1
|
Kerrigan L, Edgar K, Russell-Hallinan A, Cappa O, Glezeva N, Galan-Arriola C, Oliver E, Ibanez B, Baugh J, Collier P, Ledwidge M, McDonald K, Simpson D, Das S, Grieve DJ, Watson CJ. Integrin beta-like 1 is regulated by DNA methylation and increased in heart failure patients. ESC Heart Fail 2024. [PMID: 39233619 DOI: 10.1002/ehf2.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
AIMS Dynamic alterations in cardiac DNA methylation have been implicated in the development of heart failure (HF) with evidence of ischaemic heart disease (IHD); however, there is limited research into cell specific, DNA methylation sensitive genes that are affected by dysregulated DNA methylation patterns. In this study, we aimed to identify DNA methylation sensitive genes in the ischaemic heart and elucidate their role in cardiac fibrosis. METHODS A multi-omics integrative analysis was carried out on RNA sequencing and methylation sequencing on HF with IHD (n = 9) versus non-failing (n = 9) left ventricular tissue, which identified Integrin beta-like 1 (ITGBL1) as a gene of interest. Expression of Itgbl1 was assessed in three animal models of HF; an ischaemia-reperfusion pig model, a myocardial infarction mouse model and an angiotensin-II infused mouse model. Single nuclei RNA sequencing was carried out on heart tissue from angiotensin-II infused mice to establish the expression profile of Itgbl1 across cardiac cell populations. Subsequent in vitro analyses were conducted to elucidate a role for ITGBL1 in human cardiac fibroblasts. DNA pyrosequencing was applied to assess ITGBL1 CpG methylation status in genomic DNA from human cardiac tissue and stimulated cardiac fibroblasts. RESULTS ITGBL1 was >2-fold up-regulated (FDR adj P = 0.03) and >10-fold hypomethylated (FDR adj P = 0.01) in human HF with IHD left ventricular tissue compared with non-failing controls. Expression of Itgbl1 was up-regulated in three isolated animal models of HF and showed conserved correlation between increased Itgbl1 and diastolic dysfunction. Single nuclei RNA sequencing highlighted that Itgbl1 is primarily expressed in cardiac fibroblasts, while functional studies elucidated a role for ITGBL1 in cardiac fibroblast migration, evident in 50% reduced 24 h fibroblast wound closure occurring subsequent to siRNA-targeted ITGBL1 knockdown. Lastly, evidence provided from DNA pyrosequencing supports the theory that differential expression of ITGBL1 is caused by DNA hypomethylation. CONCLUSIONS ITGBL1 is a gene that is mainly expressed in fibroblasts, plays an important role in cardiac fibroblast migration, and whose expression is significantly increased in the failing heart. The mechanism by which increased ITGBL1 occurs is through DNA hypomethylation.
Collapse
Affiliation(s)
- Lauren Kerrigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Kevin Edgar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Adam Russell-Hallinan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Oisin Cappa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Nadezhda Glezeva
- UCD Conway Institute and Research and Innovation Programme for Chronic Disease, School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - John Baugh
- UCD Conway Institute and Research and Innovation Programme for Chronic Disease, School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick Collier
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mark Ledwidge
- UCD Conway Institute and Research and Innovation Programme for Chronic Disease, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ken McDonald
- UCD Conway Institute and Research and Innovation Programme for Chronic Disease, School of Medicine, University College Dublin, Dublin, Ireland
| | - David Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | | | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
2
|
Cardoso C, Pestana D, Gokuladhas S, Marreiros AD, O'Sullivan JM, Binnie A, TFernandes M, Castelo-Branco P. Identification of Novel DNA Methylation Prognostic Biomarkers for AML With Normal Cytogenetics. JCO Clin Cancer Inform 2024; 8:e2300265. [PMID: 39052947 PMCID: PMC11371081 DOI: 10.1200/cci.23.00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE AML is a hematologic cancer that is clinically heterogeneous, with a wide range of clinical outcomes. DNA methylation changes are a hallmark of AML but are not routinely used as a criterion for risk stratification. The aim of this study was to explore DNA methylation markers that could risk stratify patients with cytogenetically normal AML (CN-AML), currently classified as intermediate-risk. MATERIALS AND METHODS DNA methylation profiles in whole blood samples from 77 patients with CN-AML in The Cancer Genome Atlas (LAML cohort) were analyzed. Individual 5'-cytosine-phosphate-guanine-3' (CpG) sites were assessed for their ability to predict overall survival. The output was validated using DNA methylation profiles from bone marrow samples of 79 patients with CN-AML in a separate data set from the Gene Expression Omnibus. RESULTS In the training set, using DNA methylation data derived from the 450K array, we identified 2,549 CpG sites that could potentially distinguish patients with CN-AML with an adverse prognosis (intermediate-poor) from those with a more favorable prognosis (intermediate-favorable) independent of age. Of these, 25 CpGs showed consistent prognostic potential across both the 450K and 27K array platforms. In a separate validation data set, nine of these 25 CpGs exhibited statistically significant differences in 2-year survival. These nine validated CpGs formed the basis for a combined prognostic biomarker panel, which includes an 8-CpG Somatic Panel and the methylation status of cg23947872. This panel displayed strong predictive ability for 2-year survival, 2-year progression-free survival, and complete remission in the validation cohort. CONCLUSION This study highlights DNA methylation profiling as a promising approach to enhance risk stratification in patients with CN-AML, potentially offering a pathway to more personalized treatment strategies.
Collapse
Affiliation(s)
- Cândida Cardoso
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve/Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
| | - Daniel Pestana
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve/Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
| | | | - Ana D. Marreiros
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve/Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
| | - Justin M. O'Sullivan
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve/Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Alexandra Binnie
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve/Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, ON, Canada
| | - Mónica TFernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- School of Health, Universidade do Algarve, Faro, Portugal
| | - Pedro Castelo-Branco
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve/Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| |
Collapse
|
3
|
Ogana HA, Hurwitz S, Wei N, Lee E, Morris K, Parikh K, Kim YM. Targeting integrins in drug-resistant acute myeloid leukaemia. Br J Pharmacol 2024; 181:295-316. [PMID: 37258706 DOI: 10.1111/bph.16149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Acute myeloid leukaemia (AML) continues to have a poor prognosis, warranting new therapeutic strategies. The bone marrow (BM) microenvironment consists of niches that interact with not only normal haematopoietic stem cells (HSC) but also leukaemia cells like AML. There are many adhesion molecules in the BM microenvironment; therein, integrins have been of central interest. AML cells express integrins that bind to ligands in the microenvironment, enabling adhesion of leukaemia cells in the microenvironment, thereby initiating intracellular signalling pathways that are associated with cell migration, cell proliferation, survival, and drug resistance that has been described to mediate cell adhesion-mediated drug resistance (CAM-DR). Identifying and targeting integrins in AML to interrupt interactions with the microenvironment have been pursued as a strategy to overcome CAM-DR. Here, we focus on the BM microenvironment and review the role of integrins in CAM-DR of AML and discuss integrin-targeting strategies. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Heather A Ogana
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Samantha Hurwitz
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Nathan Wei
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Eliana Lee
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kayla Morris
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Karina Parikh
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yong-Mi Kim
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Targeting DNA Methylation in Leukemia, Myelodysplastic Syndrome, and Lymphoma: A Potential Diagnostic, Prognostic, and Therapeutic Tool. Int J Mol Sci 2022; 24:ijms24010633. [PMID: 36614080 PMCID: PMC9820560 DOI: 10.3390/ijms24010633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
DNA methylation represents a crucial mechanism of epigenetic regulation in hematologic malignancies. The methylation process is controlled by specific DNA methyl transferases and other regulators, which are often affected by genetic alterations. Global hypomethylation and hypermethylation of tumor suppressor genes are associated with hematologic cancer development and progression. Several epi-drugs have been successfully implicated in the treatment of hematologic malignancies, including the hypomethylating agents (HMAs) decitabine and azacytidine. However, combinations with other treatment modalities and the discovery of new molecules are still the subject of research to increase sensitivity to anti-cancer therapies and improve patient outcomes. In this review, we summarized the main functions of DNA methylation regulators and genetic events leading to changes in methylation landscapes. We provide current knowledge about target genes with aberrant methylation levels in leukemias, myelodysplastic syndromes, and malignant lymphomas. Moreover, we provide an overview of the clinical trials, focused mainly on the combined therapy of HMAs with other treatments and its impact on adverse events, treatment efficacy, and survival rates among hematologic cancer patients. In the era of precision medicine, a transition from genes to their regulation opens up the possibility of an epigenetic-based approach as a diagnostic, prognostic, and therapeutic tool.
Collapse
|
5
|
Wang Z, Fu L, Zhang J, Ge Y, Guo C, Wang R, Deng M, Wang Q, Wang Z. A comprehensive analysis of potential gastric cancer prognostic biomarker ITGBL1 associated with immune infiltration and epithelial-mesenchymal transition. Biomed Eng Online 2022; 21:30. [PMID: 35596183 PMCID: PMC9123716 DOI: 10.1186/s12938-022-00998-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Background Integrin, beta-like 1 (ITGBL1) is involved in a variety of human malignancies. However, the information on the involvement of ITGBL1 in gastric carcinoma (GC) is limited. Hence, this study aimed further to explore the functions and mechanisms of ITGBL1 in GC. Methods First, multiple bioinformatics databases, including Oncomine, Tumor Immune Estimation Resource, UALCAN, and Kaplan–Meier Plotter, were used to predict the expression level and prognostic value of ITGBL1, as well as its association with immune infiltration and epithelial–mesenchymal transition (EMT) in GC. Quantitative reverse transcription–polymerase chain reaction and immunohistochemical analysis were used to detect the expression of ITGBL1 in both GC tissues and cells. Then, targeted silencing of ITGBL1 in GC cells was further used to examine the biological functions of ITGBL1. Results These databases revealed that ITGBL1 was overexpressed and affected the overall survival in GC. Besides, the expression of ITGBL1 positively correlated with immune-infiltrating cells and EMT-related markers. Subsequently, molecular biology experiments verified these predictions. In GC tissues and cells, ITGBL1 was notably overexpressed. Loss-of-function studies showed that the knockdown of ITGBL1 significantly suppressed migration and invasion but promoted apoptosis in MGC803 GC cells. Furthermore, the inhibition of ITGBL1 resulted in remarkably increased protein expression levels of cadherin 1, while the expression of Vimentin, Snail, and transforming growth factor-β1 was downregulated, indicating the initiation and progression of GC caused by ITGBL1 partly via inducing EMT. Conclusions To sum up, the findings indicated that ITGBL1 acted as a valuable oncogenic factor in GC.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai, 200065, People's Republic of China
| | - Liu Fu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, People's Republic of China
| | - Junjie Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai, 200065, People's Republic of China
| | - Yanli Ge
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai, 200065, People's Republic of China
| | - Cheng Guo
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai, 200065, People's Republic of China
| | - Rui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai, 200065, People's Republic of China
| | - Min Deng
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People's Republic of China
| | - Qizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People's Republic of China
| | - Zhirong Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai, 200065, People's Republic of China.
| |
Collapse
|
6
|
Cortez AJ, Kujawa KA, Wilk AM, Sojka DR, Syrkis JP, Olbryt M, Lisowska KM. Evaluation of the Role of ITGBL1 in Ovarian Cancer. Cancers (Basel) 2020; 12:E2676. [PMID: 32961775 PMCID: PMC7563769 DOI: 10.3390/cancers12092676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
In our previous microarray study we identified two subgroups of high-grade serous ovarian cancers with distinct gene expression and survival. Among differentially expressed genes was an Integrin beta-like 1 (ITGBL1), coding for a poorly characterized protein comprised of ten EGF-like repeats. Here, we have analyzed the influence of ITGBL1 on the phenotype of ovarian cancer (OC) cells. We analyzed expression of four putative ITGBL1 mRNA isoforms in five OC cell lines. OAW42 and SKOV3, having the lowest level of any ITGBL1 mRNA, were chosen to produce ITGBL1-overexpressing variants. In these cells, abundant ITGBL1 mRNA expression could be detected by RT-PCR. Immunodetection was successful only in the culture media, suggesting that ITGBL1 is efficiently secreted. We found that ITGBL1 overexpression affected cellular adhesion, migration and invasiveness, while it had no effect on proliferation rate and the cell cycle. ITGBL1-overexpressing cells were significantly more resistant to cisplatin and paclitaxel, major drugs used in OC treatment. Global gene expression analysis revealed that signaling pathways affected by ITGBL1 overexpression were mostly those related to extracellular matrix organization and function, integrin signaling, focal adhesion, cellular communication and motility; these results were consistent with the findings of our functional studies. Overall, our results indicate that higher expression of ITGBL1 in OC is associated with features that may worsen clinical course of the disease.
Collapse
Affiliation(s)
- Alexander Jorge Cortez
- Department of Biostatistics and Bioinformatics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Katarzyna Aleksandra Kujawa
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Agata Małgorzata Wilk
- Department of Biostatistics and Bioinformatics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
| | - Damian Robert Sojka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Joanna Patrycja Syrkis
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Katarzyna Marta Lisowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| |
Collapse
|
7
|
Huang W, Yu D, Wang M, Han Y, Lin J, Wei D, Cai J, Li B, Chen P, Zhang X. ITGBL1 promotes cell migration and invasion through stimulating the TGF-β signalling pathway in hepatocellular carcinoma. Cell Prolif 2020; 53:e12836. [PMID: 32537856 PMCID: PMC7377936 DOI: 10.1111/cpr.12836] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Integrin beta‐like 1 (ITGBL1) is involved in the migration and invasion of several cancers; however, its roles in the development and progression of hepatocellular carcinoma (HCC) remain largely unknown. Materials and methods Immunohistochemistry staining was used to investigate the expression pattern of ITGBL1 and its prognostic values in HCC patients. The transwell, wound‐healing assays, xenograft and orthotopic mouse models were employed to determine the effects of ITGBL1 on HCC cell migration and invasion in vitro and in vivo. The biological mechanisms involved in cell migration and invasion caused by ITGBL1 were determined with Western blotting and RT‐PCR methods. Results ITGBL1 expression was significantly increased in HCC tissues compared to adjacent normal tissues. Patients with higher ITGBL1 expression were associated with more reduced overall survival. ITGBL1 overexpression promoted migration and invasion in SMMC‐7721 and HepG2 cells in vitro and in vivo, whereas knockdown or knockout ITGBL1 in CSQT‐2 cells significantly reduced cell migration and invasion abilities. In SMMC‐7721 cells, ITGBL1 overexpression stimulated TGF‐β/Smads signalling pathway, along with the KRT17 and genes involved in the epithelial‐mesenchymal transition (EMT). In contrast, ITGBL1 knockout inhibited the TGF‐β/Smads signalling pathway in CSQT‐2 cells. Conclusions These findings suggested that ITGBL1 promoted migration and invasion in HCC cells by stimulating the TGF‐β/Smads signalling pathway. ITGBL1 could be a promising prognostic biomarker, as well as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Wei Huang
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Demin Yu
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Mingjie Wang
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Han
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junyu Lin
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dong Wei
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jialin Cai
- Clinical Research Center, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Biliary Tract Surgery Department I, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medical University, Shanghai, China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinxin Zhang
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Clinical Research Center, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Qi L, Song F, Ding Y. Regulatory Mechanism of ITGBL1 in the Metastasis of Colorectal Cancer. Front Oncol 2020; 10:259. [PMID: 32211321 PMCID: PMC7076154 DOI: 10.3389/fonc.2020.00259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Integrin, beta-like 1 (ITGBL1) protein is located in the extracellular matrix (ECM) and involved in the development and metastasis of many tumors. However, the regulatory mechanism of ITGBL1 in colorectal cancer (CRC) remains unclear. This study was to analyze the expression profile of CRC and to identify the expression change of ITGBL1 gene at different stages of CRC. Survival analysis showed that ITGBL1 was related to the metastasis of CRC, and CRC patients with a high expression of ITGBL1 had earlier metastasis. Gene Set Enrichment Analysis (GSEA) indicated the relationship between ITGBL1 expression and molecular events of CRC. The results indicated that a high expression of ITGBL1 was linked to Wnt signaling pathway, cell polarity, and tissue development, while a low expression of ITGBL1 was related to cellular respiration, electron transfer chain, and oxidative phosphorylation. With the expression profiles from interstitial and parenchyma CRC tissues, a comparison was made to determine the difference between high/low expression of ITGBL1 and Wnt signaling pathway, respectively, and further confirmed the close relation between ITGBL1 and Wnt signaling pathway. To determine the relation, an interaction network of ITGBL1 and Wnt signaling proteins was constructed. It was found that β-catenin interacted with multiple extracellular Wnt signals and could bind to ITGBL1. As a result, the regulatory mechanism of ITGBL1 in CRC is related to extracellular Wnt signals and may affect extracellular Wnt signals via β-catenin.
Collapse
Affiliation(s)
- Lu Qi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Fuyao Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| |
Collapse
|
9
|
Aberrant DNA Methylation in Acute Myeloid Leukemia and Its Clinical Implications. Int J Mol Sci 2019; 20:ijms20184576. [PMID: 31527484 PMCID: PMC6770227 DOI: 10.3390/ijms20184576] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease that is characterized by distinct cytogenetic or genetic abnormalities. Recent discoveries in cancer epigenetics demonstrated a critical role of epigenetic dysregulation in AML pathogenesis. Unlike genetic alterations, the reversible nature of epigenetic modifications is therapeutically attractive in cancer therapy. DNA methylation is an epigenetic modification that regulates gene expression and plays a pivotal role in mammalian development including hematopoiesis. DNA methyltransferases (DNMTs) and Ten-eleven-translocation (TET) dioxygenases are responsible for the dynamics of DNA methylation. Genetic alterations of DNMTs or TETs disrupt normal hematopoiesis and subsequently result in hematological malignancies. Emerging evidence reveals that the dysregulation of DNA methylation is a key event for AML initiation and progression. Importantly, aberrant DNA methylation is regarded as a hallmark of AML, which is heralded as a powerful epigenetic marker in early diagnosis, prognostic prediction, and therapeutic decision-making. In this review, we summarize the current knowledge of DNA methylation in normal hematopoiesis and AML pathogenesis. We also discuss the clinical implications of DNA methylation and the current therapeutic strategies of targeting DNA methylation in AML therapy.
Collapse
|