1
|
Tian Y, Liu YF, Wang YY, Li YZ, Ding WY, Zhang C. Molecular mechanisms of PTEN in atherosclerosis: A comprehensive review. Eur J Pharmacol 2024; 979:176857. [PMID: 39094923 DOI: 10.1016/j.ejphar.2024.176857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall caused by an imbalance of lipid metabolism and a maladaptive inflammatory response. A variety of harmful cellular changes associated with atherosclerosis include endothelial dysfunction, the migration of circulating inflammatory cells to the arterial wall, the production of proinflammatory cytokines, lipid buildup in the intima, local inflammatory responses in blood vessels, atherosclerosis-associated apoptosis, and autophagy. PTEN inhibits the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway through its lipid phosphatase activity. Previous studies have shown that PTEN is closely related to atherosclerosis. This article reviews the role of PTEN in atherosclerosis from the perspectives of autophagy, apoptosis, inflammation, proliferation, and angiogenesis.
Collapse
Affiliation(s)
- Yuan Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yi-Fan Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yan-Yue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yong-Zhen Li
- Department of Pathology, The First People's Hospital of Zigong, Zigong, China, 643099, People's Republic of China
| | - Wen-Yan Ding
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| |
Collapse
|
2
|
Masrour M, Khanmohammadi S, Fallahtafti P, Hashemi SM, Rezaei N. Long non-coding RNA as a potential diagnostic and prognostic biomarker in melanoma: A systematic review and meta-analysis. J Cell Mol Med 2024; 28:e18109. [PMID: 38193829 PMCID: PMC10844705 DOI: 10.1111/jcmm.18109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have been applied as biomarkers for melanoma patients. In this systematic review and meta-analysis, we investigated the diagnostic and prognostic value of lncRNAs. We used the keywords 'lncRNA' and 'melanoma' to search databases for studies published before June 14th, 2023. The specificity, sensitivity and AUC were utilized to assess diagnostic accuracy and the prognostic value was assessed using overall survival, progression-free survival and disease-free survival hazard ratios. After screening 1191 articles, we included seven studies in the diagnostic evaluation section and 17 studies in the prognosis evaluation section. The Reitsma bivariate model estimated a cumulative sensitivity of 0.724 (95% CI: 0.659-0.781, p < 0.001) and specificity of 0.812 (95% CI: 0.752-0.859, p < 0.001). The pooled AUC was 0.780 (95% CI: 0.749-0.811, p < 0.0001). The HR for overall survival was 2.723 (95% CI: 2.259-3.283, p < 0.0001). Two studies reported an HR for overall survival less than one, with an HR of 0.348 (95% CI: 0.200-0.607, p < 0.0002). The HR for progression-free survival was 2.913 (95% CI: 2.050-4.138, p < 0.0001). Four studies reported an HR less than one, with an HR of 0.457 (95% CI: 0.256-0.817). The HR for disease-free survival was 2.760 (95% CI: 2.009-3.792, p < 0.0001). In conclusion, the expression of lncRNAs in melanoma patients affects survival and prognosis. LncRNAs can also be employed as diagnostic biomarkers.
Collapse
Affiliation(s)
- Mahdi Masrour
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Shaghayegh Khanmohammadi
- School of MedicineTehran University of Medical SciencesTehranIran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Parisa Fallahtafti
- School of MedicineTehran University of Medical SciencesTehranIran
- Tehran Heart Center, Cardiovascular Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Seyedeh Melika Hashemi
- School of MedicineTehran University of Medical SciencesTehranIran
- Tehran Heart Center, Cardiovascular Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Jiang Y, Ye Y, Huang Y, Wu Y, Wang G, Gui Z, Zhang M, Zhang M. Identification and validation of a novel anoikis-related long non-coding RNA signature for pancreatic adenocarcinoma to predict the prognosis and immune response. J Cancer Res Clin Oncol 2023; 149:15069-15083. [PMID: 37620430 DOI: 10.1007/s00432-023-05285-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE To provide more precise treatment options for pancreatic adenocarcinoma (PAAD) patients and improve their prognosis,we established a novel anoikis-related long non-coding RNA signature (ARLSig) to predict the prognosis and immune response for PAAD patients. METHODS We downloaded information on PAAD from The Cancer Genome Atlas (TCGA) database, and screened long non-coding RNA (lncRNA) linked with anoikis, and prognostic signatures with these lncRNAs. After that, ARLSig was verified using receiver operating characteristic (ROC) and C-index curves. To further investigate the role of ARLSig, we also performed enrichment analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Additionally, using immunological correlation analysis and single-sample genetic enrichment analysis, we investigated the effectiveness of PAAD immunotherapy. RESULTS We screened 7 lncRNAs to construct a novel ARLSig and utilized it to predict the efficacy of immunotherapy and the prognosis of PAAD patients. CONCLUSION ARLSig can identify patients who will benefit from immunotherapy and improve the prediction of PAAD patient prognosis.
Collapse
Affiliation(s)
- Yue Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Yi Huang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Yue Wu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Gaoxiang Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Zhongxuan Gui
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Mengmeng Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China.
- Anhui University of Traditional Chinese Medicine, Hefei, 230022, China.
| |
Collapse
|
4
|
Cusenza VY, Tameni A, Neri A, Frazzi R. The lncRNA epigenetics: The significance of m6A and m5C lncRNA modifications in cancer. Front Oncol 2023; 13:1063636. [PMID: 36969033 PMCID: PMC10033960 DOI: 10.3389/fonc.2023.1063636] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
Most of our transcribed RNAs are represented by non-coding sequences. Long non-coding RNAs (lncRNAs) are transcripts with no or very limited protein coding ability and a length >200nt. They can be epigenetically modified. N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-methylguanosine (m7G) and 2’-O-methylation (Nm) are some of the lncRNAs epigenetic modifications. The epigenetic modifications of RNA are controlled by three classes of enzymes, each playing a role in a specific phase of the modification. These enzymes are defined as “writers”, “readers” and “erasers”. m6A and m5C are the most studied epigenetic modifications in RNA. These modifications alter the structure and properties, thus modulating the functions and interactions of lncRNAs. The aberrant expression of several lncRNAs is linked to the development of a variety of cancers and the epigenetic signatures of m6A- or m5C-related lncRNAs are increasingly recognized as potential biomarkers of prognosis, predictors of disease stage and overall survival. In the present manuscript, the most up to date literature is reviewed with the focus on m6A and m5C modifications of lncRNAs and their significance in cancer.
Collapse
Affiliation(s)
- Vincenza Ylenia Cusenza
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Annalisa Tameni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Raffaele Frazzi
- Scientific Directorate, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
- *Correspondence: Raffaele Frazzi,
| |
Collapse
|
5
|
LncRNA XIST accelerates burn wound healing by promoting M2 macrophage polarization through targeting IL-33 via miR-19b. Cell Death Dis 2022; 8:220. [PMID: 35449128 PMCID: PMC9023461 DOI: 10.1038/s41420-022-00990-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022]
Abstract
Burn injuries are a serious threat to quality of life. The aim of this study was to investigate the mechanism of burn wound healing. The lncRNA XIST has been associated with burn wound healing, but the mechanism is not clear. In the present study, in vitro and in vivo models of burn injuries were established by thermal injury treatment of human skin fibroblasts (HSFs) and mice, respectively. Pathological changes in skin tissues were detected by haematoxylin and eosin (HE) staining. Immunofluorescence double staining was performed to detect M2 macrophages. Furthermore, the changes of cell proliferation, apoptosis and migration by CCK-8, flow cytometry, scratch and Transwell assays to evaluate the effect of XIST on burn wound healing. The binding relationships among XIST, miR-19b and IL-33 were analyzed by RNA immunoprecipitation (RIP) and dual luciferase reporter assays. Our results found that there were targeted binding sites between XIST and miR-19b, miR-19b and IL-33. We investigated whether XIST enhanced the polarization of M2 macrophages to promote the healing of burn wounds. After fibroblast burn injury, the expression levels of XIST and IL-33 increased in a time-dependent manner, whereas miR-19b expression decreased in a time-dependent manner. XIST contributed to the proliferation and migration of skin fibroblasts by inhibiting miR-19b and enhanced fibroblast extracellular matrix production by promoting the transformation of macrophages to the M2 phenotype. In short, these findings indicate that XIST can promote burn wound healing and enhance the polarization of M2 macrophages by targeting the IL-33/miR-19b axis, which may serve as a potential theoretical basis for the treatment of burn wound healing.
Collapse
|
6
|
Li J, Ming Z, Yang L, Wang T, Liu G, Ma Q. Long noncoding RNA XIST: Mechanisms for X chromosome inactivation, roles in sex-biased diseases, and therapeutic opportunities. Genes Dis 2022; 9:1478-1492. [PMID: 36157489 PMCID: PMC9485286 DOI: 10.1016/j.gendis.2022.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Sexual dimorphism has been reported in various human diseases including autoimmune diseases, neurological diseases, pulmonary arterial hypertension, and some types of cancers, although the underlying mechanisms remain poorly understood. The long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in X chromosome inactivation (XCI) in female placental mammals, a process that ensures the balanced expression dosage of X-linked genes between sexes. XIST is abnormally expressed in many sex-biased diseases. In addition, escape from XIST-mediated XCI and skewed XCI also contribute to sex-biased diseases. Therefore, its expression or modification can be regarded as a biomarker for the diagnosis and prognosis of many sex-biased diseases. Genetic manipulation of XIST expression can inhibit the progression of some of these diseases in animal models, and therefore XIST has been proposed as a potential therapeutic target. In this manuscript, we summarize the current knowledge about the mechanisms for XIST-mediated XCI and the roles of XIST in sex-biased diseases, and discuss potential therapeutic strategies targeting XIST.
Collapse
|
7
|
Wei Y, Zhai Y, Liu X, Jin S, Zhang L, Wang C, Zou H, Hu J, Wang L, Jiang J, Shen X, Pang L. Long non-coding RNA MIR31HG as a prognostic predictor for malignant cancers: A meta- and bioinformatics analysis. J Clin Lab Anal 2021; 36:e24082. [PMID: 34837713 PMCID: PMC8761471 DOI: 10.1002/jcla.24082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/18/2021] [Accepted: 10/16/2021] [Indexed: 02/05/2023] Open
Abstract
Background The possible regulatory mechanism of MIR31HG in human cancers remains unclear, and reported results of the prognostic significance of MIR31HG expression are inconsistent. Methods The meta‐analysis and related bioinformatics analysis were conducted to evaluate the role of MIR31HG in tumor progression. Results The result showed that high MIR31HG expression was not related to prognosis. However, in the stratified analysis, we found that the overexpression of MIR31HG resulted in worse OS, advanced TNM stage, and tumor differentiation in respiratory system cancers. Moreover, our results also found that MIR31HG overexpression was related to shorter OS in cervical cancer patients and head and neck tumors. In contrast, the MIR31HG was lower in digestive system tumors which contributed to shorter overall survival, advanced TNM stage, and distant metastasis. Furthermore, the bioinformatics analysis showed that MIR31HG was highly expressed in normal urinary bladder, small intestine, esophagus, stomach, and duodenum and low in colon, lung, and ovary. The results obtained from FireBrowse indicated that MIR31HG was highly expressed in LUSC, CESC, HNSC, and LUAD and low in STAD and BLCA. Gene Ontology analysis showed that the co‐expressed genes of MIR31HG were most enriched in the biological processes of peptide metabolism and KEGG pathways were most enriched in Ras, Rap1, and PI3K‐Akt signaling pathway. Conclusion MIR31HG may serve as a potential biomarker in human cancers.
Collapse
Affiliation(s)
- Yuanfeng Wei
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China.,Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yingjie Zhai
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China.,Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Xiaoang Liu
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Shan Jin
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China.,Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Lu Zhang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China.,Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Chengyan Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China.,Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Hong Zou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China.,Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Jianming Hu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China.,Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China.,Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Jinfang Jiang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China.,Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Xihua Shen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China.,Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Lijuan Pang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China.,Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
8
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
9
|
Mohapatra S, Pioppini C, Ozpolat B, Calin GA. Non-coding RNAs regulation of macrophage polarization in cancer. Mol Cancer 2021; 20:24. [PMID: 33522932 PMCID: PMC7849140 DOI: 10.1186/s12943-021-01313-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Noncoding RNA (ncRNA) transcripts that did not code proteins but regulate their functions were extensively studied for the last two decades and the plethora of discoveries have instigated scientists to investigate their dynamic roles in several diseases especially in cancer. However, there is much more to learn about the role of ncRNAs as drivers of malignant cell evolution in relation to macrophage polarization in the tumor microenvironment. At the initial stage of tumor development, macrophages have an important role in directing Go/No-go decisions to the promotion of tumor growth, immunosuppression, and angiogenesis. Tumor-associated macrophages behave differently as they are predominantly induced to be polarized into M2, a pro-tumorigenic type when recruited with the tumor tissue and thereby favoring the tumorigenesis. Polarization of macrophages into M1 or M2 subtypes plays a vital role in regulating tumor progression, metastasis, and clinical outcome, highlighting the importance of studying the factors driving this process. A substantial number of studies have demonstrated that ncRNAs are involved in the macrophage polarization based on their ability to drive M1 or M2 polarization and in this review we have described their functions and categorized them into oncogenes, tumor suppressors, Juggling tumor suppressors, and Juggling oncogenes.
Collapse
Affiliation(s)
- Swati Mohapatra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| | - Carlotta Pioppini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Life Science Plaza, Suite: LSP9.3012, 2130 W, Holcombe Blvd, Ste. 910, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Rubin JB, Lagas JS, Broestl L, Sponagel J, Rockwell N, Rhee G, Rosen SF, Chen S, Klein RS, Imoukhuede P, Luo J. Sex differences in cancer mechanisms. Biol Sex Differ 2020; 11:17. [PMID: 32295632 PMCID: PMC7161126 DOI: 10.1186/s13293-020-00291-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
| | - Joseph S Lagas
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jasmin Sponagel
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Nathan Rockwell
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Gina Rhee
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Sarah F Rosen
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Si Chen
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Robyn S Klein
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Princess Imoukhuede
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| |
Collapse
|
11
|
Lu G, Tian P, Zhu Y, Zuo X, Li X. LncRNA XIST knockdown ameliorates oxidative low-density lipoprotein-induced endothelial cells injury by targeting miR-204-5p/TLR4. J Biosci 2020. [DOI: 10.1007/s12038-020-0022-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Zhang C, Ren X, He J, Wang W, Tu C, Li Z. The prognostic value of long noncoding RNA SNHG16 on clinical outcomes in human cancers: a systematic review and meta-analysis. Cancer Cell Int 2019; 19:261. [PMID: 31632195 PMCID: PMC6788067 DOI: 10.1186/s12935-019-0971-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer has been a worldwide health problem with a high risk of morbidity and mortality, however ideal biomarkers for effective screening and diagnosis of cancer patients are still lacking. Small nucleolar RNA host gene 16 (SNHG16) is newly identified lncRNA with abnormal expression in several human malignancies. However, its prognostic value remains controversial. This meta-analysis aimed to synthesize available data to clarify the association between SNHG16 expression levels and clinical prognosis value in multiple cancers. METHODS Extensive literature retrieval was conducted to identify eligible studies, and data regarding SNHG16 expression levels on survival outcomes and clinicopathological features were extracted and pooled for calculation of the hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs). Forest plots were applied to show the association between SNHG16 expression and survival prognosis. Additionally, The Cancer Genome Atlas (TCGA) dataset was screened and extracted for validation of the results in this meta-analysis. RESULTS A total of eight studies comprising 568 patients were included in the final meta-analysis according to the inclusion and exclusion criteria. In the pooled analysis, high SNHG16 expression significantly predicted worse overall survival (OS) in various cancers (HR = 1.87, 95% CI 1.54-2.26, P < 0.001), and recurrence-free survival (RFS) in bladder cancer (HR = 1.68, 95% CI 1.01-2.79, P = 0.045). Meanwhile, stratified analyses revealed that the survival analysis method, tumor type, sample size, and cut-off value did not alter the predictive value of SNHG16 for OS in cancer patients. In addition, compared to the low SNHG16 expression group, patients with high SNHG16 expression were more prone to worse clinicopathological features, such as larger tumor size, advanced clinical stage, lymph node metastasis (LNM) and distant metastasis (DM). Exploration of TCGA dataset further validated that the upregulated SNHG16 expression predicted unfavorable OS and disease-free survival (DFS) in cancer patients. CONCLUSIONS The present study implicated that aberrant expression of lncRNA SNHG16 was strongly associated with clinical survival outcomes in various cancers, and therefore might serve as a promising biomarker for predicting prognosis of human cancers.
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan China
- University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan China
- University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
13
|
Sun Y, Xu J. TCF-4 Regulated lncRNA-XIST Promotes M2 Polarization Of Macrophages And Is Associated With Lung Cancer. Onco Targets Ther 2019; 12:8055-8062. [PMID: 31632059 PMCID: PMC6781636 DOI: 10.2147/ott.s210952] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Background Little is known about the biological function of long non-coding RNA X inactive specific transcript (lncRNA XIST) and its underlying mechanism in tumor-associated macrophage (TAM) polarization of lung cancer. Materials and methods The expression of lncRNA XIST in macrophages was detected by RT-qPCR. The function of lncRNA XIST on IL-4-induced M2 polarization was evaluated by transfection of shRNA and RT-qPCR or Western blotting detection of M2 specific markers. Contact between T-cell-specific transcription factor 4 (TCF-4) and lncRNA XIST was verified by bioinformatics and luciferase assay. The relation between lncRNA XIST and lung cancer was determined by bioinformatics. Results The expression of lncRNA XIST in THP-1-differentiated macrophages was significantly increased in M2 macrophages than M1 (P < 0.05). lncRNA XIST downregulation suppressed the IL-4-induced M2 polarization, inducing downregulation of M2 specific markers such as IL-10, Arg-1, and CD163. However, the suppression was aborted by overexpression of TCF-4. Mechanistically, lncRNA XIST was regulated by TCF-4 through direct binding. Additionally, lung cancer conditioned macrophages exhibited high expression of lncRNA XIST and lung cancer tissues highly expressed TCF-4, indicating TCF-4 regulated lncRNA XIST closely correlated with macrophage polarization and tumor progression of lung cancer. Conclusion Taken together, this study demonstrated the important role of TCF-4 regulated lncRNA XIST in regulating M2 polarization and gave a novel insight into the TAMs regulation and potential therapeutic target of lung cancer.
Collapse
Affiliation(s)
- Yanbin Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Jingjing Xu
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, People's Republic of China
| |
Collapse
|
14
|
Dinescu S, Ignat S, Lazar AD, Constantin C, Neagu M, Costache M. Epitranscriptomic Signatures in lncRNAs and Their Possible Roles in Cancer. Genes (Basel) 2019; 10:genes10010052. [PMID: 30654440 PMCID: PMC6356509 DOI: 10.3390/genes10010052] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
In contrast to the amazing exponential growth in knowledge related to long non-coding RNAs (lncRNAs) involved in cell homeostasis or dysregulated pathological states, little is known so far about the links between the chemical modifications occurring in lncRNAs and their function. Generally, ncRNAs are post-transcriptional regulators of gene expression, but RNA modifications occurring in lncRNAs generate an additional layer of gene expression control. Chemical modifications that have been reported in correlation with lncRNAs include m⁶A, m⁵C and pseudouridylation. Up to date, several chemically modified long non-coding transcripts have been identified and associated with different pathologies, including cancers. This review presents the current level of knowledge on the most studied cancer-related lncRNAs, such as the metastasis associated lung adenocarcinoma transcript 1 (MALAT1), the Hox transcript antisense intergenic RNA (HOTAIR), or the X-inactive specific transcript (XIST), as well as more recently discovered forms, and their potential roles in different types of cancer. Understanding how these RNA modifications occur, and the correlation between lncRNA changes in structure and function, may open up new therapeutic possibilities in cancer.
Collapse
Affiliation(s)
- Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Simona Ignat
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Andreea Daniela Lazar
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, 050096 Bucharest, Romania.
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, 050096 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|