1
|
Liu H, Ma X, Yang X, Xiao S, Ouyang S, Hu Z, Zhou Z, Jiang Z. E. coli Nissle 1917 improves gut microbiota composition and serum metabolites to counteract atherosclerosis via the homocitrulline/Caspase 1/NLRP3/GSDMD axis. Int J Med Microbiol 2024; 318:151642. [PMID: 39742694 DOI: 10.1016/j.ijmm.2024.151642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The probiotic E. coli Nissle 1917 (EcN) alleviates the progression of various diseases, including colitis and tumors. However, EcN has not been studied in atherosclerosis. The study investigated the effects of EcN on atherosclerosis model mice and the potential mechanisms. METHODS Mice in the high-fat diet (HFD) model were given EcN (1 × 109 CFU/g) or homocitrulline (150 mg/L) by oral administration for 12 weeks. The EcN + antibiotic group was set up to investigate the effects of EcN combined with antibiotics on gut microbiota. The control group was utilized as the negative control. Atherosclerosis status, pyroptosis, gut microbiota, and serum metabolites of mice were examined. RESULTS EcN treatment alleviated HFD-caused atherosclerotic plaque and lipid droplet production. EcN treatment reversed HFD-induced increases in total cholesterol, triglycerides, and low-density lipoprotein levels and decreases in high-density lipoprotein levels. EcN inhibited the HFD-caused rise in the expression of pyroptosis-related indicators (cleaved Caspase 1, GSDMD-N, NLRP3, IL-18, and IL-1β). The antibiotics partially reversed the effects of EcN on the model mice, suggesting that EcN regulated pyroptosis in the model mice through gut microbiota. Probiotic bacteria, such as Lactobacillus and Muribaculum, were mainly enriched in the EcN and EcN + antibiotic groups, while Helicobacter, Alistipes, and Rikenella were depleted, suggesting that EcN and EcN + antibiotics could alleviate disorders of gut microbiota in the model mice. EcN reversed the trend of HFD-induced decrease of some metabolites, such as 2-methyl-5-nitroimidazole-1-ethanol, methionine sulfoxide, and shikimate 3-phosphate, and inhibited the increase of some metabolites, such as kynurenine, oxoadipate, and homocitrulline. In addition, homocitrulline showed the opposite effects of EcN in the model mice. Homocitrulline could bind to pyroptosis-related proteins to aggravate ox-LDL-induced endothelial cell pyroptosis. CONCLUSION EcN could alleviate atherosclerosis development by ameliorating HFD-induced disorders of gut microbiota and serum metabolites (such as homocitrulline) to alleviate pyroptosis, which may be associated with homocitrulline/Caspase 1/NLRP3/GSDMD axis. Our study lays the foundation for the development of promising drugs for atherosclerosis in the future.
Collapse
Affiliation(s)
- Huan Liu
- Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China; Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofeng Ma
- Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xuefeng Yang
- Department of Gastroenterology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, University of South China, Hengyang, Hunan 421001, China
| | - Sujun Xiao
- Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shao Ouyang
- Department of Cardiology, the Second Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhihao Hu
- Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhixiang Zhou
- Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Zhisheng Jiang
- Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Alamri A. Sema-3E/PlexinD1 axis modulates dendritic cell phenotypes and functions: Current status and future implications. Hum Immunol 2024; 85:110815. [PMID: 38772051 DOI: 10.1016/j.humimm.2024.110815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
This comprehensive research review explores the complex interplay between the Sema-3E/PlexinD1 axis and dendritic cells (DCs), highlighting its critical role in immune modulation with implications for clinical application Critical regulators of immune responses Dendritic cells are central to adaptive immunity, and the Sema-3E /PlexinD1 axis emerges as a key modulator affecting their phenotypes and functions Review delineates the impact of this signaling axis on DC maturation, migration, antigen presentation, and cytokine production, unravels its multifaceted role in shaping the immune response. Recognizing the limitations and gaps in current knowledge, the study highlights the need for further studies to condition downstream signaling events and related information experienced by the Sema-3E/PlexinD1 axis emphasizes the clarity of the immune system. The review concludes by identifying opportunities for translation, focusing on therapeutic and diagnostic potential. It highlights the importance of collaborative, interdisciplinary efforts to address the challenges and harness the therapeutic and pathological potential of targeting the Sema-3E/PlexinD1 axis, thus opening the way for transformative advances in immunology and clinical medicine.
Collapse
Affiliation(s)
- Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
3
|
Dinh P, Tran C, Dinh T, Ali A, Pan S. Hsa_circRNA_0000284 acts as a ceRNA to participate in coronary heart disease progression by sponging miRNA-338-3p via regulating the expression of ETS1. J Biomol Struct Dyn 2024; 42:5114-5127. [PMID: 37334706 DOI: 10.1080/07391102.2023.2225109] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
Coronary heart disease (CHD) is a prevalent global cause of death. Research suggests that circular RNAs (circRNAs) play a role in the development of CHD. In this study, we investigated the expression of hsa_circRNA_0000284 in peripheral blood leukocytes (PBLs) obtained from a cohort of 94 CHD patients aged over 50 years, as well as 126 age-matched healthy controls (HC). An in vitro inflammatory and oxidative injury cell model that simulates CHD was used to evaluate changes in hsa_ circRNA _0000284 under stress. CRISPR/Cas9 technology was used to evaluate changes in hsa_circRNA_0000284 expression. An hsa_ circRNA_0000284 overexpression and silencing cell model was used to analyze the biological functions of hsa_circRNA_0000284. Bioinformatics, qRT-PCR, viral transfection technology, and luciferase assays were used to evaluate the potential hsa_circRNA_0000284/miRNA-338-3p/ETS1 axis. Western blotting analysis was performed to detect protein expression. Herein, PBLs from CHD patients exhibited downregulation of hsa_circRNA_0000284 expression. Exposure to oxidative stress and inflammation can induce damage to human umbilical endothelial cells, resulting in the downregulation of hsa_circRNA_0000284 expression. The expression of hsa_circRNA_0000284 in EA-hy926 cells was significantly reduced after the AluSq2 element of hsa_circRNA_0000284 had been knocked out. The expression of hsa_circRNA_0000284 affected proliferation, cycle distribution, aging, and apoptosis in EA-hy926 cells. Consistent with the results of cell transfection experiments and luciferase assays, Western blotting showed that hsa_circRNA_0000284 plays a role in the regulation of hsa-miRNA-338-3p expression. Subsequently, hsa-miRNA-338-3p was found to be involved in the regulation of ETS1 expression.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- PhongSon Dinh
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - ChauMyThanh Tran
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - ThiPhuongHoai Dinh
- Department of Neurosurgery, Hue University Hospital, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - ShangLing Pan
- Departments of Pathophysiology, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Xiong Y, Huang H, Chen F, Tang Y. CircDLGAP4 induces autophagy and improves endothelial cell dysfunction in atherosclerosis by targeting PTPN4 with miR-134-5p. ENVIRONMENTAL TOXICOLOGY 2023; 38:2952-2966. [PMID: 37615249 DOI: 10.1002/tox.23930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Circular RNAs (circRNAs), a new subgroup of non-coding RNAs in the human transcriptome, are crucial in atherosclerosis (AS). Here, a newly identified circRNA circDLGAP4 was demonstrated to be downregulated in oxidized forms of low-density lipoprotein (ox-LDL)-induced HUVECs. METHODS This research adopted ox-LDL to stimulate human umbilical vein endothelial cells (HUVECs) to mimic AS in vitro. To further validate the protective action of circDLGAP4 in AS, a mouse model of AS was constructed with a high-fat diet. Functional assays evaluated circDLGAP4 role in AS in vitro and in vivo. Moreover, mechanism assays evaluated association of circDLGAP4/miR-134-5p/PTPN4. RESULTS CircDLGAP4 was induced to promote cell proliferative behavior and autophagy, inhibit apoptotic and inflammatory activities in ox-LDL-treated HUVECs, and attenuated endothelial barrier function. CircDLGAP4 regulated PTPN4 by directly targeting miR-134-5p. Meanwhile, inhibiting miR-134-5p reduced ox-LDL-induced cell dysfunction. Knockout of PTPN4 reversed circDLGAP4 overexpression or miR-134-5p downregulation in vitro. In addition, reducing circDLGAP4 or overexpressing miR-134-5p increased the red atherosclerotic plaque and lesion area of AS mice, reduced autophagy level, and promoted the release of inflammatory cytokines. CONCLUSION This study extends the role of circRNA in AS by inducing autophagy and improving endothelial dysfunction in AS via the circDLGAP4/miR-134-5p/PTPN4 axis.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Cardiology and Cardiovascular Disease Research Institute, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Hui Huang
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Fuli Chen
- Department of Cardiology and Cardiovascular Disease Research Institute, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yijia Tang
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Liu G, Tan L, Zhao X, Wang M, Zhang Z, Zhang J, Gao H, Liu M, Qin W. Anti-atherosclerosis mechanisms associated with regulation of non-coding RNAs by active monomers of traditional Chinese medicine. Front Pharmacol 2023; 14:1283494. [PMID: 38026969 PMCID: PMC10657887 DOI: 10.3389/fphar.2023.1283494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the leading cause of numerous cardiovascular diseases with a high mortality rate. Non-coding RNAs (ncRNAs), RNA molecules that do not encode proteins in human genome transcripts, are known to play crucial roles in various physiological and pathological processes. Recently, researches on the regulation of atherosclerosis by ncRNAs, mainly including microRNAs, long non-coding RNAs, and circular RNAs, have gradually become a hot topic. Traditional Chinese medicine has been proved to be effective in treating cardiovascular diseases in China for a long time, and its active monomers have been found to target a variety of atherosclerosis-related ncRNAs. These active monomers of traditional Chinese medicine hold great potential as drugs for the treatment of atherosclerosis. Here, we summarized current advancement of the molecular pathways by which ncRNAs regulate atherosclerosis and mainly highlighted the mechanisms of traditional Chinese medicine monomers in regulating atherosclerosis through targeting ncRNAs.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Meifang Liu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
6
|
Li Y, Song Y, Liang Y. AREL1 resists the apoptosis induced by TGF-β by inhibiting SMAC in vascular endothelial cells. J Biochem Mol Toxicol 2023; 37:e23439. [PMID: 37522329 DOI: 10.1002/jbt.23439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 03/27/2023] [Accepted: 06/14/2023] [Indexed: 08/01/2023]
Abstract
Abnormal apoptosis of vascular endothelial cells is an important feature of arteriosclerosis (AS). Here, we induced apoptosis in human umbilical vein endothelial cells (HUVECs) using transforming growth factor-β (TGF-β), and investigated the role of antiapoptotic E3 ubiquitin ligase (AREL1) in the apoptosis of vascular endothelial cells. We proved that AREL1 is downregulated in TGF-β treated HUVECs. The overexpression of AREL1 inhibits the activation of Caspase-3 and Caspase-9 and attenuates cell apoptosis induced by TGF-β. According to the result of coimmunoprecipitation, AREL1 interacts with the proapoptotic proteins the second mitochondria-derived activator of caspases (SMAC) in TGF-β treated HUVECs. In addition, miR-320b inhibits the expression of AREL1, and the overexpression of AREL1 attenuates the apoptosis induced by miR-320b mimics in HUVECs. In conclusion, AREL1 is downregulated by miR-320b. AREL1 overexpression inhibits TGF-β induced apoptosis through downregulating SMAC in vascular endothelial cells. Our study explores pathogenesis regulation mechanism and new biological therapeutic targets for vascular disease.
Collapse
Affiliation(s)
- Yun Li
- Department of Medicine, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| | - Yunhong Song
- Department of Medicine, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| | - Yulian Liang
- Department of Medicine, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| |
Collapse
|
7
|
Circular RNA circ_0026218 Suppressed Atherosclerosis Progression via miR-338-3p/SIRT6 Axis. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5647758. [PMID: 36733404 PMCID: PMC9889145 DOI: 10.1155/2023/5647758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/14/2022] [Indexed: 01/26/2023]
Abstract
Background Multiple circular RNAs (circRNAs) are implicated in atherosclerosis (AS) pathogenesis. In fact, how circRNA 0026218 (circ_0026218) functions in AS remains unknown, and thus the functions and mechanisms of circ_0026218 in the injury of vascular endothelial cells are to be investigated. Methods Microarray analysis was employed to screen out differentially expressed circRNAs in AS. A cell model was mimicked by treating Human umbilical vein endothelial cells (HUVECs) with oxidized low-density lipoprotein (ox-LDL). circ_0026218, microRNA-338-3p (miR-338-3p) and silent information regulator 6 (SIRT6) expressions in HUVECs with ox-LDL treatment were probed by qRT-PCR. The cell proliferative capabilities were exposed by CCK-8 assay. The contents of interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α) were measured by ELISA. Oxidative stress kits were utilized to detect the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA). Flow cytometry was adopted to analyze the level of apoptosis of HUVECs. Dual-luciferase reporter gene assay and RIP assay were leveraged to expose the interplay between miR-338-3p and circ_0026218 or SIRT6 3'-UTR, respectively. In addition, the impacts of circ_0026216 and miR-338-3p on SIRT6 protein expressions were subjected to Western blot. Results circ_0026218 was greatly depleted in ox-LDL-stimulated HUVECs. circ_0026218 overexpression promoted viability of HUVECs in vitro and inhibited inflammatory response, oxidative stress, and apoptosis. circ_0026218 could adsorb miR-338-3p and positively modulated SIRT6 expressions via sponging miR-338-3p. Upregulation of this miRNA reversed the influence of circ_0026218 overexpression on ox-LDL-caused injury and apoptosis of HUVECs. Conclusion Collectively, circ_0026218 upregulates SIRT6 expression through decoying miR-338-3p, thereby inhibiting ox-LDL-initiated injury of HUVECs. circ_0026218 is involved in the pathogenesis of AS.
Collapse
|
8
|
Qi J, Han W, Zhong N, Gou Q, Sun C. Integrated analysis of miRNA-mRNA regulatory network and functional verification of miR-338-3p in coronary heart disease. Funct Integr Genomics 2022; 23:16. [PMID: 36562844 DOI: 10.1007/s10142-022-00941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Coronary heart disease is a cardiovascular disease with high morbidity and mortality. Although great progress has been made in treatment, the prognosis is still very poor. Therefore, this project aims to screen potential diagnostic markers and therapeutic targets related to the progression of coronary heart disease. A total of 94 overlapping differentially expressed mRNAs and 70 differentially expressed miRNAs were identified from GSE20681, GSE12288, GSE49823, and GSE105449. Through a series of bioinformatics methods and experiment, we obtained 5 core miRNA-mRNA regulatory pairs, and selected miR-338-3p/RPS23 for functional analysis. Moreover, we found that RPS23 directly targets miR-338-3p by dual luciferase assay, western, and qPCR. And the expression of miR-338-3p and RPS23 is negatively correlated. The AUC value of miR-338-3p is 0.847. Downregulation of miR-338-3p can significantly inhibit the proliferation and migration of HUVEC. On the contrary, overexpression of miR-338-3p promoted the proliferation and migration of HUVEC. In addition, the interference of RPS23 expression can reverse the regulation of miR-338-3p on HUVEC proliferation. In conclusion, miR-338-3p/RPS23 may be involved in the progression of coronary heart disease, and miR-338-3p may be a diagnostic biomarker and therapeutic target for coronary heart disease.
Collapse
Affiliation(s)
- Jie Qi
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China.,Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Wenqi Han
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China
| | - Nier Zhong
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China
| | - Qiling Gou
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China
| | - Chaofeng Sun
- Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
9
|
Chen D, Zhu C, Ye S, Yang Q. Curcumin ameliorates oxidized low-density lipoprotein (ox-LDL)-caused damage in human umbilical vein endothelial cells (HUVECs) through the miR-599/MYD88/NF-κB axis. Toxicol In Vitro 2022; 85:105481. [PMID: 36156291 DOI: 10.1016/j.tiv.2022.105481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The role of curcumin in multiple human diseases was widely reported, including arteriosclerosis (AS). We aimed to investigate the correlation between curcumin and AS-related microRNAs (miRNAs) to find out more underlying mechanism of curcumin used in AS. METHODS Cell proliferation and apoptosis were determined using CCK-8 assay, EdU staining assay, flow cytometry, and western blot for the detection of PCNA and Bax protein expression in human umbilical vein endothelial cells (HUVECs). Inflammation response was evaluated using ELISA kits, and oxidative stress was evaluated by detecting SOD activity and MDA level using the matched commercial kits. RT-qPCR analysis was applied for miR-599 and MYD88 mRNA level measurement. RESULTS Curcumin treatment and miR-599 overexpression could promote cell proliferation, and inhibit cell apoptosis, inflammation response and oxidative stress, thereby alleviating ox-LDL-induced cell damage in HUVECs. Mir-599 was lowly expressed and MYD88 was highly expressed in AS patients and AS cell model. Curcumin could modulate miR-599 to exert the protective effect on ox-LDL-caused cell damage, and miR-599 directly targeted MYD88 to alleviate ox-LDL-caused cell damage in HUVECs. Curcumin targeted miR-599 to regulate MYD88 expression, thereby inactivating the NF-κB pathway in AS cell model. CONCLUSION Our findings illustrated that curcumin exhibited anti-AS effect through the miR-599/MYD88 axis and thereby inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Decai Chen
- Department of Vascular Surgery, Nanyang First People's Hospital affiliated to Henan University, Nanyang 473012, China
| | - Chongmei Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shouwan Ye
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital affiliated to Henan University, Nanyang 473012, China
| | - Qiong Yang
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China.
| |
Collapse
|
10
|
Xia F, Zeng Q. miR-125a-3p aggravates ox-LDL-induced HUVEC injury through BAMBI. J Biochem Mol Toxicol 2022; 36:e23198. [PMID: 35993694 DOI: 10.1002/jbt.23198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/27/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the formation of atherosclerotic plaque in the intima of arteries. Among the known regulators of atherosclerosis, microRNAs (miRNAs) have been reported to play critical roles in lipoprotein homeostasis and plaque formation. But the roles of microRNA-125a-3p (miR-125a-3p) in the pathogenesis of AS remain unknown. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to construct the vascular injury model of AS pathogenesis in vitro. miR-125a-3p and BMP and activin membrane-bound inhibitor (BAMBI) expression levels in HUVECs were then measured by quantitative real-time polymerase chain reaction and western blot. The viability and apoptosis of HUVECs were analyzed by Cell Counting Kit-8 assay, TUNEL assay, and flow cytometry, respectively. The relationship between BAMBI 3'-untranslated region and miR-125a-3p was validated by dual luciferase reporter gene assay. miR-125a-3p expression was raised in HUVECs induced with ox-LDL. In HUVECs, miR-125a-3p enhanced the effects of ox-LDL treatment on repressing the viability and promoting the apoptosis of cells. Additionally, BAMBI was confirmed as a direct target of miR-125a-3p and BAMBI overexpression reversed the effects of miR-125a-3p on HUVECs. miR-125a-3p aggravates the dysfunction of HUVECs induced by ox-LDL via BAMBI, which implies that miR-125a-3p is involved in the pathogenesis of AS.
Collapse
Affiliation(s)
- Feng Xia
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital, Wuhan, Hubei, China
| | - Qingrong Zeng
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital, Wuhan, Hubei, China
| |
Collapse
|
11
|
Yu W, Ilyas I, Aktar N, Xu S. A review on therapeutical potential of paeonol in atherosclerosis. Front Pharmacol 2022; 13:950337. [PMID: 35991897 PMCID: PMC9385965 DOI: 10.3389/fphar.2022.950337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The morbidity and mortality of atherosclerotic cardiovascular disease (ASCVD) is increasing year by year. Cortex Moutan is a traditional Chinese medicinal herb that has been widely used for thousands of years to treat a wide variety of diseases in Eastern countries due to its heat-clearing and detoxifying effects. Paeonol is a bioactive monomer extracted from Cortex Moutan, which has anti-atherosclerotic effects. In this article, we reviewed the pharmacological effects of paeonol against experimental atherosclerosis, as well as its protective effects on vascular endothelial cells, smooth muscle cells, macrophages, platelets, and other important cell types. The pleiotropic effects of paeonol in atherosclerosis suggest that it can be a promising therapeutic agent for atherosclerosis and its complications. Large-scale randomized clinical trials are warranted to elucidate whether paeonol are effective in patients with ASCVD.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
- Anhui Renovo Pharmaceutical Co., Ltd., Hefei, Anhui, China
- *Correspondence: Wei Yu, ; Suowen Xu,
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Nasrin Aktar
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- *Correspondence: Wei Yu, ; Suowen Xu,
| |
Collapse
|
12
|
Tong KL, Tan KE, Lim YY, Tien XY, Wong PF. CircRNA-miRNA interactions in atherogenesis. Mol Cell Biochem 2022; 477:2703-2733. [PMID: 35604519 DOI: 10.1007/s11010-022-04455-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is the major cause of coronary artery disease (CAD) which includes unstable angina, myocardial infarction, and heart failure. The onset of atherogenesis, a process of atherosclerotic lesion formation in the intima of arteries, is driven by lipid accumulation, a vicious cycle of reactive oxygen species (ROS)-induced oxidative stress and inflammatory reactions leading to endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) activation, and foam cell formation which further fuel plaque formation and destabilization. In recent years, there is a surge in the number of publications reporting the involvement of circular RNAs (circRNAs) in the pathogenesis of cardiovascular diseases, cancers, and metabolic syndromes. These studies have advanced our understanding on the biological functions of circRNAs. One of the most common mechanism of action of circRNAs reported is the sponging of microRNAs (miRNAs) by binding to the miRNAs response element (MRE), thereby indirectly increases the transcription of their target messenger RNAs (mRNAs). Individual networks of circRNA-miRNA-mRNA associated with atherogenesis have been extensively reported, however, there is a need to connect these findings for a complete overview. This review aims to provide an update on atherogenesis-related circRNAs and analyze the circRNA-miRNA-mRNA interactions in atherogenesis. The atherogenic mechanisms and clinical relevance of each atherogenesis-related circRNA were systematically discussed for better understanding of the knowledge gap in this area.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ke-En Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Xin-Yi Tien
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Xiu J, Yang Z, Sui Y, Zhang L, Zhou Y. CircNMD3 relieves endothelial cell injury induced by oxidatively modified low-density lipoprotein through regulating miR-498/ BMP and activin membrane-bound inhibitor (BAMBI) axis. Bioengineered 2022; 13:12558-12571. [PMID: 35603423 PMCID: PMC9276052 DOI: 10.1080/21655979.2022.2065813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Jian Xiu
- Department of Cardiology, First People’s Hospital of Zhaoqing
| | - Zheng Yang
- Department of Vascular Surgery, Baoding Second Hospital
| | - Yanbo Sui
- Department of Cardiology, First People’s Hospital of Zhaoqing
| | - Lin Zhang
- Department of cardiology, First Affiliated Hospital of Daqing Heilongjiang, China
- Department of Cardiology, Daqing Oilfield General Hospital, China
| | - Yixing Zhou
- Department of Cardiology, First People’s Hospital of Zhaoqing
| |
Collapse
|
14
|
Wang Y, Chen X, Lu Z, Lai C. Circ_0093887 regulated ox-LDL induced human aortic endothelial cells viability, apoptosis, and inflammation through modulating miR-758-3p/BAMBI axis in atherosclerosis. Clin Hemorheol Microcirc 2022; 81:343-358. [PMID: 35527543 DOI: 10.3233/ch-221445] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND: Compelling evidence demonstrated that circular RNAs (circRNAs) were involved in the progression of atherosclerosis (AS). However, the role of circ_0093887 in the progression of AS is unclear. The purpose of this study was to explore the role and mechanism of circ_0093887 in oxidized-low density lipoprotein (ox-LDL)-induced human aortic endothelial cells (HAECs). METHODS: HAECs were stimulated by ox-LDL to simulate AS-like injury in vitro. Circ_0093887, microRNA-758-3p (miR-758-3p), and BMP And Activin Membrane-Bound Inhibitor (BAMBI) levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). PCNA, Bax, Bcl-2, and BAMBI protein levels were detected by western blot. Cell viability and apoptosis were examined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. Tube formation assay was used to assess tube formation. The levels of inflammatory factors TNF-α and IL-1β were detected by corresponding ELISA kits. The relationship between miR-758-3p and circ_0093887 or BAMBI was tested via dual-luciferase reporter analysis and RNA immunoprecipitation. Oxidative stress related indexes (ROS and MDA) were detected by corresponding kits. RESULTS: The expression levels of circ_0093887 and BAMBI were prominently downregulated in ox-LDL-induced HAECs compared with control, whereas the expression of miR-758-3p was upregulated. Overexpression of circ_0093887 promoted HAECs viability and tube formation, and restrained cell apoptosis in ox-LDL-induced HAECs compared with untreated HAECs. Mechanistically, circ_0093887 regulated the expression of BAMBI through miR-758-3p. Further experiments showed that upregulation of miR-758-3p reversed changes in cell function induced by circ_0093887. In addition, reduced BAMBI salvaged miR-758-3p knockdown mediated effects on cell function. CONCLUSION: Circ_0093887 demonstrated its diagnostic and therapeutic value in AS by promoting the role of the miR-758-3p/BAMBI axis in the ox-LDL-induced endothelial injury of HAECs.
Collapse
Affiliation(s)
- Yueru Wang
- Department of Internal Medicine-Cardiovascular, Shanxi Provincial People’s Hospital, Taiyuan City, Shanxi Province, China
| | - Xiaoyan Chen
- Department of Ultrasound, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Zhikai Lu
- Department of CT Room, General Hospital of Tisco (Sixth Hospital of Shanxi Medical University), Taiyuan City, Shanxi Province, China
| | - Chunlin Lai
- Department of Internal Medicine-Cardiovascular, Shanxi Provincial People’s Hospital, Taiyuan City, Shanxi Province, China
| |
Collapse
|
15
|
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer. Dev Dyn 2022; 251:137-163. [PMID: 33797167 PMCID: PMC8484463 DOI: 10.1002/dvdy.338] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily signaling via their cognate receptors is frequently modified by TGF-β superfamily co-receptors. Signaling through SMAD-mediated pathways may be enhanced or depressed depending on the specific co-receptor and cell context. This dynamic effect on signaling is further modified by the release of many of the co-receptors from the membrane to generate soluble forms that are often antagonistic to the membrane-bound receptors. The co-receptors discussed here include TβRIII (betaglycan), endoglin, BAMBI, CD109, SCUBE proteins, neuropilins, Cripto-1, MuSK, and RGMs. Dysregulation of these co-receptors can lead to altered TGF-β superfamily signaling that contributes to the pathophysiology of many cancers through regulation of growth, metastatic potential, and the tumor microenvironment. Here we describe the role of several TGF-β superfamily co-receptors on TGF-β superfamily signaling and the impact on cellular and physiological functions with a particular focus on cancer, including a discussion on recent pharmacological advances and potential clinical applications targeting these co-receptors.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center,Department of Pharmacology and Cancer Biology, Duke University Medical Center,Corresponding author: Gerard Blobe, B354 LSRC, Box 91004 DUMC, Durham, NC 27708, , 919-668-1352
| |
Collapse
|
16
|
Li X, Wang J, Wu C, Lu X, Huang J. MicroRNAs involved in the TGF-β signaling pathway in atherosclerosis. Biomed Pharmacother 2021; 146:112499. [PMID: 34959122 DOI: 10.1016/j.biopha.2021.112499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease with a multifactorial pathogenesis. It becomes a global health concern, especially causing an array of fatal consequences among the elderly. However, the mechanisms of AS remain unexplained. The transforming growth factor-β (TGF-β) signaling pathway is widely involved in the inflammation, immune function, proliferation, differentiation,and apoptosis in vivo. Based on previous researches, it has not been confirmed whether the TGF-β pathway promotes or inhibits atherosclerosis. Furthermore, more and more studies have found that microRNAs can regulate atherosclerosis through the TGF-β signaling pathway. In this review, we summarize and discuss the role of microRNAs in the pathogenesis of atherosclerosis via the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyu Wang
- Department of Cardiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Wu
- Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Lu
- Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jingjing Huang
- Department of Geriatrics, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Peng W, Li S, Chen S, Yang J, Sun Z. Hsa_circ_0003204 Knockdown Weakens Ox-LDL-Induced Cell Injury by Regulating miR-188-3p/TRPC6 Axis in Human Carotid Artery Endothelial Cells and THP-1 Cells. Front Cardiovasc Med 2021; 8:731890. [PMID: 34912856 PMCID: PMC8666549 DOI: 10.3389/fcvm.2021.731890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Circular RNAs (circRNAs) are involved in atherosclerosis (AS) development. However, the function and mechanism of circRNA hsa_circ_0003204 (circ_0003204) in carotid artery AS remain unclear. Methods: Oxidized low-density lipoprotein (ox-LDL)-treated human carotid artery endothelial cells (HCtAECs) and THP-1 cells were used as cell models of carotid artery AS. Relative levels of circ_0003204, microRNA-188-3p (miR-188-3p), and transient receptor potential canonical channel 6 (TRPC6) were detected by quantitative reverse transcription–polymerase chain reaction or Western blotting. The targeting relationship between circ_0003204 or TRPC6 and miR-188-3p was assessed via dual-luciferase reporter analysis and RNA immunoprecipitation. Cell proliferation was assessed via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and 5-ethynyl-2′-deoxyuridine (EdU) assay. Cell apoptosis was analyzed via assessing cell caspase-3 activity, apoptosis, and apoptosis-related protein. Inflammatory response was analyzed via analysis of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α). Oxidative stress was assessed via determination of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Results: Circ_0003204 and TRPC6 levels were elevated, and miR-188-3p expression declined in ox-LDL-treated HCtAECs and THP-1 cells. Circ_0003204 could regulate TRPC6 expression via mediating miR-188-3p. Circ_0003204 silencing weakened ox-LDL-induced viability inhibition and apoptosis in HCtAECs, and inflammatory response and oxidative stress in THP-1 cells via regulating miR-188-3p. MiR-188-3p overexpression attenuated ox-LDL-induced injury in HCtAECs and THP-1 cells by targeting TRPC6. Conclusion: Circ_0003204 knockdown mitigated ox-LDL-induced injury in HCtAECs and THP-1 cells via regulating the miR-188-3p/TRPC6 axis, indicating that circ_0003204 might play an important role in carotid artery AS.
Collapse
Affiliation(s)
- Wenjia Peng
- Department of Radiology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shuai Li
- Department of Radiology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shiyue Chen
- Department of Radiology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiacheng Yang
- Department of Radiology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ze Sun
- Department of Radiology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
18
|
Ji C, Wang M, Fan X. Water Extract of Gallnut Reduces the Injury of Alveolar Epithelial Cells Induced by Streptococcus pneumoniae by Up-Regulating miRNA-338-3p. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae (S. pneumoniae) is the primary pathogen causing pneumonia, in addition to lobar pneumonia, meningitis, bronchitis, and other diseases. Inhibiting the apoptosis and inflammation of alveolar epithelial cells is essential for the treatment of pneumonia caused
by S. pneumoniae. Traditional Chinese medicine has the characteristics of multiple components, multiple targets, and few adverse reactions. It is recognized by doctors and patients in the treatment of pneumonia and other diseases. We conducted this study to explore the effect of the
water extract of gallnut on alveolar epithelial cells affected by S. pneumoniae. Studies have found that the water extract of gallnut can increase the optical density value, Bcl-2 protein expression, IL-10 content, and miRNA-338-3p levels of alveolar epithelial cells affected by S.
pneumoniae. Additionally, it can reduce the rate of cell apoptosis, Bax protein expression, and IL-6 content. Further, its effect is dose-dependent: the higher the concentration of gallnut water extract, the more evident its effect on alveolar epithelial cells. Through nano PCR detection,
it was found that overexpression of miRNA-338-3p can increase the activity of alveolar epithelial cells affected by S. pneumoniae and promote cell growth. Knockdown of miRNA-338-3p reduced the impact of the water extract of gallnut on the growth of alveolar epithelial cells and the
expression of inflammatory factors affected by S. pneumoniae. Therefore, our findings suggest that the water extract of gallnut could inhibit the apoptosis of alveolar epithelial cells affected by S. pneumoniae by up-regulating the expression of miRNA-338-3p.
Collapse
Affiliation(s)
- Chenhui Ji
- Department of Pulmonology, Jining Traditional Chinese Medicine Hospital, Jining, 272000, Shandong, PR China
| | - Min Wang
- Department of Respiratory Medicine, The First People’s Hospital of Jining City, Jining, 272000, Shandong, PR China
| | - Xiaocheng Fan
- Department of Oncology, Jining Traditional Chinese Medicine Hospital, Jining, 272000, Shandong, PR China
| |
Collapse
|
19
|
Cheng X, Liu Z, Zhang H, Lian Y. Inhibition of LOXL1-AS1 alleviates oxidative low-density lipoprotein induced angiogenesis via downregulation of miR-590-5p mediated KLF6/VEGF signaling pathway. Cell Cycle 2021; 20:1663-1680. [PMID: 34334119 PMCID: PMC8489901 DOI: 10.1080/15384101.2021.1958484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022] Open
Abstract
Increasing evidences have confirmed that long non-coding RNA LOXL1-AS1 functions in multiple human diseases. Here, we aim to explore the function and mechanism of LOXL1-AS1 in modulating oxidized low-density lipoprotein (ox-LDL)-induced angiogenesis of endothelial cells (ECs). Presently, we found that LOXL1-AS1 and KLF6 were upregulated in ECs treated by Ox-LDL in a dose- and time-dependent manner while miR-590-5p was downregulated. Overexpression of LOXL1-AS1 aggravated Ox-LDL mediated ECs proliferation and migration, and promoted angiogenesis both in vitro and in vivo. On the contrary, enhancing miR-590-5p or inhibiting LOXL1-AS1 level led to suppressive effects on the proliferation, migration and angiogenesis of ECs. Moreover, LOXL1-AS1 upregulation promoted the expression of vascular endothelial growth factor (VEGF), MMPs (including MMP2, MMP9 and MMP14) and also activated VEGF/VEGFR2/PI3K/Akt/eNOS pathway. Mechanistically, LOXL1-AS1 works as a competitive endogenous RNA (ceRNA) by sponging miR-590-5p, which targeted at the 3'-untranslated region (3'UTR) of KLF6. Additionally, the proliferation, migration and angiogenesis of ECs were elevated following KLF6 upregulation. By detecting the expression of LOXL1-AS1 and miR-590-5p in the serum of healthy donors and atherosclerosis patients, it was found that LOXL1-AS1 was upregulated in atherosclerosis patients (compared with healthy donors) and had a negative relationship with miR-590-5p. Taken together, LOXL1-AS1 promoted Ox-LDL induced angiogenesis via regulating miR-590-5p-modulated KLF6/VEGF signaling pathway. The LOXL1-AS1-miR-590-5p axis exerts a novel role in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xuan Cheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Zhiwei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| |
Collapse
|
20
|
Cheng X, Liu Z, Zhang H, Lian Y. Inhibition of LOXL1-AS1 alleviates oxidative low-density lipoprotein induced angiogenesis via downregulation of miR-590-5p mediated KLF6/VEGF signaling pathway. Cell Cycle 2021:1-18. [PMID: 34382896 DOI: 10.1080/15384101.2021.1958501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/24/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022] Open
Abstract
Increasing evidences have confirmed that long non-coding RNA LOXL1-AS1 functions in multiple human diseases. Here, we aim to explore the function and mechanism of LOXL1-AS1 in modulating oxidized low-density lipoprotein (ox-LDL)-induced angiogenesis of endothelial cells (ECs). Presently, we found that LOXL1-AS1 and KLF6 were upregulated in ECs treated by Ox-LDL in a dose- and time-dependent manner while miR-590-5p was downregulated. Overexpression of LOXL1-AS1 aggravated Ox-LDL mediated ECs proliferation and migration, and promoted angiogenesis both in vitro and in vivo. On the contrary, enhancing miR-590-5p or inhibiting LOXL1-AS1 level led to suppressive effects on the proliferation, migration and angiogenesis of ECs. Moreover, LOXL1-AS1 upregulation promoted the expression of vascular endothelial growth factor (VEGF), MMPs (including MMP2, MMP9, and MMP14) and also activated VEGF/VEGFR2/PI3K/Akt/eNOS pathway. Mechanistically, LOXL1-AS1 works as a competitive endogenous RNA (ceRNA) by sponging miR-590-5p, which targeted at the 3'-untranslated region (3'UTR) of KLF6. Additionally, the proliferation, migration, and angiogenesis of ECs were elevated following KLF6 upregulation. By detecting the expression of LOXL1-AS1 and miR-590-5p in the serum of healthy donors and atherosclerosis patients, it was found that LOXL1-AS1 was upregulated in atherosclerosis patients (compared with healthy donors) and had a negative relationship with miR-590-5p. Taken together, LOXL1-AS1 promoted Ox-LDL induced angiogenesis via regulating miR-590-5p-modulated KLF6/VEGF signaling pathway. The LOXL1-AS1-miR-590-5p axis exerts a novel role in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xuan Cheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Zhiwei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| |
Collapse
|
21
|
Yan S, Chen J, Zhang T, Zhou J, Wang G, Li Y. Micro-RNA-338-3p Promotes the Development of Atherosclerosis by Targeting Desmin and Promoting Proliferation. Mol Biotechnol 2021; 63:840-848. [PMID: 34100182 PMCID: PMC8316222 DOI: 10.1007/s12033-021-00341-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/15/2021] [Indexed: 12/21/2022]
Abstract
Atherosclerosis (AS) is a dynamic and multi-stage process that involves various cells types, such as vascular smooth muscle cells (VSMCs) and molecules such as microRNAs. In this study, we investigated how miR-338-3p works in the process of AS. To determine how miR-338-3p was expressed in AS, an AS rat model was established and primary rat VSMCs were cultured. Real-time polymerase chain reaction was performed to detect miR-338-3p expression. Markers of different VSMC phenotypes were tested by Western blot. Immunofluorescent staining was employed to observe the morphologic changes of VSMCs transfected with miR-338-3p mimics. A dual luciferase reporter assay system was used to verify that desmin was a target of miR-338-3p. To further identify the role of miR-338-3p in the development of AS, VSMC proliferation and migration were evaluated by EdU incorporation assay, MTT assay, and wound healing assay. miR-338-3p expression was upregulated in the aortic tissues of an AS rat model and in primary rat VSMCs from a later passage. The transfection of miR-338-3p mimics in VSMCs promoted the synthetic cell phenotype. Bioinformatics analysis proposed desmin as a candidate target for miR-338-3p and the dual luciferase reporter assay confirmed in vivo that desmin was a direct target of miR-338-3p. The MTT and EdU incorporation assay revealed increased cell viability when miR-338-3p mimics were transfected. The increased expression of PCNA was a consistent observation, although a positive result was not obtained with respect to VSMC mobility. In AS, miR-338-3p expression was elevated. Elevated miR-338-3p inhibited the expression of desmin, thus promoting the contractile-to-synthetic VSMC phenotypic transition. In addition to morphologic changes, miR-338-3p enhanced the proliferative but not mobile ability of VSMCs. In summary, miR-338-3p promotes the development of AS.
Collapse
Affiliation(s)
- Shiran Yan
- Department of Cardiology, Heze Municipal Hospital, No. 2888, Caozhou West Road, Heze, 274000, China
| | - Jing Chen
- Department of Cardiology, Heze Municipal Hospital, No. 2888, Caozhou West Road, Heze, 274000, China
| | - Teng Zhang
- Department of Internal Medicine, Licun Township Health Center, Heze, 274038, China
| | - Jian Zhou
- Gaozhuang Town Central Health Center, Heze, 274000, China
| | - Ge Wang
- Department of Central Laboratory, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, 100043, China
| | - Yanfen Li
- Department of Cardiology, Heze Municipal Hospital, No. 2888, Caozhou West Road, Heze, 274000, China.
| |
Collapse
|
22
|
Liang G, Chen S, Xin S, Dong L. Overexpression of hsa_circ_0001445 reverses oxLDL‑induced inhibition of HUVEC proliferation via SRSF1. Mol Med Rep 2021; 24:507. [PMID: 33982782 PMCID: PMC8134882 DOI: 10.3892/mmr.2021.12146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a primary cause of multiple types of cardiovascular disease, including myocardial infarction. In addition, injury of human umbilical vein endothelial cells (HUVECs) can lead to the development of atherosclerosis. Circular (circ)RNAs participate in atherosclerosis. It has previously been shown that circRNA cSMARCA5 (hsa_circ_0001445) expression is downregulated in atherosclerosis. However, the effects of hsa_circ_0001445 on the proliferation of HUVECs remain unclear. In order to mimic atherosclerosis in vitro, HUVECs were treated with oxidized low-density lipoprotein (oxLDL). The expression levels of specific genes and proteins were detected in HUVECs by reverse transcription-quantitative PCR and western blot analysis, respectively. Cell proliferation was assessed by Cell Counting Kit-8 and 5-Ethynyl-2′-deoxyuridine staining. Cell apoptosis and 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine staining were examined by flow cytometry. In addition, the association between hsa_circ_0001445 and serine/arginine-rich splicing factor 1 (SRSF1) was investigated by RNA pull-down assay. hsa_circ_0001445 expression was downregulated in oxLDL-treated HUVECs. Moreover, oxLDL-induced inhibition of HUVEC proliferation was significantly reversed by overexpression of hsa_circ_0001445. oxLDL notably inhibited tube formation and mitochondrial membrane potential in HUVECs, while these effects were markedly reversed by hsa_circ_0001445 overexpression. Furthermore, overexpression of hsa_circ_0001445 reversed oxLDL-induced activation of β-catenin by binding to SRSF1. Collectively, these data demonstrated that overexpression of hsa_circ_0001445 reversed oxLDL-induced inhibition of HUVEC proliferation via activation of the SRSF1/β-catenin axis. These findings may provide novel targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Guiying Liang
- Department of Cardiology, First People's Hospital of Fuyang District, Hangzhou, Zhejiang 311400, P.R. China
| | - Sihua Chen
- Department of Cardiology, First People's Hospital of Fuyang District, Hangzhou, Zhejiang 311400, P.R. China
| | - Sha Xin
- Department of Cardiology, First People's Hospital of Fuyang District, Hangzhou, Zhejiang 311400, P.R. China
| | - Liang Dong
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
23
|
Chen D, Wang K, Zheng Y, Wang G, Jiang M. Exosomes-Mediated LncRNA ZEB1-AS1 Facilitates Cell Injuries by miR-590-5p/ETS1 Axis Through the TGF-β/Smad Pathway in Oxidized Low-density Lipoprotein-induced Human Umbilical Vein Endothelial Cells. J Cardiovasc Pharmacol 2021; 77:480-490. [PMID: 33818551 DOI: 10.1097/fjc.0000000000000974] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Atherosclerosis is a chronic lipid-induced inflammation of the vessel wall. Oxidized low-density lipoprotein was confirmed to drive the onset of atherogenesis. Zinc finger e-box-binding homeobox 1 antisense 1 (ZEB1-AS1) is a long noncoding RNA that is involved in human diseases, including atherosclerosis. In this study, the role of exosomes-mediated ZEB1-AS1 and its underlying mechanisms in atherosclerosis were explored in oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs). Exosomes were extracted from HUVECs. Quantitative real-time polymerase chain reaction was conducted to measure the expression of ZEB1-AS1, microRNA-590-5p (miR-590-5p), or erythroblastosis virus E26 oncogene homolog 1 (ETS1) in cells or exosomes. Cell proliferation and apoptosis were assessed by MTT assay and flow cytometry analysis, respectively. Western blot was performed to detect apoptosis-related factors, ETS1, and TGF-β/Smad pathway protein levels. The secretion of inflammatory factors in supernatant was detected by ELISA assay. Oxidative stress damage indicators were used to assess cellular damage. Relationship between miR-590-5p and ZEB1-AS1 or ETS1 was analyzed. Our data indicated that ox-LDL-induced exosomes-mediated ZEB1-AS1 in HUVECs. Ox-LDL treatment resulted in limited proliferation, proapoptosis, inflammation, and oxidative stress damage, whereas knockdown of ZEB1-AS1 could reverse these effects. Mechanically, ZEB1-AS1 sponged miR-590-5p to regulate ETS1 expression. MiR-590-5p knockdown inverted effects above of si-ZEB1-AS1 on HUVECs under ox-LDL exposure. Moreover, ETS1 reversed miR-590-5p-induced effects and activated the TGF-β/Smad pathway in ox-LDL-treated HUVECs. Taken together, our findings demonstrated that exosomes-mediated ZEB1-AS1 enhanced cell injuries by miR-590-5p/ETS1 axis through the TGF-β/Smad pathway in ox-LDL-induced HUVECs, suggesting that inhibiting ZEB1-AS1 might be an effective way for atherosclerosis treatment.
Collapse
Affiliation(s)
- Difang Chen
- Department of Cardiology, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Kunwei Wang
- Department of Endocrinology, Shanghai Tianyou Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Zheng
- Emergency Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, China ; and
| | - Guangyu Wang
- Department of Endocrinology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai, China
| | - Mei Jiang
- Emergency Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, China ; and
| |
Collapse
|
24
|
Miao J, Wang B, Shao R, Wang Y. CircUSP36 knockdown alleviates oxidized low‑density lipoprotein‑induced cell injury and inflammatory responses in human umbilical vein endothelial cells via the miR‑20a‑5p/ROCK2 axis. Int J Mol Med 2021; 47:40. [PMID: 33576448 PMCID: PMC7891832 DOI: 10.3892/ijmm.2021.4873] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
The dysfunctions of human umbilical vein endothelial cells (HUVECs) are important features of atherosclerosis (AS). Circular RNAs (circRNAs) are regulators of a wide range of human diseases, including AS. The present study aimed to investigate the role of circUSP36 in the ectopic phenotype of HUVECs and to provide evidence of the involvement of circUSP36 in the pathogenesis of AS. AS cell models in vitro were established using HUVECs exposed to oxidized low-density lipoprotein (ox-LDL). Cell viability, cell cycle progression and apoptosis, and cell migration and invasion were assessed by cell counting kit-8 (CCK-8) assay, flow cytometric assay and Transwell assay, respectively. The expression levels or releases of pro-inflammatory factors were detected by western blot analysis or enzyme-linked immunosorbent assay (ELISA). The mRNA expression of circUSP36, miR-20a-5p and Rho-associated coiled-coil kinase 2 (ROCK2) was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and the protein level of ROCK2 was detected by western blot analysis. The targeted association between miR-20a-5p and circUSP36 or ROCK2 was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The results revealed that circUSP36 was highly expressed in ox-LDL-exposed HUVECs. CircUSP36 knockdown attenuated ox-LDL-induced cell cycle arrest, cell apoptosis and inflammatory responses, and promoted cell migration and invasion which had been blocked by ox-LDL. miR-20a-5p was found to be a target of circUSP36, and miR-20a-5p inhibition reversed the effects of circUSP36 knockdown. Moreover, miR-20a-5p directly bound to ROCK2, and miR-20a-5p inhibition aggravated ox-LDL-induced injury by increasing the ROCK2 level. More importantly, circUSP36 targeted miR-20a-5p to regulate the expression of ROCK2. On the whole, the present study demonstrates that, circUSP36 regulates ox-LDL-induced HUVEC injury and inflammation by modulating ROCK2 via competitively targeting miR-20a-5p.
Collapse
Affiliation(s)
- Jun Miao
- Department of Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| | - Bo Wang
- Department of Cardiology, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong 277100, P.R. China
| | - Ran Shao
- Nursing Department, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong 277100, P.R. China
| | - Yan Wang
- Nursing Department, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong 277100, P.R. China
| |
Collapse
|
25
|
The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci 2021; 268:119005. [PMID: 33421526 DOI: 10.1016/j.lfs.2020.119005] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Cancer still remains as one of the leading causes of death worldwide. Metastasis and proliferation are abnormally increased in cancer cells that subsequently, mediate resistance of cancer cells to different therapies such as radio-, chemo- and immune-therapy. MicroRNAs (miRNAs) are endogenous short non-coding RNAs that can regulate expression of target genes at post-transcriptional level and capable of interaction with mRNA-coding genes. Vital biological mechanisms including apoptosis, migration and differentiation are modulated by these small molecules. MiRNAs are key players in regulating cancer proliferation and metastasis as well as cancer therapy response. MiRNAs can function as both tumor-suppressing and tumor-promoting factors. In the present review, regulatory impact of miRNA-338-3p on cancer growth and migration is discussed. This new emerging miRNA can regulate response of cancer cells to chemotherapy and radiotherapy. It seems that miRNA-338-3p has dual role in cancer chemotherapy, acting as tumor-promoting or tumor-suppressor factor. Experiments reveal anti-tumor activity of miRNA-338-3p in cancer. Hence, increasing miRNA-338-3p expression is of importance in effective cancer therapy. Long non-coding RNAs, circular RNAs and hypoxia are potential upstream mediators of miRNA-338-3p in cancer. Anti-tumor agents including baicalin and arbutin can promote expression of miRNA-338-3p in suppressing cancer progression. These topics are discussed to shed some light on function of miRNA-338-3p in cancer cells.
Collapse
|
26
|
Guo J, Mei H, Sheng Z, Meng Q, Véniant MM, Yin H. Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis. J Lipid Res 2020; 61:1764-1775. [PMID: 33008925 PMCID: PMC7707179 DOI: 10.1194/jlr.ra120001121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Of the known regulators of atherosclerosis, miRNAs have been demonstrated to play critical roles in lipoprotein homeostasis and plaque formation. Here, we generated a novel animal model of atherosclerosis by knocking in LDLRW483X in C57BL/6 mice, as the W483X mutation in LDLR is considered the most common newly identified pathogenic mutation in Chinese familial hypercholesterolemia (FH) individuals. Using the new in vivo mouse model combined with a well-established atherosclerotic in vitro human cell model, we identified a novel atherosclerosis-related miRNA, miR-23a-3p, by microarray analysis of mouse aortic tissue specimens and human aortic endothelial cells (HAECs). miR-23a-3p was consistently downregulated in both models, which was confirmed by qPCR. Bioinformatics analysis and further validation experiments revealed that the TNFα-induced protein 3 (TNFAIP3) gene was the key target of miR-23a-3p. The miR-23a-3p-related functional pathways were then analyzed in HAECs. Collectively, the present results suggest that miR-23a-3p regulates inflammatory and apoptotic pathways in atherogenesis by targeting TNFAIP3 through the NF-κB and p38/MAPK signaling pathways.
Collapse
Affiliation(s)
- Jiayan Guo
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Hanbing Mei
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Zhen Sheng
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Qingyuan Meng
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Murielle M Véniant
- Department of Cardiometabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA.
| | - Hong Yin
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China.
| |
Collapse
|
27
|
Wang H, Sugimoto K, Lu H, Yang WY, Liu JY, Yang HY, Song YB, Yan D, Zou TY, Shen S. HDAC1-mediated deacetylation of HIF1α prevents atherosclerosis progression by promoting miR-224-3p-mediated inhibition of FOSL2. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:577-591. [PMID: 33510945 PMCID: PMC7815465 DOI: 10.1016/j.omtn.2020.10.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
We intended to characterize functional relevance of microRNA (miR)-224-3p in endothelial cell (EC) apoptosis and reactive oxygen species (ROS) accumulation in atherosclerosis, considering also the integral involvement of histone deacetylase 1 (HDAC1)-mediated hypoxia-inducible factor-1α (HIF1α) deacetylation. The binding affinity between miR-224-3p and Fos-like antigen 2 (FOSL2) was predicted and validated. Furthermore, we manipulated miR-224-3p, FOSL2, HDAC1, and HIF1α expression in oxidized low-density lipoprotein (ox-LDL)-induced ECs, aiming to clarify their effects on cell activities, inflammation, and ROS level. Additionally, we examined the impact of miR-224-3p on aortic atherosclerotic plaque and lesions in a high-fat-diet-induced atherosclerosis model in ApoE−/− mice. Clinical atherosclerotic samples and ox-LDL-induced human aortic ECs (HAECs) exhibited low HDAC1/miR-224-3p expression and high HIF1α/FOSL2 expression. miR-224-3p repressed EC cell apoptosis, inflammatory responses, and intracellular ROS levels through targeting FOSL2. HIF1α reduced miR-224-3p expression to accelerate EC apoptosis and ROS accumulation. Moreover, HDAC1 inhibited HIF1α expression by deacetylation, which in turn enhanced miR-224-3p expression to attenuate EC apoptosis and ROS accumulation. miR-224-3p overexpression reduced atherosclerotic lesions in vivo. In summary, HDAC1 overexpression may enhance the anti-atherosclerotic and endothelial-protective effects of miR-224-3p-mediated inhibition of FOSL2 by deacetylating HIF1α, underscoring a novel therapeutic insight against experimental atherosclerosis.
Collapse
Affiliation(s)
- Hao Wang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hao Lu
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Wan-Yong Yang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Ji-Yue Liu
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Hong-Yu Yang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Yue-Bo Song
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Dong Yan
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Tian-Yu Zou
- Department of Encephalopathy, Heilongjiang Academy of Chinese Medical Sciences, Harbin 150001, P.R. China
| | - Si Shen
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| |
Collapse
|
28
|
miR-4286/TGF-β1/Smad3-Negative Feedback Loop Ameliorated Vascular Endothelial Cell Damage by Attenuating Apoptosis and Inflammatory Response. J Cardiovasc Pharmacol 2020; 75:446-454. [PMID: 32141990 DOI: 10.1097/fjc.0000000000000813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Atherosclerosis (AS), known as the chronic inflammatory disease, results from the dysfunction of vascular endothelial cells (VECs). Transforming growth factor-β1 (TGF-β1) has been reported to be induced by oxidized low-density lipoprotein (ox-LDL) and contribute to AS-related vascular endothelial cell damage. This work planned to study the mechanism of TGF-β1 in vascular endothelial cell damage. We found that TGF-β1 was activated by ox-LDL in human umbilical vascular endothelial cells (HUVECs). Silence of TGF-β1 reversed the inductive effect of ox-LDL on apoptosis and inflammatory response of HUVECs. Mechanistically, microRNA-4286 (miR-4286) targeted and inhibited TGF-β1 to inhibit Smad3, and Smad3 bound to the promoter of miR-4286 to repress its transcription. Rescue assays indicated that miR-4286 ameliorated the ox-LDL-induced apoptosis and inflammatory response through inhibiting TGF-β1. In conclusion, our study first demonstrated that miR-4286/TGF-β1/Smad3-negative feedback loop ameliorated vascular endothelial cell damage by attenuating apoptosis and inflammatory response, providing new thoughts for promoting the treatment of AS.
Collapse
|
29
|
Yu Y, Yan R, Chen X, Sun T, Yan J. Paeonol suppresses the effect of ox-LDL on mice vascular endothelial cells by regulating miR-338-3p/TET2 axis in atherosclerosis. Mol Cell Biochem 2020; 475:127-135. [PMID: 32770325 DOI: 10.1007/s11010-020-03865-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Atherosclerosis is the common vascular disease. Vascular smooth muscle cell proliferation and vascular endothelial cell (VEC) dysfunction are involved in the causes of atherosclerosis. And oxidized low-density lipoprotein (ox-LDL)-induced vascular endothelial cells (VECs) are suitable models for studying atherosclerosis development. Paeonol was reported to repress ox-LDL-induced VEC progression. However, its detailed mechanism was not fully reported. MicroRNAs (miRNAs) acted as regulators in multiple diseases. Previous findings found that microRNA-338-3p (miR-338-3p) was overexpressed in Atherosclerosis process. However, the function and underlying mechanism of miR-338-3p in ox-LDL-treated VECs needed to be elucidated. The purpose of this research was to reveal the role of miR-338-3p in paeonol-regulated ox-LDL-induced VEC progression. Cell counting kit-8 (CCK-8) and flow cytometry were employed to determine cell viability and apoptosis, respectively. Moreover, the levels of IL-6 and IL-1β were analyzed using enzyme-linked immunosorbent assay, as well as the contents of reactive oxygen species, lactate dehydrogenase, and malonic dialdehyde were investigated using related kits. Furthermore, quantitative real-time polymerase chain reaction was carried out to determine the expression of miR-338-3p. Western blot assay was conducted to detect the level of tet methylcytosine dioxygenase 2 (TET2). Besides, the interaction between miR-338-3p and TET2 was predicted by DIANA, and then confirmed by the dual-luciferase reporter assay and RNA immunoprecipitation assay. Ox-LDL repressed mice VEC viability, and promoted apoptosis, inflammatory response, and oxidative injury. Paeonol inhibited the effect of ox-LDL on the growth of the VECs. Furthermore, paeonol regulated VEC development via downregulating miR-338-3p expression. Interestingly, miR-338-3p targeted TET2 and inhibited TET2 expression. MiR-338-3p modulated ox-LDL-treated VEC growth through suppressing TET2 expression. We demonstrated that paeonol attenuated the effect of ox-LDL on the development of mice VECs via modulating miR-338-3p/TET2 axis, providing a theoretical basis for the treatment of AS.
Collapse
Affiliation(s)
- Yunfu Yu
- Department of Cardiology, Central China Fuwai Hospital, Heart Center of Henan Provincial People's Hospital, No. 1 Yuwai Street, Zhengdong New District, Zhengzhou, 450000, Henan Province, China
| | - Rui Yan
- Department of Cardiology, Central China Fuwai Hospital, Heart Center of Henan Provincial People's Hospital, No. 1 Yuwai Street, Zhengdong New District, Zhengzhou, 450000, Henan Province, China
| | - Xiaozhen Chen
- Department of Cardiology, Central China Fuwai Hospital, Heart Center of Henan Provincial People's Hospital, No. 1 Yuwai Street, Zhengdong New District, Zhengzhou, 450000, Henan Province, China
| | - Tao Sun
- Department of Cardiology, Central China Fuwai Hospital, Heart Center of Henan Provincial People's Hospital, No. 1 Yuwai Street, Zhengdong New District, Zhengzhou, 450000, Henan Province, China
| | - Jifeng Yan
- Department of Cardiology, Central China Fuwai Hospital, Heart Center of Henan Provincial People's Hospital, No. 1 Yuwai Street, Zhengdong New District, Zhengzhou, 450000, Henan Province, China.
| |
Collapse
|
30
|
Wang J, Du A, Wang H, Li Y. MiR-599 regulates LPS-mediated apoptosis and inflammatory responses through the JAK2/STAT3 signalling pathway via targeting ROCK1 in human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol 2020; 47:1420-1428. [PMID: 32248560 DOI: 10.1111/1440-1681.13316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
MicroRNA plays an integral role in the development of atherosclerosis. Our study aimed to investigate the roles of miR-599 in lipopolysaccharide (LPS)-induced endothelial damage in human umbilical vein endothelial cells (HUVECs). HUVECs were transfected with a miR-599 mimic and negative control, and then exposed to LPS. The expression of miR-599 was detected by quantitative real time-polymerase chain reaction (RT-qPCR). Cell viability was analyzed by CCK-8 assay and trypan blue exclusion assay; the formation of DNA fragments was tested by Cell Death Detection ELISA Plus kit; the incidence of apoptosis was detected by flow cytometry; the expression of p53 and cleaved-caspase 3 (c-caspase 3) was evaluated by western blot. Moreover, the mRNA levels and concentrations of tumour necrosis factor (TNF)-α, interleukin (IL)-6, ICAM-1 and VCAM-1 were assayed by RT-qPCR and ELISA. The results showed that overexpression of miR-599 increased cell viability, reduced DNA fragments, the incidence of apoptosis, as well as the protein levels of p53 and c-caspase 3 in the presence of LPS. TNF-α, IL-6, ICAM-1 and VCAM-1 mRNA levels and concentrations were also decreased upon miR-599 upregulation. In addition, the dual luciferase reporter assay demonstrated that ROCK1 is a direct target of miR-599. MiR-599 overexpression inhibited ROCK1 expression. Induced expression of ROCK1 reversed the roles of miR-599 in apoptosis and inflammation. The gain function of miR-599 function inhibited activation of the JAK2/STAT3 signalling pathway, which was abrogated by overexpression of ROCK1. Taken together, our results indicate that miR-599 attenuates LPS-caused cell apoptosis and inflammatory responses through the JAK2/STAT3 signalling pathway via targeting ROCK1.
Collapse
Affiliation(s)
- Jia Wang
- Department of Cardiology, Nursing Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Aolin Du
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hexilin Wang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Wang J, Li P, Xu X, Zhang B, Zhang J. MicroRNA-200a Inhibits Inflammation and Atherosclerotic Lesion Formation by Disrupting EZH2-Mediated Methylation of STAT3. Front Immunol 2020; 11:907. [PMID: 32655542 PMCID: PMC7324475 DOI: 10.3389/fimmu.2020.00907] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Endothelial inflammation and dysfunction are critical to the process of atherosclerosis. Emerging evidence demonstrates that upregulation of miR-200a reduces VCAM-1 expression and prevents monocytic cell adhesion onto the aortic endothelium. However, limited information is available about the role of microRNA-200a (miR-200a) in facilitating atherosclerotic lesion formation. We investigated the anti-inflammatory and anti-atherosclerotic actions of miR-200a. Human umbilical vein endothelial cells (HUVECs) were cultured in the presence of oxidized low-density lipoprotein (ox-LDL), and their viability and apoptosis were evaluated using CCK-8 assays and flow cytometric analysis. The enhancer of zeste homolog 2 (EZH2) promoter activity was evaluated in the presence of miR-200a by dual luciferase reporter gene assay. EZH2-mediated methylation of signal transducer and activator of transcription 3 (STAT3) was validated by ChIP and IP assays. ApoE-/- mice were given a 12-week high-fat diet and developed as in vivo atherosclerotic models. miR-200a was downregulated but EZH2 and HMGB1 were upregulated in ox-LDL-treated HUVECs and the aorta tissues of atherosclerotic mouse models. Elevated miR-200a was shown to protect HUVECs against ox-LDL-induced apoptosis and inflammation. EZH2 was verified as a target of miR-200a. The protective effects of miR-200a were abrogated upon an elevation of EZH2. EZH2 methylated STAT3 and enhanced STAT3 activity by increased tyrosine phosphorylation of STAT3, thereby increasing apoptosis and release of pro-inflammatory cytokines in ox-LDL-treated HUVECs. An anti-atherosclerotic role of miR-200a was also demonstrated in atherosclerotic mouse models. Our study demonstrates that miR-200a has anti-inflammatory and anti-atherosclerotic activities dependent on the EZH2/STAT3 signaling cascade.
Collapse
Affiliation(s)
- Jinpeng Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Developmental Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Xiaofei Xu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Beilin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Zhang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Zhu W, Liu S. The role of human cytomegalovirus in atherosclerosis: a systematic review. Acta Biochim Biophys Sin (Shanghai) 2020; 52:339-353. [PMID: 32253424 DOI: 10.1093/abbs/gmaa005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/05/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a progressive vascular disease with increasing morbidity and mortality year by year in modern society. Human cytomegalovirus (HCMV) infection is closely associated with the development of atherosclerosis. HCMV infection may accelerate graft atherosclerosis and the development of transplant vasculopathy in organ transplantation. However, our current understanding of HCMV-associated atherosclerosis remains limited and is mainly based on clinical observations. The underlying mechanism of the involvement of HCMV infection in atherogenesis remains unclear. Here, we summarized current knowledge regarding the multiple influences of HCMV on a diverse range of infected cells, including vascular endothelial cells, vascular smooth muscle cells, monocytes, macrophages, and T cells. In addition, we described potential HCMV-induced molecular mechanisms, such as oxidative stress, endoplasmic reticulum stress, autophagy, lipid metabolism, and miRNA regulation, which are involved in the development of HCMV-associated atherogenesis. Gaining an improved understanding of these mechanisms will facilitate the development of novel and effective therapeutic strategies for the treatment of HCMV-related cardiovascular disease.
Collapse
Affiliation(s)
- Wenbo Zhu
- Clinical Research Institute, First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Shuangquan Liu
- Clinical Laboratory, First Affiliated Hospital, University of South China, Hengyang 421001, China
| |
Collapse
|
33
|
Lu G, Tian P, Zhu Y, Zuo X, Li X. LncRNA XIST knockdown ameliorates oxidative low-density lipoprotein-induced endothelial cells injury by targeting miR-204-5p/TLR4. J Biosci 2020. [DOI: 10.1007/s12038-020-0022-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Navarro E, Mallén A, Cruzado JM, Torras J, Hueso M. Unveiling ncRNA regulatory axes in atherosclerosis progression. Clin Transl Med 2020; 9:5. [PMID: 32009226 PMCID: PMC6995802 DOI: 10.1186/s40169-020-0256-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Completion of the human genome sequencing project highlighted the richness of the cellular RNA world, and opened the door to the discovery of a plethora of short and long non-coding RNAs (the dark transcriptome) with regulatory or structural potential, which shifted the balance of pathological gene alterations from coding to non-coding RNAs. Thus, disease risk assessment currently has to also evaluate the expression of new RNAs such as small micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), competing endogenous RNAs (ceRNAs), retrogressed elements, 3'UTRs of mRNAs, etc. We are interested in the pathogenic mechanisms of atherosclerosis (ATH) progression in patients suffering Chronic Kidney Disease, and in this review, we will focus in the role of the dark transcriptome (non-coding RNAs) in ATH progression. We will focus in miRNAs and in the formation of regulatory axes or networks with their mRNA targets and with the lncRNAs that function as miRNA sponges or competitive inhibitors of miRNA activity. In this sense, we will pay special attention to retrogressed genomic elements, such as processed pseudogenes and Alu repeated elements, that have been recently seen to also function as miRNA sponges, as well as to the use or miRNA derivatives in gene silencing, anti-ATH therapies. Along the review, we will discuss technical developments associated to research in lncRNAs, from sequencing technologies to databases, repositories and algorithms to predict miRNA targets, as well as new approaches to miRNA function, such as integrative or enrichment analysis and their potential to unveil RNA regulatory networks.
Collapse
Affiliation(s)
- Estanislao Navarro
- Independent Researcher, Barcelona, Spain. .,Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| | - Adrian Mallén
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Josep M Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Joan Torras
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Miguel Hueso
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
35
|
Use of Human Umbilical Vein Endothelial Cells (HUVEC) as a Model to Study Cardiovascular Disease: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030938] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and extensive research has been performed to understand this disease better, using various experimental models. The endothelium plays a crucial role in the development of CVD, since it is an interface between bloodstream components, such as monocytes and platelets, and other arterial wall components. Human umbilical vein endothelial cell (HUVEC) isolation from umbilical cord was first described in 1973. To date, this model is still widely used because of the high HUVEC isolation success rate, and because HUVEC are an excellent model to study a broad array of diseases, including cardiovascular and metabolic diseases. We here review the history of HUVEC isolation, the HUVEC model over time, HUVEC culture characteristics and conditions, advantages and disadvantages of this model and finally, its applications in the area of cardiovascular diseases.
Collapse
|
36
|
Qian W, Qian Q, Cai X, Han R, Yang W, Zhang X, Zhao H, Zhu R. Astragaloside IV inhibits oxidized low‑density lipoprotein‑induced endothelial damage via upregulation of miR‑140‑3p. Int J Mol Med 2019; 44:847-856. [PMID: 31257467 PMCID: PMC6657972 DOI: 10.3892/ijmm.2019.4257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/13/2019] [Indexed: 01/21/2023] Open
Abstract
Oxidized low‑density lipoprotein (ox‑LDL)‑mediated endothelial cell injury has an important role in the vascular complications of type 2 diabetes. Astragaloside IV (ASV) is an active component of Radix Astragali, which has been demonstrated to exert protective effects against endothelial damage. The present study explored whether microRNAs (miRNAs) are involved in mediating the protective effects of ASV on ox‑LDL‑induced damage in human umbilical vein endothelial cells (HUVECs). RNA sequencing and reverse transcription‑quantitative PCR analyses revealed that ox‑LDL treatment significantly downregulated miR‑140‑3p expression in HUVECs. miR‑140‑3p overexpression promoted cell proliferation and inhibited apoptosis in ox‑LDL‑induced HUVECs. However, inhibition of miR‑140‑3p expression could reverse the effects of ASV on ox‑LDL‑induced HUVECs and reactivate ASV‑inhibited PI3K/Akt signaling in ox‑LDL‑induced HUVECs. In addition, Krüppel‑like factor 4 (KLF4) was identified as a target of miR‑140‑3p in ox‑LDL‑treated HUVECs. Subsequent experiments revealed that KLF4 overexpression partially counteracted the protective effects of miR‑140‑3p or ASV treatment in ox‑LDL‑induced HUVECs. Taken together, the current findings demonstrated that the protective effects of ASV on HUVECs were dependent on miR‑140‑3p upregulation and subsequent inhibition of KLF4 expression, which in turn suppressed the PI3K/Akt signaling pathway. The present results shed light to the molecular mechanism by which ASV alleviated ox‑LDL‑induced endothelial cell damage.
Collapse
Affiliation(s)
- Weibin Qian
- Department of Lung Disease,Correspondence to: Dr Weibin Qian, Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 42 Cultural West Road, Jinan, Shandong 250011, P.R. China, E-mail:
| | - Qiuhai Qian
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011
| | - Xinrui Cai
- Department of Traditional Chinese Medicine,Dr Xinrui Cai, Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, 17 Yuxing Road, Jinan, Shandong 250062, P.R. China, E-mail:
| | - Ru Han
- Personnel Section, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062
| | - Wenjun Yang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011
| | - Xinyue Zhang
- Department of Chinese Internal Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355
| | - Hongmin Zhao
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou, Hebei 061899, P.R. China
| | - Ranran Zhu
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011
| |
Collapse
|