1
|
Shen Y, Liao D, Shangguan W, Chen L. Variation and significance of serum microRNA-21 level in pediatric pulmonary artery hypertension associated with congenital heart disease. Front Cardiovasc Med 2024; 11:1424679. [PMID: 39309603 PMCID: PMC11413868 DOI: 10.3389/fcvm.2024.1424679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Objective This study strives to the variation and significance of microRNA-21 (miR-21) in children with congenital heart disease (CHD)-related pulmonary artery hypertension (PAH). Methods Children with CHD (n = 179) were selected as subjects, including 101 children without PAH and 78 children with PAH. All children underwent general data collection, laboratory examination, echocardiography and cardiac catheterization. After detection of serum miR-21 expression, the predictive value and the impacts of serum miR-21 for PAH and postoperative critical illness were analyzed. Results Serum creatine kinase isoenzyme (CK-MB), B-type natriuretic peptide (BNP) and miR-21 were elevated, but ejection fraction (EF) and cardiac index (CI) were decreased in the CHD-PAH group. Serum miR-21 assisted in predicting PAH in CHD children, with the area under curve (AUC) of 0.801 (95% CI of 0.735∼0.857), a cut-off value of 2.56, sensitivity of 73.08, and specificity of 72.28%. Serum miR-21 in children with CHD-PAH was correlated with clinicopathological indicators such as systolic pulmonary artery pressure, mean pulmonary arterial pressure, BNP and CI. Serum miR-21 helped predict the development of postoperative critical illness in children with CHD-PAH, with an AUC of 0.859 (95% CI: 0.762-0.927, cut-off value: 4.55, sensitivity: 69.57%, specificity: 92.73%). Increased serum miR-21 was an independent risk factor of postoperative critical illness in children with CHD-PAH. Conclusion Serum miR-21 was upregulated in children with CHD-PAH, which may serve as a predictive biomarker for the onset of PAH and postoperative critical illness in CHD children.
Collapse
Affiliation(s)
- Yanming Shen
- Cardiac Surgery, Fujian Medical University, Fuzhou, Fujian, China
| | - Dongshan Liao
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery, (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Wenlin Shangguan
- Thoracic and Cardiovascular Surgery, Fuzhou Changle District People’s Hospital, Fuzhou, Fujian, China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery, (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Aranega AE, Franco D. Posttranscriptional Regulation by Proteins and Noncoding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:313-339. [PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
3
|
Wang X, Xu T, Luo D, Li S, Tang X, Ding J, Yin H, Li S. Cannabidiol Alleviates Perfluorooctanesulfonic Acid-Induced Cardiomyocyte Apoptosis by Maintaining Mitochondrial Dynamic Balance and Energy Metabolic Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5450-5462. [PMID: 37010249 DOI: 10.1021/acs.jafc.2c08378] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS), a fluorine-containing organic compound, can be widely detected in the environment and living organisms. Accumulating evidence has shown that PFOS breaks through different biological barriers resulting in cardiac toxicity, but the underlying molecular mechanisms remain unclear. Cannabidiol (CBD) is a nonpsychoactive cannabinoid without potential adverse cardiotoxicity and has antioxidant and anti-inflammatory properties that reduce multiorgan damage and dysfunction. For these reasons, the aim of this study was to research how PFOS caused heart injury and whether CBD could attenuate PFOS-induced heart injury. Mice were fed PFOS (5 mg/kg) and/or CBD (10 mg/kg) in vivo. In vitro, H9C2 cells were intervened with PFOS (200 μM) and/or CBD (10 μM). After PFOS exposure, oxidative stress levels and the mRNA and protein expression of apoptosis-related markers increased distinctly, accompanied by mitochondrial dynamic imbalance and energy metabolism disorders in mouse heart and H9C2 cells. Moreover, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, acridine orange/ethidium bromide staining and Hoechst 33258 staining signaled that the number of apoptotic cells increased after exposure to PFOS. Noteworthy, CBD simultaneous treatment alleviated a series of damages caused by PFOS-mediated oxidative stress. Our results demonstrated that CBD could alleviate PFOS-induced mitochondrial dynamics imbalance and energy metabolism disorder causing cardiomyocyte apoptosis by improving the antioxidant capacity, suggesting that CBD may represent a novel cardioprotective strategy against PFOS-induced cardiotoxicity. Our findings facilitate the understanding of the cardiotoxic effects of PFOS and the important role of CBD in protecting cardiac health.
Collapse
Affiliation(s)
- Xixi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shanshan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xinyu Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiayi Ding
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
4
|
Inhibition of KCTD10 Affects Diabetic Retinopathy Progression by Reducing VEGF and Affecting Angiogenesis. Genet Res (Camb) 2022; 2022:4112307. [PMID: 36381427 PMCID: PMC9629933 DOI: 10.1155/2022/4112307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/17/2022] [Indexed: 11/26/2022] Open
Abstract
Aim We purposed to evaluate the KCTD10 effects of angiogenesis in diabetic retinopathy (DR). Methods We induced a DR cell model using high glucose (HG) treatment of HRECs and ARPE-19 cells. A DR rat was established by injecting streptozotocin. Small interference RNA targeted KCTD10 (si-KCTD10) was used to mediate KCTD10 inhibition in cell and animal models. The roles of KCTD10 on cell viability, apoptosis, angiogenesis, and related proteins (VEGF and HIF-1α) were observed by RT-qPCR, Western blot, CCK-8 assay, TUNEL staining, tube formation assay, ELISA, and immunohistochemistry assay. Results KCTD10 expression was upregulated in DR cells and retinal tissue of DR rats. Treatment of the cells with si-KCTD10 increased cell viability and decreased apoptosis and angiogenesis in DR cells. Inhibition of KCTD10 could reduce the expression of VEGF and HIF-1α in DR cells. Furthermore, KCTD10 inhibition reduced VEGF levels in the retinal tissue of DR rats. Conclusion This work showed that inhibition of KCTD10 relieved angiogenesis in DR.
Collapse
|
5
|
Zhao D, Liu Y, Xu Z, Shen H, Chen S, Zhang S, Li Y, Zhang H, Zou C, Ma X. Integrative Bioinformatics Analysis Revealed Mitochondrial Defects Underlying Hypoplastic Left Heart Syndrome. Int J Gen Med 2021; 14:9747-9760. [PMID: 34934349 PMCID: PMC8684406 DOI: 10.2147/ijgm.s345921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background Hypoplastic left heart syndrome (HLHS) is one of the most complex congenital cardiac malformations, and the molecular mechanism of heart failure (HF) in HLHS is still elusive. Methods Integrative bioinformatics analysis was performed to unravel the underlying genes and mechanisms involved in HF in HLHS. Microarray dataset GSE23959 was screened out for the differentially expressed genes (DEGs), after which the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were carried out using the Metascape. The protein-protein interaction (PPI) network was generated, and the modules and hub genes were identified with the Cytoscape-plugin. And the integrated network of transcription factor (TF)-DEGs and miRNA-DEGs was constructed, respectively. Results A total of 210 DEGs were identified, including 135 up-regulated and 75 down-regulated genes. The functional enrichment analysis of DEGs pointed towards the mitochondrial-related biological processes, cellular components, molecular functions and signaling pathways. A PPI network was constructed including 155 nodes as well as 363 edges. And 15 hub genes, such as NDUFB6, UQCRQ, SDHD, ATP5H, were identified based on three topological analysis methods and mitochondrial components and functions were the most relevant. Furthermore, by integrating network interaction construction, 23 TFs (NFKB1, RELA, HIF1A, VHL, GATA1, PPAR-γ, etc.) as well as several miRNAs (hsa-miR-155-5p, hsa-miR-191-5p, hsa-mir-124-3p, hsa-miR-1-3p, etc.) were detected and indicated the possible involvement of NF-κB signaling pathways in mitochondrial dysfunction in HLHS. Conclusion The present study applied the integrative bioinformatics analysis and revealed the mitochondrial-related key genes, regulatory pathways, TFs and miRNAs underlying the HF in HLHS, which improved the understanding of disease mechanisms and the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Diming Zhao
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yilin Liu
- Department of Ophthalmology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zhenqiang Xu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Hechen Shen
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Shanghao Chen
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Shijie Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yi Li
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| |
Collapse
|
6
|
Nishiyama K, Maekawa M, Nakagita T, Nakayama J, Kiyoi T, Chosei M, Murakami A, Kamei Y, Takeda H, Takada Y, Higashiyama S. CNKSR1 serves as a scaffold to activate an EGFR phosphatase via exclusive interaction with RhoB-GTP. Life Sci Alliance 2021; 4:4/9/e202101095. [PMID: 34187934 PMCID: PMC8321701 DOI: 10.26508/lsa.202101095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
CNKSR1 functions as a scaffold protein for activation of an EGFR phosphatase, PTPRH, at the plasma membrane through the exclusive interaction with RhoB-GTP which is constitutively degraded by the CUL3/KCTD10 E3 complex. Epidermal growth factor receptor (EGFR) and human EGFR 2 (HER2) phosphorylation drives HER2-positive breast cancer cell proliferation. Enforced activation of phosphatases for those receptors could be a therapeutic option for HER2-positive breast cancers. Here, we report that degradation of an endosomal small GTPase, RhoB, by the ubiquitin ligase complex cullin-3 (CUL3)/KCTD10 is essential for both EGFR and HER2 phosphorylation in HER2-positive breast cancer cells. Using human protein arrays produced in a wheat cell-free protein synthesis system, RhoB-GTP, and protein tyrosine phosphatase receptor type H (PTPRH) were identified as interacting proteins of connector enhancer of kinase suppressor of Ras1 (CNKSR1). Mechanistically, constitutive degradation of RhoB, which is mediated by the CUL3/KCTD10 E3 complex, enabled CNKSR1 to interact with PTPRH at the plasma membrane resulting in inactivation of EGFR phosphatase activity. Depletion of CUL3 or KCTD10 led to the accumulation of RhoB-GTP at the plasma membrane followed by its interaction with CNKSR1, which released activated PTPRH from CNKSR1. This study suggests a mechanism of PTPRH activation through the exclusive binding of RhoB-GTP to CNKSR1.
Collapse
Affiliation(s)
- Kanako Nishiyama
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan
| | - Masashi Maekawa
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan .,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Tomoya Nakagita
- Division of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Jun Nakayama
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Takeshi Kiyoi
- Division of Analytical Bio-medicine, Advanced Research Support Center, Ehime University, Toon, Japan
| | - Mami Chosei
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Akari Murakami
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yoshiaki Kamei
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hiroyuki Takeda
- Division of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yasutsugu Takada
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan .,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan.,Department of Molecular and Cellular Biology, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| |
Collapse
|
7
|
Li Y, Li X, Wang L, Han N, Yin G. miR-375-3p contributes to hypoxia-induced apoptosis by targeting forkhead box P1 (FOXP1) and Bcl2 like protein 2 (Bcl2l2) in rat cardiomyocyte h9c2 cells. Biotechnol Lett 2020; 43:353-367. [PMID: 33128129 DOI: 10.1007/s10529-020-03013-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
miRNAs have been pointed to play critical role in the development of congenital heart disease (CHD). miRNA-375-3p (miR-375-3p) was involved in cardiac dysfunction and cardiogenesis. However, no prior study had established a therapeutic role of miR-375-3p in CHD. We intended to investigate the effect and mechanism of miR-375-3p on apoptosis in hypoxic cardiomyocytes in vitro. Expression of miR-375-3p, forkhead box P1 (FOXP1) and Bcl2 like protein 2 (Bcl2l2) was detected using real-time quantitative PCR and western blot. Apoptosis was measured with MTT assay, flow cytometry and caspase-3 activity assay. The potential target binding between miR-375-3p and FOXP1/Bcl2l2 was predicted on DianaTools, and was validated by luciferase reporter assay and RNA pull-down assay. As a result, miR-375-3p was upregulated and FOXP1/Bcl2l2 was downregulated in maternal serum of women with fetal CHD and hypoxia-induced rat cardiomyocyte h9c2 cells. Hypoxia induced apoptosis rate elevation, caspase-3 activity promotion and viability inhibition in h9c2 cells; overexpression of miR-375-3p promoted, whereas knockdown of miR-375-3p antagonized hypoxia-induced effects in h9c2 cells. In addition, miR-375-3p was validated to negatively regulate FOXP1 and Bcl2l2 expression through target binding, and silencing of FOXP1 and Bcl2l2 could independently abate the anti-apoptosis role of miR-375-3p knockdown in hypoxic h9c2 cells. Collectively, blocking miR-375-3p suppressed hypoxia-evoked apoptosis of cardiomyocytes by targeting and upregulating FOXP1 and Bcl2l2. Our results might suggest maternal serum miR-375-3p as a potential biomarker for prenatal detection of fetal CHD.
Collapse
Affiliation(s)
- Yuefan Li
- Department of Cardiology, Qingdao Central Hospital, No. 127, Siliu South Road, Qingdao, 266042, Shandong, China
| | - Xiaofei Li
- Department of Acupuncture, Qingdao Central Hospital, Qingdao, 266042, Shandong, China
| | - Ling Wang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Na Han
- Department of Cardiology, Qingdao Central Hospital, No. 127, Siliu South Road, Qingdao, 266042, Shandong, China
| | - Gang Yin
- Department of Cardiology, Qingdao Central Hospital, No. 127, Siliu South Road, Qingdao, 266042, Shandong, China.
| |
Collapse
|
8
|
Lv Y, Liu Z, Huang J, Yu J, Dong Y, Wang J. LncRNA nuclear-enriched abundant transcript 1 regulates hypoxia-evoked apoptosis and autophagy via mediation of microRNA-181b. Mol Cell Biochem 2019; 464:193-203. [PMID: 31853799 DOI: 10.1007/s11010-019-03660-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/16/2019] [Indexed: 12/22/2022]
Abstract
Nuclear-enriched abundant transcript 1 (NEAT1), a vital long noncoding RNA (lncRNA), exhibits the functions in disparate cancers. Nevertheless, the influences of NEAT1 in congenital heart disease (CHD) remain unreported. The research delves into whether NEAT1 affects H9c2 cells apoptosis and autophagy under the hypoxia condition. Overexpressed NEAT1 vector was transfected into H9c2 cells; then, functions of NEAT1 in cell viability, apoptosis, autophagy, PI3K/AKT/mTOR and JAK1/STAT3 pathways were detected in H9c2 cells under hypoxia condition. Expression of NEAT1 and miR-181b in hypoxia and blood samples from CHD was evaluated. After miR-181b inhibitor transfection, functions of miR-181b repression in the above-mentioned cell behavior and PI3K/AKT/mTOR and JAK1/STAT3 pathways were reassessed. Overexpressed NEAT1 clearly allayed hypoxia-triggered H9c2 cells apoptosis and autophagy. The decreased NEAT1 and miR-181b were showcased in hypoxia and blood samples from CHD; meanwhile, elevated miR-181b evoked by overexpressed NEAT1 was observed in hypoxia-managed H9c2 cells. More importantly, miR-181b inhibition obviously overturned the influences of NEAT1 in hypoxia-affected H9c2 cells apoptosis and autophagy. Besides, overexpressed NEAT1 facilitated PI3K/AKT/mTOR and JAK1/STAT3 activations via enhancing miR-181b. The research exposed that NEAT1 eased hypoxia-triggered H9c2 cells apoptosis and autophagy by expediting PI3K/AKT/mTOR and JAK1/STAT3 pathways via elevating miR-181b.
Collapse
Affiliation(s)
- Ying Lv
- Department of Cardiovascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Zhaoming Liu
- Department of Pediatric Surgery, Shijiazhuang Maternity & Child Healthcare Hospital, No. 9 Jianguo Road, Shijiazhuang, 050051, Hebei, China
| | - Jiancheng Huang
- Department of Cardiovascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Jie Yu
- Department of Cardiovascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Yanbo Dong
- Department of Cardiovascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Jun Wang
- Department of Cardiovascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| |
Collapse
|