1
|
Yue W, Zhang HY, Schatten H, Meng TG, Sun QY. CtIP regulates G2/M transition and bipolar spindle assembly during mouse oocyte meiosis. J Genet Genomics 2024; 51:1435-1446. [PMID: 39277031 DOI: 10.1016/j.jgg.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
CtBP-interacting protein (CtIP) is known for its multifaceted roles in DNA repair and genomic stability, directing the homologous recombination-mediated DNA double-stranded break repair pathway via DNA end resection, an essential error-free repair process vital for genome stability. Mammalian oocytes are highly prone to DNA damage accumulation due to prolonged G2/prophase arrest. Here, we explore the functions of CtIP in meiotic cell cycle regulation via a mouse oocyte model. Depletion of CtIP by siRNA injection results in delayed germinal vesicle breakdown and failed polar body extrusion. Mechanistically, CtIP deficiency increases DNA damage and decreases the expression and nuclear entry of CCNB1, resulting in marked impairment of meiotic resumption, which can be rescued by exogenous CCNB1 overexpression. Furthermore, depletion of CtIP disrupts microtubule-organizing centers coalescence at spindle poles as indicated by failed accumulation of γ-tubulin, p-Aurora kinase A, Kif2A, and TPX2, leading to abnormal spindle assembly and prometaphase arrest. These results provide valuable insights into the important roles of CtIP in the G2/M checkpoint and spindle assembly in mouse oocyte meiotic cell cycle regulation.
Collapse
Affiliation(s)
- Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Yong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, Guangdong 524045, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Tie-Gang Meng
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China.
| |
Collapse
|
2
|
Zhang QZ, Wen F, Yang HL, Cao YY, Peng RG, Wang YM, Nie L, Qin YK, Wu JJ, Zhao X, Zi D. GADD45α alleviates the CDDP resistance of SK-OV3/cddp cells via redox-mediated DNA damage. Oncol Lett 2021; 22:720. [PMID: 34429760 PMCID: PMC8371983 DOI: 10.3892/ol.2021.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
Epithelial ovarian cancer has the highest mortality rate of all malignant ovarian cancer types. Great progress has been made in the treatment of ovarian cancer in recent years. However, drug resistance has led to a low level of 5-year survival rate of epithelial ovarian cancer, and the molecular mechanism of which remains unknown. The aim of the present study was to identify the role of redox status in the cisplatin (CDDP) resistance of ovarian cancer. CDDP-resistant SK-OV3 (SK-OV3/cddp) cells were prepared and their reactive oxygen species and glutathione levels were investigated. The effects of hydrogen peroxide on the CDDP sensitivity of the SK-OV3/cddp cells and their expression levels of the redox-associated protein growth arrest and DNA damage 45a (GADD45α) were also investigated. In addition, the impact of GADD45α overexpression on cell viability was evaluated in vitro and in vivo, and the levels of Ser-139 phosphorylated H2A histone family member X (γ-H2AX), which is associated with DNA damage, were detected. The results suggested that redox status affected the drug resistance of the ovarian cancer cells by increasing the expression of GADD45α. The overexpression of GADD45α reversed the CDDP resistance of the SK-OV3/cddp cells and increased the level of γ-H2AX. In conclusion, GADD45α alleviated the CDDP resistance of SK-OV3/cddp cells via the induction of redox-mediated DNA damage.
Collapse
Affiliation(s)
- Qi-Zhu Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Fang Wen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Department of Obstetrics and Gynecology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Han-Lin Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yan-Yan Cao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ren Guo Peng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yuan-Mei Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lei Nie
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yuan-Kun Qin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jin-Jian Wu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xing Zhao
- National and Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guiyang, Guizhou 550004, P.R. China
| | - Dan Zi
- Department of Obstetrics and Gynecology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550004, P.R. China.,National and Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
3
|
Jing C, Fu R, Wang C, Li X, Zhang W. MRPL13 Act as a Novel Therapeutic Target and Could Promote Cell Proliferation in Non-Small Cell Lung Cancer. Cancer Manag Res 2021; 13:5535-5545. [PMID: 34285575 PMCID: PMC8285246 DOI: 10.2147/cmar.s316428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background The latent involvement of MRPL13 in non-small cell lung cancer (NSCLC) remains unclear. This study aimed to explore the role of MRPL13 in NSCLC. Methods All analyses were performed in R software 4.0, SPSS version 23, and GraphPad Prism 8. The “limma” package was used to identify differentially expressed genes. Univariate and multivariate cox analyses were used to identify prognosis-related genes. A549 and H1299 lung cancer cell lines were selected for phenotypic experiments. Results The high level of MRPL13 was correlated with poor T classification and overall survival. In vitro experiments showed that MRPL13 was highly expressed in NSCLC tissue and cell lines. MRPL13 knockdown inhibited the proliferation of lung cancer A549 and H1299 cell lines, which was further validated by in vivo experiment. Moreover, GSEA analysis suggested that the pathway of MYC target, PI3K/AKT/mTOR/ signaling, oxidative phosphorylation, and G2/M checkpoints may be the potential pathway where MRPL13 was involved. Meanwhile, MRPL13 demonstrated a negative correlation with M1 macrophage, CD8+ T cells, and CD4+ T cells, making it an underlying immunotherapy target of NSCLC. Conclusion MRPL13 may promote the proliferation of NSCLC cells and serve as an independent tumor marker and an emerging therapeutic target.
Collapse
Affiliation(s)
- Chuanqing Jing
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Rong Fu
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Can Wang
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiurong Li
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wei Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
4
|
Wang N, Zhang H, Cui X, Ma C, Wang L, Liu W. Runx3 Induces a Cell Shape Change and Suppresses Migration and Metastasis of Melanoma Cells by Altering a Transcriptional Profile. Int J Mol Sci 2021; 22:2219. [PMID: 33672337 PMCID: PMC7926509 DOI: 10.3390/ijms22042219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Runt-related transcription factor-3 (Runx3) is a tumor suppressor, and its contribution to melanoma progression remains unclear. We previously demonstrated that Runx3 re-expression in B16-F10 melanoma cells changed their shape and attenuated their migration. In this study, we found that Runx3 re-expression in B16-F10 cells also suppressed their pulmonary metastasis. We performed microarray analysis and uncovered an altered transcriptional profile underlying the cell shape change and the suppression of migration and metastasis. This altered transcriptional profile was rich in Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) annotations relevant to adhesion and the actin cytoskeleton and included differentially expressed genes for some major extracellular matrix (ECM) proteins as well as genes that were inversely associated with the increase in the metastatic potential of B16-F10 cells compared to B16-F0 melanoma cells. Further, we found that this altered transcriptional profile could have prognostic value, as evidenced by myelin and lymphocyte protein (MAL) and vilin-like (VILL). Finally, Mal gene expression was correlated with metastatic potential among the cells and was targeted by histone deacetylase (HDAC) inhibitors in B16-F10 cells, and the knockdown of Mal gene expression in B16-F0 cells changed their shape and enhanced the migratory and invasive traits of their metastasis. Our study suggests that self-entrapping of metastatic Runx3-negative melanoma cells via adhesion and the actin cytoskeleton could be a powerful therapeutic strategy.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| | - Haiying Zhang
- Key Laboratory of Pathobiology of Ministry of Education, Norman Bethune College of Medicine, Jilin University, No. 126, Xinmin St., Changchun 130021, China;
| | - Xiulin Cui
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| | - Chao Ma
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| | - Linghui Wang
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| | - Wenguang Liu
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| |
Collapse
|
5
|
Mozaffari NL, Pagliarulo F, Sartori AA. Human CtIP: A 'double agent' in DNA repair and tumorigenesis. Semin Cell Dev Biol 2020; 113:47-56. [PMID: 32950401 DOI: 10.1016/j.semcdb.2020.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
Human CtIP was originally identified as an interactor of the retinoblastoma protein and BRCA1, two bona fide tumour suppressors frequently mutated in cancer. CtIP is renowned for its role in the resection of DNA double-strand breaks (DSBs) during homologous recombination, a largely error-free DNA repair pathway crucial in maintaining genome integrity. However, CtIP-dependent DNA end resection is equally accountable for alternative end-joining, a mutagenic DSB repair mechanism implicated in oncogenic chromosomal translocations. In addition, CtIP contributes to transcriptional regulation of G1/S transition, DNA damage checkpoint signalling, and replication fork protection pathways. In this review, we present a perspective on the current state of knowledge regarding the tumour-suppressive and oncogenic properties of CtIP and provide an overview of their relevance for cancer development, progression, and therapy.
Collapse
Affiliation(s)
- Nour L Mozaffari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Fabio Pagliarulo
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Hu Z, Long T, Ma Y, Zhu J, Gao L, Zhong Y, Wang X, Wang X, Li Z. Downregulation of GLYR1 contributes to microsatellite instability colorectal cancer by targeting p21 via the p38MAPK and PI3K/AKT pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:76. [PMID: 32370786 PMCID: PMC7201645 DOI: 10.1186/s13046-020-01578-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND GLYR1 has a high mutation frequency in microsatellite instability colorectal cancer (MSI CRC) and is presumed to be a novel tumor suppressor. However, the role of GLYR1 in tumors has never been studied. In particular, the downregulation of GLYR1 in MSI CRC is worthy of further investigation. METHODS Western blot and immunohistochemistry analyses were used to detect GLYR1 protein expression in CRC tissues and cell lines, and the clinical significance of GLYR1 was also analyzed. The relationship between GLYR1 and MLH1 was validated by immunofluorescence, immunoprecipitation and bioinformatics analyses. Western blotting, qRT-PCR, CCK-8 assays, colony formation assays, flow cytometry and Hoechst 33258 staining assays were used to assess the effect of GLYR1 on the cell cycle progression, proliferation, differentiation and apoptosis of CRC cells in vitro. The related mechanisms were initially investigated by Western blotting. RESULTS GLYR1 was significantly downregulated in MSI CRC and its expression was negatively correlated with tumor size and positively correlated with tumor differentiation in CRC patients. In addition, GLYR1 interacted with MLH1 to regulate its nuclear import and expression. Moreover, downregulation of GLYR1 accelerated G1/S phase transition, promoted proliferation and inhibited differentiation of SW480 and SW620 cells in vitro. Furthermore, downregulation of GLYR1 decreased the sensitivity to 5-fluorouracil (5-FU) by inhibiting the mitochondrial apoptosis pathway in CRC cells. Inhibition of the p38 mitogen-activated protein kinase (p38MAPK) and activation of the phosphatidyl 3-kinase/protein kinase B (PI3K/Akt) signaling pathways were involved in the mechanism by which GLYR1 downregulated p21. CONCLUSIONS Ours is the first study to elucidate the role of GLYR1 in tumors and provide evidence for GLYR1 as a biological marker that reflects the degree of malignancy and sensitivity to 5-FU in MSI CRC.
Collapse
Affiliation(s)
- Zhiyan Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Ting Long
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Yidan Ma
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Jiaxian Zhu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Lingfang Gao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Yan Zhong
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Xia Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Xiaoyan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Zuguo Li
- Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China.
| |
Collapse
|