1
|
Dai J, Zhang S, Shi Y, Xu J, Liu W, Yang J, Shi L, Yan Z, Li C. rs217727 of lncRNA H19 is Associated with Cervical Cancer Risk in the Chinese Han Population. Pharmgenomics Pers Med 2023; 16:933-948. [PMID: 37928407 PMCID: PMC10624116 DOI: 10.2147/pgpm.s422083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/06/2023] [Indexed: 11/07/2023] Open
Abstract
Background Long noncoding RNAs (LncRNAs) have been revealed to involve in cervical cancer (CC) developing. The current study was designed to explore the association of SNPs (rs217727, rs2366152, rs1859168, rs10505477) located in the lncRNA H19, HOTAIR, HOTTIP and CASC8 genes with the risk of CC in a Chinese Han population. Methods Four SNPs were selected and genotyped in 1426 participants (274 CIN patients, 448 CC patients, and 704 healthy control individuals) using MassArray. The association of these SNPs with susceptibility to CC was evaluated. Results Significant differences in allelic distribution of rs217727 were observed in the comparison of CC with control (P = 0.001), indicating the risk of rs217727-A allele in CC (OR = 1.33; 95% CI: 1.12-1.58). The inheritance model analysis revealed that 2AA+GA genotype represented a certain risk of CC (P = 0.001, OR = 1.35; 95% CI: 1.13-1.62). The stratified analysis revealed a risk of the rs217727-A allele for cervical squamous cell carcinoma (SCC) (P = 0.002, OR = 1.33; 95% CI: 1.11-1.60). Conclusion rs217727 in lncRNA H19 exhibited a significant correlation with CC susceptibility, particularly SCC, and A/A genotype of this SNP might present as a risk in CC.
Collapse
Affiliation(s)
- Jie Dai
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Shao Zhang
- Department of Gynaecologic Oncology, The No. 3 Affiliated Hospital of Kunming Medical University, Kunming, 650118, People’s Republic of China
| | - Yuhan Shi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650041, People’s Republic of China
| | - Jinmei Xu
- Department of Gynaecologic Oncology, The No. 3 Affiliated Hospital of Kunming Medical University, Kunming, 650118, People’s Republic of China
| | - Weipeng Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Jia Yang
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The No. 3 Affiliated Hospital of Kunming Medical University, Kunming, 650118, People’s Republic of China
- Department of Gynaecologic Oncology, The Hospital of Yuanmou, Yuanmou, 651300, People’s Republic of China
| | - Chuanyin Li
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| |
Collapse
|
2
|
Wang Y, Zeng J, Chen W, Fan J, Hylemon PB, Zhou H. Long Noncoding RNA H19: A Novel Oncogene in Liver Cancer. Noncoding RNA 2023; 9:19. [PMID: 36960964 PMCID: PMC10037657 DOI: 10.3390/ncrna9020019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Liver cancer is the second leading cause of cancer-related death globally, with limited treatment options. Recent studies have demonstrated the critical role of long noncoding RNAs (lncRNAs) in the pathogenesis of liver cancers. Of note, mounting evidence has shown that lncRNA H19, an endogenous noncoding single-stranded RNA, functions as an oncogene in the development and progression of liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumors in adults. H19 can affect many critical biological processes, including the cell proliferation, apoptosis, invasion, and metastasis of liver cancer by its function on epigenetic modification, H19/miR-675 axis, miRNAs sponge, drug resistance, and its regulation of downstream pathways. In this review, we will focus on the most relevant molecular mechanisms of action and regulation of H19 in the development and pathophysiology of HCC and CCA. This review aims to provide valuable perspectives and translational applications of H19 as a potential diagnostic marker and therapeutic target for liver cancer disease.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jing Zeng
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
| |
Collapse
|
3
|
Wu B, Zhang Y, Yu Y, Zhong C, Lang Q, Liang Z, Lv C, Xu F, Tian Y. Long Noncoding RNA H19: A Novel Therapeutic Target Emerging in Oncology Via Regulating Oncogenic Signaling Pathways. Front Cell Dev Biol 2021; 9:796740. [PMID: 34977037 PMCID: PMC8716783 DOI: 10.3389/fcell.2021.796740] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNA H19 (H19) is an imprinting gene with only maternal expression that is involved in regulating different processes in various types of cells. Previous studies have shown that abnormal H19 expression is involved in many pathological processes, such as cancer, mainly through sponging miRNAs, interacting with proteins, or regulating epigenetic modifications. Accumulating evidence has shown that several oncogenic signaling pathways lead to carcinogenesis. Recently, the regulatory relationship between H19 and oncogenic signaling pathways in various types of cancer has been of great interest to many researchers. In this review, we discussed the key roles of H19 in cancer development and progression via its regulatory function in several oncogenic signaling pathways, such as PI3K/Akt, canonical Wnt/β-catenin, canonical NF-κB, MAPK, JAK/STAT and apoptosis. These oncogenic signaling pathways regulated by H19 are involved in cell proliferation, proliferation, migration and invasion, angiogenesis, and apoptosis of various cancer cells. This review suggests that H19 may be a novel therapeutic target for cancers treatment by regulating oncogenic signaling pathways.
Collapse
Affiliation(s)
- Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Yu
- Department of Surgery, Jinzhou Medical University, Jinzhou, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Fang Y, Yang Y, Li N, Zhang XL, Huang HF. Emerging role of long noncoding RNAs in recurrent hepatocellular carcinoma. World J Clin Cases 2021; 9:9699-9710. [PMID: 34877309 PMCID: PMC8610931 DOI: 10.12998/wjcc.v9.i32.9699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most frequent types of liver cancer and is characterized by a high recurrence rate. Recent studies have proposed that long non-coding RNAs (lncRNAs) are potential biomarkers in several recurrent tumor types. It is now well understood that invasion, migration, and metastasis are important factors for tumor recurrence. Moreover, some of the known risk factors for HCC may affect the expression levels of several types of lncRNAs and thus affect the recurrence of liver cancer through lncRNA regulation. In this paper, we review the biological functions, molecular mechanisms, and roles of lncRNAs in HCC and summarize current knowledge about lncRNAs as potential biomarkers in recurrent HCC.
Collapse
Affiliation(s)
- Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Yang Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Na Li
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Xiao-Li Zhang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Han-Fei Huang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| |
Collapse
|
5
|
Li W, Hua R, Wang M, Zhang D, Zhu J, Zhang S, Yang Y, Cheng J, Zhou H, Zhang J, He J. H19 gene polymorphisms and Wilms tumor risk in Chinese children: a four-center case-control study. Mol Genet Genomic Med 2021; 9:e1584. [PMID: 33403826 PMCID: PMC8077085 DOI: 10.1002/mgg3.1584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor is the most common pediatric renal cancer. However, genetic bases behind Wilms tumor remain largely unknown. H19 is a critical maternally imprinted gene. Previous studies indicated that single nucleotide polymorphisms (SNPs) in the H19 can modify the risk of several human malignancies. Epigenetic errors at the H19 locus lead to biallelic silencing in Wilms tumors. Genetic variations in the H19 may be related to Wilms tumor susceptibility. METHODS We conducted a four-center study to investigate whether H19 SNP was a predisposing factor to Wilms tumor. Three polymorphisms in the H19 (rs2839698 G > A, rs3024270 C > G, rs217727 G > A) were genotyped in 355 cases and 1070 cancer-free controls, using Taqman method. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the associations. RESULTS We found that all of these three polymorphisms were significantly associated with Wilms tumor risk alterations. The rs2839698 G > A polymorphism (AG vs. GG: adjusted OR = 0.74, 95% CI = 0.57-0.96, p = 0.024; AA vs. GG: adjusted OR = 1.52, 95% CI = 1.05-2.22, p = 0.027), the rs3024270 C > G polymorphism (CG vs. CC: adjusted OR = 0.61, 95% CI = 0.46-0.81, p = 0.0007; and the rs217727 polymorphism (AG vs. GG: adjusted OR = 0.76, 95% CI = 0.58-0.99, p = 0.035). The Carriers of 1, 2, and 1-2 risk genotypes were inclined to develop Wilms tumor compared with those without risk genotype (adjusted OR = 1.36, 95% CI = 1.02-1.80, p = 0.037; adjusted OR = 1.84, 95% CI = 1.27-2.67, p = 0.001; adjusted OR = 1.50, 95% CI = 1.17-1.92, p = 0.002, respectively). The stratified analysis further revealed that rs2839698 AA, rs217727 AA, and 1-2 risk genotypes could strongly increase Wilms tumor risk among children above 18 months of age, males, and with clinical stage I+II disease. CONCLUSION Our findings indicate that genetic variations in the H19 may confer Wilms tumor risk.
Collapse
Affiliation(s)
- Wenya Li
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Rui‐Xi Hua
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Mi Wang
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Da Zhang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jinhong Zhu
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
- Department of Clinical LaboratoryBiobankHarbin Medical University Cancer HospitalHarbinChina
| | - Songyang Zhang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yang Yang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiwen Cheng
- Department of Pediatric Surgerythe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jiao Zhang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jing He
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
6
|
Li X, Liu R. Long non-coding RNA H19 in the liver-gut axis: A diagnostic marker and therapeutic target for liver diseases. Exp Mol Pathol 2020; 115:104472. [DOI: 10.1016/j.yexmp.2020.104472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/21/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
|
7
|
Zhong X, Huang S, Liu D, Jiang Z, Jin Q, Li C, Da L, Yao Q, Wang D. Galangin promotes cell apoptosis through suppression of H19 expression in hepatocellular carcinoma cells. Cancer Med 2020; 9:5546-5557. [PMID: 32485786 PMCID: PMC7402821 DOI: 10.1002/cam4.3195] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background Galangin has been extensively studied as the antitumor agent in various cancers. However, the effect of galangin in hepatocellular carcinoma (HCC) remains elusive. Methods Using RNA sequencing, the differential expression of lncRNA in human HCC cell line with highly metastatic potential (MHCC97H) cells treated with galangin was investigated. Furthermore, H19 expression pattern was also determined in MHCC97H cells following treatment with galangin. In addition, knockdown and overexpression of H19 was performed to analyze the effect of the expression pattern of H19 on cell apoptosis, cell cycle, migration, and invasion in HCC cells. Moreover, the in vivo effect of galangin on tumor development was also determined in nude mice. In order to analyze loss expression of H19 in vivo, clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) was used. Results Total of 50 lncRNAs were significantly differentially expressed in MHCC97H cells treated with galangin. Besides, the expression of H19 was markedly reduced following treatment with galangin in MHCC97H cells. Compared to the Control group, the galangin‐treated group inhibited cell migration and invasion. Knockdown of H19 expression showed increased cell apoptosis and decreased invasion. In addition, RNA‐seq data also identified 161 mRNA which was significantly differentially expressed following treatment with galangin. To further determine the underlying mechanism, p53 protein was analyzed. Notably, the results indicated that knockdown of H19 and miR675 induced the expression of p53, eventually promoting cell apoptosis in MHCC97H cells. These results indicated that galangin promoted cell apoptosis through reduced the expression of H19 and miR675 in MHCC97H cells. The in vivo result showed that compared to the Con, tumor growth was remarkably suppressed with loss expression of H19. Conclusion Our data suggested that galangin has a crucial role in hepatocarcinogenesis through regulating the expression pattern of H19.
Collapse
Affiliation(s)
- Xiaowei Zhong
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Siyi Huang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Qinglong Jin
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Chengshun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Liu Da
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
8
|
Zou H, Wu LX, Tan L, Shang FF, Zhou HH. Significance of Single-Nucleotide Variants in Long Intergenic Non-protein Coding RNAs. Front Cell Dev Biol 2020; 8:347. [PMID: 32523949 PMCID: PMC7261909 DOI: 10.3389/fcell.2020.00347] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Single-nucleotide variants (SNVs) are the most common genetic variants and universally present in the human genome. Genome-wide association studies (GWASs) have identified a great number of disease or trait-associated variants, many of which are located in non-coding regions. Long intergenic non-protein coding RNAs (lincRNAs) are the major subtype of long non-coding RNAs; lincRNAs play crucial roles in various disorders and cellular models via multiple mechanisms. With rapid growth in the number of the identified lincRNAs and genetic variants, there is great demand for an investigation of SNVs in lincRNAs. Hence, in this article, we mainly summarize the significant role of SNVs within human lincRNA regions. Some pivotal variants may serve as risk factors for the development of various disorders, especially cancer. They may also act as important regulatory signatures involved in the modulation of lincRNAs in a tissue- or disorder-specific manner. An increasing number of researches indicate that lincRNA variants would potentially provide additional options for genetic testing and disease risk assessment in the personalized medicine era.
Collapse
Affiliation(s)
- Hecun Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Lan-Xiang Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Fei-Fei Shang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hong-Hao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
The Good, the Bad, the Question- H19 in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051261. [PMID: 32429417 PMCID: PMC7281302 DOI: 10.3390/cancers12051261] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, is challenging to treat due to its typical late diagnosis, mostly at an advanced stage. Therefore, there is a particular need for research in diagnostic and prognostic biomarkers and therapeutic targets for HCC. The use of long noncoding (lnc) RNAs can widen the list of novel molecular targets improving cancer therapy. In hepatocarcinogenesis, the role of the lncRNA H19, which has been known for more than 30 years now, is still controversially discussed. H19 was described to work either as a tumor suppressor in vitro and in vivo, or to have oncogenic features. This review attempts to survey the conflicting study results and tries to elucidate the potential reasons for the contrary findings, i.e., different methods, models, or readout parameters. This review encompasses in vitro and in vivo models as well as studies on human patient samples. Although the function of H19 in HCC remains elusive, a short outlook summarizes some ideas of using the H19 locus as a novel target for liver cancer therapy.
Collapse
|
10
|
Liu C, Chen L, You Z, Wu Y, Wang C, Zhang G, Xu B, Chen M. Association between lncRNA H19 polymorphisms and cancer susceptibility based on a meta-analysis from 25 studies. Gene 2020; 729:144317. [DOI: 10.1016/j.gene.2019.144317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022]
|
11
|
Ye Y, Guo J, Xiao P, Ning J, Zhang R, Liu P, Yu W, Xu L, Zhao Y, Yu J. Macrophages-induced long noncoding RNA H19 up-regulation triggers and activates the miR-193b/MAPK1 axis and promotes cell aggressiveness in hepatocellular carcinoma. Cancer Lett 2020; 469:310-322. [PMID: 31705929 DOI: 10.1016/j.canlet.2019.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/13/2019] [Accepted: 11/01/2019] [Indexed: 02/05/2023]
Abstract
Dysregulation of long noncoding RNA (lncRNA) H19 has been implicated in hepatocellular carcinoma (HCC), but the concrete regulatory mechanism is lack of research. We mined gene expression profiles of 457 HCC samples from TCGA and TJMUCH cohorts and further validated in 64 FFPE HCC tissues. LncRNA H19 overexpression in situ was significantly correlated with poor prognosis of HCC patients, which induced EMT, promoted stemness and accelerated invasion of HCC cells in vitro. Co-expression network analysis indicated lncRNA H19 negatively correlated with miR-193b and positively correlated with MAPK1 gene, which implicated that lncRNA H19 served as a sponge molecule to hijack miR-193b and protect MAPK1. Forced overexpression of H19 attenuated miR-193b-mediated inhibition on multiple driver oncogenes (EGFR, KRAS, PTEN and IGF1R) and MAPK1 gene, thus triggered EMT and stem cell transformation in HCC. LncRNA H19 positively correlated with CD68 + TAMs in situ. TAMs-induced lncRNA H19 promotes HCC aggressiveness via triggering and activating the miR-193b/MAPK1 axis, mediates the crosstalk between HCC and immunological microenvironment, and causes poor clinical outcomes. LncRNA H19 is a valuable predictive biomarker and potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Jincheng Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, PR China.
| | - Pei Xiao
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Liyan Xu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, PR China.
| | - Yi Zhao
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, PR China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| |
Collapse
|