were assessed by flow cytometry. Results There was significant downregulation of IL-1β, sRANKL, and TNF-α in experimental osteoblasts compared to control cells, and there was upregulation of IL-1β and downregulation of RANKL and TNF-α in experimental osteoclasts. Furthermore, in osteoclasts, cathepsin K expression was downregulated at 48-72 h with alendronate treatment, while risedronate treatment resulted in upregulated annexin V expression at 48 h compared to the control treatment. Conclusion Bisphosphonates added to bone cells inhibited osteoclastogenesis, which led to the downregulation of cathepsin K and induction of apoptosis in osteoclasts; these changes limited the capacity of bone remodelling and healing that may contribute to BRONJ induced by surgical dental procedures.
Collapse
|
8
|
Klara J, Lewandowska-Łańcucka J. How Efficient are Alendronate-Nano/Biomaterial Combinations for Anti-Osteoporosis Therapy? An Evidence-Based Review of the Literature. Int J Nanomedicine 2022; 17:6065-6094. [PMID: 36510618 PMCID: PMC9738991 DOI: 10.2147/ijn.s388430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is defined as a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Because of the systemic nature of osteoporosis, the associated escalation in fracture risk affects virtually all skeletal sites. The problem is serious since it is estimated that more than 23 million men and women are at high risk of osteoporotic-like breakages in the European Union. Alendronate (ALN) is the most commonly prescribed oral nitrogen-containing bisphosphonate (BP) for the prevention and the therapy of osteoporosis. This is also one of the most intensely studied drugs in this field. However, ALN is characterized by restricted oral absorption and bioavailability and simultaneously its administration has serious side-effects (jaw osteonecrosis, irritation of the gastrointestinal system, nausea, musculoskeletal pain, and cardiovascular risks). Therefore, delivery systems enabling controlled release and local action of this drug are of great interest, being widely researched and presented in the literature. In this review, we discuss the current trends in the design of various types of alendronate carriers. Our paper is focused on the most recent developments in the field of nano/biomaterials-based systems for ALN delivery, including nano/microformulations, synthetic/natural polymeric and inorganic materials, hydrogel-based materials, scaffolds, coated-like structures, as well as organic-inorganic hybrids. Topics related to the treatment of complex bone diseases including osteoporosis have been covered in several more general reviews; however, the systems for this particular drug have not yet been discussed in detail.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Kraków, 30-387, Poland
| | | |
Collapse
|
9
|
Xu X, Shobuike T, Shiraki M, Kamohara A, Hirata H, Murayama M, Mawatari D, Ueno M, Morimoto T, Kukita T, Mawatari M, Kukita A. Leukemia/lymphoma-related factor (LRF) or osteoclast zinc finger protein (OCZF) overexpression promotes osteoclast survival by increasing Bcl-xl mRNA: A novel regulatory mechanism mediated by the RNA binding protein SAM68. J Transl Med 2022; 102:1000-1010. [PMID: 36775415 DOI: 10.1038/s41374-022-00792-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022] Open
Abstract
RANKL induces NFATc1, a key transcriptional factor to induce osteoclast-specific genes such as cathepsin K, whereas transcriptional control of osteoclast survival is not fully understood. Leukemia/lymphoma-related factor (LRF) in mouse and osteoclast zinc finger protein (OCZF) in rat are zinc finger and BTB domain-containing protein (zBTB) family of transcriptional regulators, and are critical regulators of hematopoiesis. We have previously shown that differentiation and survival were enhanced in osteoclasts from OCZF-Transgenic (Tg) mice. In the present study, we show a possible mechanism of osteoclast survival regulated by LRF/OCZF and the role of OCZF overexpression in pathological bone loss. In the in vitro cultures, LRF was highly colocalized with NFATc1 in cells of early stage in osteoclastogenesis, but only LRF expression persisted after differentiation into mature osteoclasts. LRF expression was further enhanced in resorbing osteoclasts formed on dentin slices. Osteoclast survival inhibitor such as alendronate, a bisphosphonate reduced LRF expression. Micro CT evaluation revealed that femurs of OCZF-Tg mice showed significantly lower bone volume compared to that of WT mice. Furthermore, OCZF overexpression markedly promoted bone loss in ovariectomy-induced osteolytic mouse model. The expression of anti-apoptotic Bcl-xl mRNA, which is formed by alternative splicing, was enhanced in the cultures in which osteoclasts are formed from OCZF-Tg mice. In contrast, the expression of pro-apoptotic Bcl-xs mRNA was lost in the culture derived from OCZF-Tg mice. We found that the expression levels of RNA binding splicing regulator, Src substrate associated in mitosis of 68 kDa (Sam68) protein were markedly decreased in OCZF-Tg mice-derived osteoclasts. In addition, shRNA-mediated knockdown of Sam68 expression increased the expression of Bcl-xl mRNA, suggesting that SAM68 regulates the expression of Bcl-xl. These results indicate that OCZF overexpression reduces protein levels of Sam68, thereby promotes osteoclast survival, and suggest that LRF/OCZF is a promising target for regulating pathological bone loss.
Collapse
Affiliation(s)
- Xianghe Xu
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
- Department of Molecular Cell Biology & Oral Anatomy, Faculty of Dentistry, Kyushu University, Fukuoka, Japan
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Takeo Shobuike
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Makoto Shiraki
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Asana Kamohara
- Department of Oral & Maxillofacial Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Daisuke Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masaya Ueno
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshio Kukita
- Department of Molecular Cell Biology & Oral Anatomy, Faculty of Dentistry, Kyushu University, Fukuoka, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Akiko Kukita
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan.
- Research Center of Arthroplasty, Faculty of Medicine, Saga University, Saga, Japan.
| |
Collapse
|
10
|
Inhibition of osteoclastogenesis after bisphosphonate therapy discontinuation: an in vitro approach. J Mol Histol 2022; 53:669-677. [PMID: 35701706 DOI: 10.1007/s10735-022-10083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Osteoclasts are specialized cells that degrade and resorb bone. Bisphosphonates (BPs) are drugs with well-known capacity to inhibit the resorption of mineralized tissues. Nitrogen-containing BPs, like alendronate (ALN) and zoledronic acid (ZA), inactivate osteoclast activity mostly by alterations on the cytoskeleton architecture of the cell. In this study, we used an in vitro model to test the hypothesis that bisphosphonates may have inhibitory effects on the osteoclastogenesis and osteoclast activity after the therapy was discontinued. Primary osteoclasts were generated from mouse bone marrow in media supplemented with 1,25-dihydroxyvitamin D3 and cultivated over bones pre-treated with ALN and ZA. The pre-saturation of the bone slices with bisphosphonates did not affect cell viability. We found, however, that by disrupting the gene expression of RANKL and OPG the osteoclastogenesis and resorption activity of osteoclasts was significantly disturbed. These inhibitory effects were confirmed by scanning electron microscopy resorption assay, assessment of osteoclast ultrastructure, and by gene expression analysis of TRAP and Cathepsin K. In conclusion, ALN and ZA adhered to the bone matrix reduced the osteoclast activity in vitro.
Collapse
|
11
|
Scala R, Maqoud F, Antonacci M, Dibenedetto JR, Perrone MG, Scilimati A, Castillo K, Latorre R, Conte D, Bendahhou S, Tricarico D. Bisphosphonates Targeting Ion Channels and Musculoskeletal Effects. Front Pharmacol 2022; 13:837534. [PMID: 35370739 PMCID: PMC8965324 DOI: 10.3389/fphar.2022.837534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/25/2022] [Indexed: 12/25/2022] Open
Abstract
Bisphosphonates (BPs) are the most used bone-specific anti-resorptive agents, often chosen as first-line therapy in several bone diseases characterized by an imbalance between osteoblast-mediated bone production and osteoclast-mediated bone resorption. BPs target the farnesyl pyrophosphate synthase (FPPS) in osteoclasts, reducing bone resorption. Lately, there has been an increasing interest in BPs direct pro-survival/pro-mineralizing properties in osteoblasts and their pain-relieving effects. Even so, molecular targets involved in these effects appear now largely elusive. Ion channels are emerging players in bone homeostasis. Nevertheless, the effects of BPs on these proteins have been poorly described. Here we reviewed the actions of BPs on ion channels in musculoskeletal cells. In particular, the TRPV1 channel is essential for osteoblastogenesis. Since it is involved in bone pain sensation, TRPV1 is a possible alternative target of BPs. Ion channels are emerging targets and anti-target for bisphosphonates. Zoledronic acid can be the first selective musculoskeletal and vascular KATP channel blocker targeting with high affinity the inward rectifier channels Kir6.1-SUR2B and Kir6.2-SUR2A. The action of this drug against the overactive mutants of KCNJ9-ABCC9 genes observed in the Cantu’ Syndrome (CS) may improve the appropriate prescription in those CS patients affected by musculoskeletal disorders such as bone fracture and bone frailty.
Collapse
Affiliation(s)
- Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Marina Antonacci
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | | | - Maria Grazia Perrone
- Medicinal Chemistry Section, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Antonio Scilimati
- Medicinal Chemistry Section, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación de Estudios Avanzados, Universidad Católica del Maule, Talca, Chile
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Diana Conte
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Saïd Bendahhou
- UMR7370 CNRS, Laboratoire de Physiomédecine Moléculaire (LP2M), Labex ICST, Nice, France
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| |
Collapse
|
12
|
Wang Y, Khan HM, Zhou C, Liao X, Tang P, Song P, Gui X, Li H, Chen Z, Liu S, Cen Y, Zhang Z, Li Z. Apoptotic cells derived micro/nano-sized extracellular vesicles in tissue regeneration. NANOTECHNOLOGY REVIEWS 2022. [DOI: 10.1515/ntrev-2022-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Extracellular vesicles (EVs), products released by cells in multiple biological activities, are currently widely accepted as functional particles and intercellular communicators. From the orthodox perspective, EVs derived from apoptotic cells (apoEVs) are responsible for cell debris clearance, while recent studies have demonstrated that apoEVs participate in tissue regeneration. However, the underlying mechanisms and particular functions in tissue regeneration promotion of apoEVs remain ambiguous. Some molecules, such as caspases, active during apoptosis also function in tissue regeneration triggered by apoptosis,. ApoEVs are generated in the process of apoptosis, carrying cell contents to manifest biological effects, and possessing biomarkers to target phagocytes. The regenerative effect of apoEVs might be due to their abilities to facilitate cell proliferation and regulate inflammation. Such regenerative effect has been observed in various tissues, including skin, bone, cardiovascular system, and kidney. Engineered apoEVs are produced to amplify the biological benefits of apoEVs, rendering them optional for drug delivery. Meanwhile, challenges exist in thorough mechanistic exploration and standardization of production. In this review, we discussed the link between apoptosis and regeneration, current comprehension of the origination and investigation strategies of apoEVs, and mechanisms in tissue regeneration by apoEVs and their applications. Challenges and prospects are also discussed here.
Collapse
Affiliation(s)
- Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Haider Mohammed Khan
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University , Chengdu Sichuan, 610041 , China
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Pei Tang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Ping Song
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Xingyu Gui
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Hairui Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University , Xi’an , Shaanxi, 710032 , China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| |
Collapse
|
13
|
Apoptotic cell-derived micro/nanosized extracellular vesicles in tissue regeneration. NANOTECHNOLOGY REVIEWS 2022. [DOI: 10.1515/ntrev-2022-0052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Extracellular vesicles (EVs), products released by cells in multiple biological activities, are currently widely accepted as functional particles and intercellular communicators. From the orthodox perspective, EVs derived from apoptotic cells (apoEVs) are responsible for cell debris clearance, while recent studies have demonstrated that apoEVs participate in tissue regeneration. However, the underlying mechanisms and particular functions in tissue regeneration promotion of apoEVs remain ambiguous. Some molecules active during apoptosis also function in tissue regeneration triggered by apoptosis, such as caspases. ApoEVs are generated in the process of apoptosis, carrying cell contents to manifest biological effects and possess biomarkers to target phagocytes. The regenerative effect of apoEVs might be due to their abilities to facilitate cell proliferation and regulate inflammation. Such regenerative effect has been observed in various tissues, including skin, bone, cardiovascular system, and kidneys. Engineered apoEVs are produced to amplify the biological benefits of apoEVs, rendering them optional for drug delivery. Meanwhile, challenges exist in thorough mechanistic exploration and standardization of production. In this review, we discussed the link between apoptosis and regeneration, current comprehension of the origination and investigation strategies of apoEVs, and mechanisms in tissue regeneration of apoEVs and their applications. Challenges and prospects are also addressed here.
Collapse
|
14
|
Zhao X, Zhu L, Fan C. Sequential alendronate delivery by hydroxyapatite-coated maghemite for enhanced bone fracture healing. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Zhen G, Dan Y, Wang R, Dou C, Guo Q, Zarr M, Liu LN, Chen L, Deng R, Li Y, Shao Z, Cao X. An antibody against Siglec-15 promotes bone formation and fracture healing by increasing TRAP + mononuclear cells and PDGF-BB secretion. Bone Res 2021; 9:47. [PMID: 34719673 PMCID: PMC8558327 DOI: 10.1038/s41413-021-00161-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/27/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis (OP) is a common age-related disease characterized by a deterioration of bone mass and structure that predisposes patients to fragility fractures. Pharmaceutical therapies that promote anabolic bone formation in OP patients and OP-induced fracture are needed. We investigated whether a neutralizing antibody against Siglec-15 can simultaneously inhibit bone resorption and stimulate bone formation. We found that the multinucleation of osteoclasts was inhibited in SIGLEC-15 conditional knockout mice and mice undergoing Siglec-15 neutralizing antibody treatment. The secretion of platelet-derived growth factor-BB (PDGF-BB), the number of tartrate-resistant acid phosphatase-positive (TRAP+) mononuclear cells, and bone formation were significantly increased in the SIGLEC-15 conditional knockout mice and antibody-treated mice. The anabolic effect of the Siglec-15 neutralizing antibody on bone formation was blunted in mice with Pdgfb deleted in TRAP+ cells. These findings showed that the anabolic effect of the Siglec-15 neutralizing antibody was mediated by elevating PDGF-BB production of TRAP+ mononuclear cells. To test the therapeutic potential of the Siglec-15 neutralizing antibody, we injected the antibody in an ovariectomy-induced osteoporotic mouse model, which mimics postmenopausal osteoporosis in women, and in two fracture healing models because fracture is the most serious health consequence of osteoporosis. The Siglec-15 neutralizing antibody effectively reduced bone resorption and stimulated bone formation in estrogen deficiency-induced osteoporosis. Of note, the Siglec-15 neutralizing antibody promoted intramembranous and endochondral ossification at the damaged area of cortical bone in fracture healing mouse models. Thus, the Siglec-15 neutralizing antibody shows significant translational potential as a novel therapy for OP and bone fracture.
Collapse
Affiliation(s)
- Gehua Zhen
- Department of Orthopedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang Dan
- Department of Orthopedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruomei Wang
- Department of Orthopedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ce Dou
- Department of Orthopedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qiaoyue Guo
- Department of Orthopedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruoxian Deng
- Department of Orthopedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yusheng Li
- Department of Orthopedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Cao
- Department of Orthopedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Wen C, Zhou Y, Xu Y, Tan H, Pang C, Liu H, Liu K, Wei L, Luo H, Qin T, He C, Liu C, Zhou C. The Regulatory Role of GBF1 on Osteoclast Activation Through EIF2a Mediated ER Stress and Novel Marker FAM129A Induction. Front Cell Dev Biol 2021; 9:706768. [PMID: 34513838 PMCID: PMC8424197 DOI: 10.3389/fcell.2021.706768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Bone-resorbing activities of osteoclasts (OCs) are highly dependent on actin cytoskeleton remodeling, plasma membrane reorganization, and vesicle trafficking pathways, which are partially regulated by ARF-GTPases. In the present study, the functional roles of Golgi brefeldin A resistance factor 1 (GBF1) are proposed. GBF1 is responsible for the activation of the ARFs family and vesicular transport at the endoplasmic reticulum–Golgi interface in different stages of OCs differentiation. In the early stage, GBF1 deficiency impaired OCs differentiation and was accompanied with OCs swelling and reduced formation of mature OCs, indicating that GBF1 participates in osteoclastogenesis. Using siRNA and the specific inhibitor GCA for GBF1 knockdown upregulated endoplasmic reticulum stress-associated signaling molecules, including BiP, p-PERK, p-EIF2α, and FAM129A, and promoted autophagic Beclin1, Atg7, p62, and LC3 axis, leading to apoptosis of OCs. The present data suggest that, by blocking COPI-mediated vesicular trafficking, GBF1 inhibition caused intense stress to the endoplasmic reticulum and excessive autophagy, eventually resulting in the apoptosis of mature OCs and impaired bone resorption function.
Collapse
Affiliation(s)
- Cailing Wen
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuheng Zhou
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yanting Xu
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Huijing Tan
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Caixia Pang
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Haiqian Liu
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kaifei Liu
- Department of Pharmacy, Jingzhou Central Hospital, Jingzhou, China
| | - Linlin Wei
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Luo
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tian Qin
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chonghua He
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Cuiling Liu
- Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Chun Zhou
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Martini C, Sosa FN, Malvicini R, Pacienza N, Yannarelli G, Del C Vila M. Alendronate inhibits triglyceride accumulation and oxidative stress in adipocytes and the inflammatory response of macrophages which are associated with adipose tissue dysfunction. J Physiol Biochem 2021; 77:601-611. [PMID: 34302624 DOI: 10.1007/s13105-021-00826-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023]
Abstract
Alendronate, a bisphosphonate used to prevent osteoporosis, stimulates osteogenesis but impairs adipogenesis. Different clinical trials suggest that the incidence of diabetes may be lower in patients treated with alendronate. Taking into account the importance of adipocytes and macrophages of adipose tissue in insulin resistance and type 2 diabetes, it is necessary to evaluate the effect of alendronate in both cell types. In this paper, we investigated the effect of alendronate on the differentiation to adipocytes of 3T3-L1 fibroblasts, the cell line most used to study adipogenesis, and also its effect on lipid content and oxidative stress in mature adipocytes as well as on the inflammatory response of macrophages. We found that alendronate inhibits differentiation of 3T3-L1 fibroblasts to adipocytes in keeping with reports in other cell lines. On the other hand, treatment of 3T3-L1 adipocytes with alendronate was able to decrease triglyceride content and to prevent H2O2-induced lipid peroxidation which was evaluated as an indicator of oxidative stress. In addition, it was found that activation of RAW 264.7 macrophages to a pro-inflammatory M1 type is inhibited by this bisphosphonate. These results suggest that alendronate may contribute to prevent adipocyte excessive enlargement and the induction of oxidative stress in 3T3-L1 adipocytes as well as the activation of macrophages to a pro-inflammatory M1 type, which are events associated with adipose tissue dysfunction and insulin resistance. In this study, we unraveled the underlying mechanisms of events that were previously observed in clinical trials.
Collapse
Affiliation(s)
- Claudia Martini
- Departamento de Química Biológica, Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET-Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Fernando Nicolas Sosa
- Departamento de Química Biológica, Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET-Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Ricardo Malvicini
- Laboratorio de Regulación Génica Y Células Madre, Instituto de Medicina Traslacional, Trasplante Y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, 1078, Buenos Aires, Argentina
| | - Natalia Pacienza
- Laboratorio de Regulación Génica Y Células Madre, Instituto de Medicina Traslacional, Trasplante Y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, 1078, Buenos Aires, Argentina
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica Y Células Madre, Instituto de Medicina Traslacional, Trasplante Y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, 1078, Buenos Aires, Argentina
| | - María Del C Vila
- Departamento de Química Biológica, Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET-Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Dou C, Li J, He J, Luo F, Yu T, Dai Q, Chen Y, Xu J, Yang X, Dong S. Bone-targeted pH-responsive cerium nanoparticles for anabolic therapy in osteoporosis. Bioact Mater 2021; 6:4697-4706. [PMID: 34095626 PMCID: PMC8164008 DOI: 10.1016/j.bioactmat.2021.04.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/27/2022] Open
Abstract
Antiresorptive drugs are widely used for treatment of osteoporosis and cancer bone metastasis, which function mainly through an overall inhibition of osteoclast. However, not all osteoclasts are "bone eaters"; preosteoclasts (pOCs) play anabolic roles in bone formation and angiogenesis through coupling with osteoblasts and secreting platelet derived growth factor-BB (PDGF-BB). In this study, a bone-targeted pH-responsive nanomaterial was designed for selectively eliminating mature osteoclasts (mOCs) without affecting pOCs. Biocompatible cerium nano-system (CNS) was guided to the acidic extracellular microenvironment created by mOCs and gained oxidative enzymatic activity. Oxidative CNS decreased the viability of mOCs through accumulating intracellular reactive oxygen species and enhancing calcium oscillation. Non-acid secreting anabolic pOCs were thus preserved and kept producing PDGF-BB, which lead to mesenchymal stem cell osteogenesis and endothelial progenitor cell angiogenesis via PI3K-Akt activated focal adhesion kinase. In treating osteoporotic ovariectomized mice, CNS showed better protective effects compare with the current first line antiresorptive drug due to the better anabolic effects marked by higher level of bone formation and vascularization. We provided a novel anabolic therapeutic strategy in treating bone disorders with excessive bone resorption.
Collapse
Affiliation(s)
- Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jianmei Li
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jian He
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Tao Yu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Corresponding author.
| | - Xiaochao Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Corresponding author.
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Corresponding author. Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
19
|
Duan L, Li Y, Hu J, Ma Q, Yu T, Zhang C, Luo F, Xu J, Dou C. Light rare earth elements hinder bone development via inhibiting type H vessels formation in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112275. [PMID: 33962277 DOI: 10.1016/j.ecoenv.2021.112275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Light rare earth elements (LREEs) are widely used in medical, industrial, and agricultural fields. Wide application of light rare earth and exposure to these elements in human society leads to increasing accumulation of LREE in human skeletal system. However, the effects of LREEs on human bone health is not clear. In this study, we found that LREE reduced CD31highEmcnhigh endothelial cell mediated type H vessels formation at the metaphyseal sites, resulting in reduced bone mass and low bone quality in mouse bone development. To explore the underlying mechanism, we induced bone marrow macrophages (BMMs) to preosteoclasts (pOCs) with exposure of LREE (Pr3+, Nd3+, Sm3+). The cytotoxicity of LREE was evaluated by CCK-8. Platelet-derived growth factor (PDGF-BB) is the cytokine secreted by pOCs that most responsible for inducing Type H vessel formation. We used ELISA kit to determine the PDGF-BB level in pOC supernatant, and mouse serum finding that the PDGF-BB level was reduced by LREEs treatment. Then we tested the ability of migration and tube formation of HUVECs using condition medium from pOCs. The migration and tube formation ability of HUVECs were both suppressed with LREEs pretreatment. We concluded that LREEs hinder mouse bone development by suppressing type H vessels associated bone formation. DATA AND MATERIALS AVAILABILITY: All data generated or analyzed during this study are included in this article. Please contact the corresponding author for unique material requests. Some material used in the reported research may require requests to collaborators and agreements with both commercial and non-profit institutions, as specified in the paper. Requests are reviewed by Third Military Medical University to verify whether the request is subject to any intellectual property or confidentiality obligations. Any material that can be shared will be released via a Material Transfer Agreement.
Collapse
Affiliation(s)
- Lianli Duan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China
| | - Yang Li
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China
| | - Junxian Hu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China
| | - Qinyu Ma
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China
| | - Tao Yu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China.
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
20
|
Osteoclast-derived apoptotic bodies couple bone resorption and formation in bone remodeling. Bone Res 2021; 9:5. [PMID: 33431863 PMCID: PMC7801485 DOI: 10.1038/s41413-020-00121-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Bone remodeling is precisely coordinated by bone resorption and formation. Apoptotic osteoclasts generate large amounts of apoptotic bodies (ABs) marking the end of the bone resorption phase, whereas the functions of osteoclast-derived ABs remain largely unknown. Here, we identified the molecular profile of ABs derived from osteoclasts at distinct differentiation stages and investigated their corresponding functions. ABs were isolated from apoptotic bone marrow macrophages, preosteoclasts, and mature osteoclasts induced by staurosporine. Proteomic signature analysis with liquid chromatography-tandem mass spectrometry suggested marked protein cargo differences among the different ABs. Further bioinformatic analysis showed that the proteomic signatures of the ABs were highly similar to those of their parental cells. Functionally, pOC-ABs induced endothelial progenitor cell differentiation and increased CD31hiEmcnhi endothelial cell formation in a murine bone defect model via their PDGF-BB cargo. mOC-ABs induced osteogenic differentiation of mesenchymal stem cells and facilitated osteogenesis via RANKL reverse signaling. In summary, we mapped the detailed proteomic landscapes of ABs derived from osteoclasts and showed that their potential biological roles are important in coupling bone formation with resorption during bone remodeling.
Collapse
|
21
|
4-Acetylantroquinonol B Inhibits Osteoclastogenesis by Inhibiting the Autophagy Pathway in a Simulated Microgravity Model. Int J Mol Sci 2020; 21:ijms21186971. [PMID: 32971944 PMCID: PMC7555662 DOI: 10.3390/ijms21186971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Astronauts suffer from 1–2% bone loss per month during space missions. Targeting osteoclast differentiation has been regarded as a promising strategy to prevent osteoporosis in microgravity (μXg). 4-acetylantroquinonol B (4-AAQB), a ubiquinone from Antrodia cinnamomea, has shown anti-inflammatory and anti-hepatoma activities. However, the effect of 4-AAQB on μXg-induced osteoclastogenesis remains unclear. In this study, we aimed to explore the mechanistic impact of 4-AAQB on osteoclast formation under μXg conditions. The monocyte/macrophage-like cell line RAW264.7 was exposed to simulated μXg (Rotary Cell Culture System; Synthecon, Houston, TX, USA) for 24 h and then treated with 4-AAQB or alendronate (ALN) and osteoclast differentiation factor receptor activator of nuclear factor kappa-B ligand (RANKL). Osteoclastogenesis, bone resorption activity, and osteoclast differentiation-related signaling pathways were analyzed using tartrate-resistant acid phosphatase (TRAP) staining, actin ring fluorescent staining, bone resorption, and western blotting assays. Based on the results of TRAP staining, actin ring staining, and bone resorption assays, we found that 4-AAQB significantly inhibited μXg-induced osteoclast differentiation. The critical regulators of osteoclast differentiation, including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, and dendritic cell-specific transmembrane protein (DC-STAMP), were consistently decreased. Meanwhile, osteoclast apoptosis and cell cycle arrest were also observed along with autophagy suppression. Interestingly, the autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) showed similar effects to 4-AAQB. In conclusion, we suggest that 4-AAQB may serve as a potential agent against μXg-induced osteoclast formation.
Collapse
|
22
|
Atesok K, Stippler M, Striano BM, Xiong G, Lindsey M, Cappellucci E, Psilos A, Richter S, Heffernan MJ, Theiss S, Papavassiliou E. Bisphosphonates and parathyroid hormone analogs for improving bone quality in spinal fusion: State of evidence. Orthop Rev (Pavia) 2020; 12:8590. [PMID: 32922704 PMCID: PMC7461648 DOI: 10.4081/or.2020.8590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/01/2020] [Indexed: 11/23/2022] Open
Abstract
Spinal fusion is among the most commonly performed surgical procedures for elderly patients with spinal disorders - including degenerative disc disease with spondylolisthesis, deformities, and trauma. With the large increase in the aging population and the prevalence of osteoporosis, the number of elderly osteoporotic patients needing spinal fusion has risen dramatically. Due to reduced bone quality, postoperative complications such as implant failures, fractures, post-junctional kyphosis, and pseudarthrosis are more commonly seen after spinal fusion in osteoporotic patients. Therefore, pharmacologic treatment strategies to improve bone quality are commonly pursued in osteoporotic cases before conducting spinal fusions. The two most commonly used pharmacotherapeutics are bisphosphonates and parathyroid hormone (PTH) analogs. Evidence indicates that using bisphosphonates and PTH analogs, alone or in combination, in osteoporotic patients undergoing spinal fusion, decreases complication rates and improves clinical outcomes. Further studies are needed to develop guidelines for the administration of bisphosphonates and PTH analogs in osteoporotic spinal fusion patients in terms of treatment duration, potential benefits of sequential use, and the selection of either therapeutic agents based on patient characteristics.
Collapse
Affiliation(s)
- Kivanc Atesok
- Children's Hospital New Orleans/LSU Health Science Center, New Orleans, LA.,Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Neurosurgery
| | - Martina Stippler
- Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Neurosurgery
| | | | - Grace Xiong
- Harvard Combined Orthopaedic Residency Program, Boston, MA
| | | | - Elysia Cappellucci
- Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Neurosurgery
| | - Alexandra Psilos
- Children's Hospital New Orleans/LSU Health Science Center, New Orleans, LA
| | - Sven Richter
- Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Neurosurgery
| | | | - Steven Theiss
- University of Alabama at Birmingham, Department of Orthopaedic Surgery, Birmingham, AL, USA
| | | |
Collapse
|
23
|
Kuźnik A, Październiok-Holewa A, Jewula P, Kuźnik N. Bisphosphonates-much more than only drugs for bone diseases. Eur J Pharmacol 2019; 866:172773. [PMID: 31705903 DOI: 10.1016/j.ejphar.2019.172773] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
Abstract
α,α-Bisphosphonates (BPs) are well established in the treatment of bone diseases such as osteoporosis and Paget's disease. Their successful application originates from their high affinity to hydroxyapatite. While the initially appreciated features of BPs are already beneficial to many patients, recent developments have further expanded their pleiotropic applications. This review describes the background of the interactions of BPs with bone cells that form the basis of the classical treatment. A better understanding of the mechanism behind their interactions allows for the parallel application of BPs against bone cancer and metastases followed by palliative pain relief. Targeted therapy with bone-seeking BPs coupled with a diagnostic agent in one particle resulted in theranostics which is also described here. For example, in such a system, BP moieties are bound to contrast agents used in magnetic resonance imaging or radionuclides used in positron emission tomography. In addition, another example of the pleiotropic function of BPs which involves targeting the imaging agents to bone tissues accompanied by pain reduction is presented in this work.
Collapse
Affiliation(s)
- Anna Kuźnik
- Department of Organic and Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Center of Silesian University of Technology, B. Krzywoustego 8, 44-100, Gliwice, Poland.
| | - Agnieszka Październiok-Holewa
- Department of Organic and Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Center of Silesian University of Technology, B. Krzywoustego 8, 44-100, Gliwice, Poland
| | - Pawel Jewula
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612-00, Brno, Czech Republic
| | - Nikodem Kuźnik
- Department of Organic and Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| |
Collapse
|
24
|
Chen X, Ouyang Z, Shen Y, Liu B, Zhang Q, Wan L, Yin Z, Zhu W, Li S, Peng D. CircRNA_28313/miR-195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice. RNA Biol 2019; 16:1249-1262. [PMID: 31204558 DOI: 10.1080/15476286.2019.1624470] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Osteoblastic bone formation and osteoclastic bone resorption dynamically maintain the bone homeostasis; in the present study, we attempt to investigate the mechanism of the excessive activation of osteoclasts inducing the deregulation of bone homeostasis from the perspective of non-coding RNA regulation. Differentially expressed patterns of circRNAs were examined in non-treated and RANKL + CSF1-treated bone marrow monocyte/macrophage (BMM) cells and differentially-expressed miRNAs during osteoclast differentiation were analyzed and identified. We found that circRNA_28313 was significantly induced by RANKL + CSF1 treatment. circRNA_28313 knockdown significantly inhibited RANKL + CSF1-induced differentiation of osteoclasts within BMM cells in vitro, while suppressed ovariectomized (OVX)-induced bone resorption in mice in vivo. Via bioinformatics analyses, it has been demonstrated that miR-195a might bind to circRNA_28313 and CSF1 and together form a circRNA-miRNA-mRNA network. circRNA_28313 relieves miR-195a-mediated suppression on CSF1 via acting as a ceRNA, therefore modulating the osteoclast differentiation in BMM cells. In conclusion, circRNA_28313, miR-195a, and CSF1 form a ceRNA network to function in RANKL + CSF1-induced osteoclast differentiation, thus affecting OVX-induced bone absorption in mice.
Collapse
Affiliation(s)
- Xia Chen
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Zhengxiao Ouyang
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Yi Shen
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Bo Liu
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Qiang Zhang
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Lu Wan
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Ziqing Yin
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Wei Zhu
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Shuai Li
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Dan Peng
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| |
Collapse
|
25
|
Ma Q, Liang M, Wu Y, Ding N, Duan L, Yu T, Bai Y, Kang F, Dong S, Xu J, Dou C. Mature osteoclast-derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. J Biol Chem 2019; 294:11240-11247. [PMID: 31167789 DOI: 10.1074/jbc.ra119.007625] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Indexed: 11/06/2022] Open
Abstract
In bone remodeling, after a lifespan of ∼2 weeks, osteoclasts undergo apoptosis in each bone turnover cycle, resulting in generation of a large number of apoptotic bodies (ABs). However, the biological roles of osteoclast-derived ABs (OC-ABs) in bone remodeling have not been investigated and remain unknown. In this study, we stimulated bone marrow macrophages with receptor activator of NF-κB ligand (RANKL) to obtain both preosteoclasts and mature osteoclasts (mOCs). We then used alendronate to induce apoptosis in preosteoclasts and mOCs and generate the respective ABs and used flow cytometry and immunoblotting to characterize the sizes and immunogenic characteristics of the extracted ABs. We show that mOC-ABs are engulfed by preosteoblastic MC3T3-E1 cells and promote the viability of these cells. Among all osteoclast-derived extracellular vesicles, mOC-ABs had the highest osteogenic potency. We further observed that mOC-ABs had the highest vesicular receptor activator of NF-κB (RANK) levels among all types of osteoclast-derived extracellular vesicles. Of note, masking of vesicular RANK by soluble RANKL strongly abolished the osteogenic potency of osteoclast-derived ABs. Mechanistically, we found that mOC-ABs induce osteoblast differentiation by activatingPI3K/AKT/mechanistic target of rapamycin (mTOR)/ribosomal protein S6 kinase signaling. In conclusion, OC-ABs promote osteogenic differentiation by stimulating osteoblast differentiation via activation of RANKL reverse signaling. These findings provide important insights into the reversal phase between the bone resorption and formation stages during bone remodeling and identify an AB-dependent cellular signaling mechanism in osteoclast-osteoblast coupling.
Collapse
Affiliation(s)
- Qinyu Ma
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Mengmeng Liang
- Department of Biomedical Materials Science, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yutong Wu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ning Ding
- Department of Blood Purification, General Hospital of Shenyang Military Area Command, Shenyang 110000, China
| | - Lianli Duan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Tao Yu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yun Bai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Fei Kang
- Department of Biomedical Materials Science, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China .,Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|