1
|
Kiś J, Sikora D, Jarosz MJ, Polz-Dacewicz M. JC Polyomavirus in Prostate Cancer-Friend or Foe? Cancers (Basel) 2025; 17:1725. [PMID: 40427223 PMCID: PMC12109926 DOI: 10.3390/cancers17101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Recently, many researchers have evaluated various viruses, including polyomaviruses (JCV, BKV) and EBV, as potential factors playing a role in the development and/or progression of prostate cancer (PCa), one of the most common cancers in men. Therefore, we aimed to assess the frequency of the JCPyV DNA in tissue collected from PCa patients. Methods: We detected the presence of viral DNA (PCR) in 49.6% of clinical samples, including 71.9% with single EBV infection and 28.1% with EBV/JCV co-infection. We did not detect BKV or a single JCV infection. Therefore, we compared patients with EBV mono-infection with EBV/JCV co-infected patients in the context of risk group, Gleason score, and TNM classification. Results: Our results showed differences in clinicopathological features between single EBV infection and EBV/JCV co-infection. In the group of patients with single EBV infection, most patients were classified as medium/high risk, while in the group with EBV/JCV co-infection, most patients were classified as low risk. Conclusions: Among patients with single EBV infection, a more advanced stage of cancer was observed than in EBV/JCV co-infection. Moreover, the level of anti-EBVCA and anti-EBNA antibodies as well as EBV load was higher in the case of single infection compared to EBV/JCV co-infection. Higher antibody levels were detected in more advanced tumor stages in single EBV infection. Does JCV only "reside" in prostate cells or is it a co-factor in EBV infection? In light of these studies, there is a need to clarify the role of JCV virus in the development and/or progression of prostate cancer.
Collapse
Affiliation(s)
- Jacek Kiś
- Department of General and Oncological Urology, 1st Clinical Military Hospital with Outpatient Clinic in Lublin, 20-049 Lublin, Poland;
| | - Dominika Sikora
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Mirosław J. Jarosz
- Faculty of Human Sciences, University of Economics and Innovation, 20-209 Lublin, Poland;
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
2
|
Sommariva M, Dolci M, Triulzi T, Ambrogi F, Dugo M, De Cecco L, Le Noci V, Bernardo G, Anselmi M, Montanari E, Pupa SM, Signorini L, Gagliano N, Sfondrini L, Delbue S, Tagliabue E. Impact of in vitro SARS-CoV-2 infection on breast cancer cells. Sci Rep 2024; 14:13134. [PMID: 38849411 PMCID: PMC11161491 DOI: 10.1038/s41598-024-63804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The pandemic of coronavirus disease 19 (COVID-19), caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), had severe repercussions for breast cancer patients. Increasing evidence indicates that SARS-CoV-2 infection may directly impact breast cancer biology, but the effects of SARS-CoV-2 on breast tumor cells are still unknown. Here, we analyzed the molecular events occurring in the MCF7, MDA-MB-231 and HCC1937 breast cancer cell lines, representative of the luminal A, basal B/claudin-low and basal A subtypes, respectively, upon SARS-CoV-2 infection. Viral replication was monitored over time, and gene expression profiling was conducted. We found that MCF7 cells were the most permissive to viral replication. Treatment of MCF7 cells with Tamoxifen reduced the SARS-CoV-2 replication rate, suggesting an involvement of the estrogen receptor in sustaining virus replication in malignant cells. Interestingly, a metagene signature based on genes upregulated by SARS-CoV-2 infection in all three cell lines distinguished a subgroup of premenopausal luminal A breast cancer patients with a poor prognosis. As SARS-CoV-2 still spreads among the population, it is essential to understand the impact of SARS-CoV-2 infection on breast cancer, particularly in premenopausal patients diagnosed with the luminal A subtype, and to assess the long-term impact of COVID-19 on breast cancer outcomes.
Collapse
Affiliation(s)
- Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy.
| | - Maria Dolci
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Tiziana Triulzi
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Federico Ambrogi
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Via Celoria 22, 20133, Milan, Italy
| | - Matteo Dugo
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Martina Anselmi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Elena Montanari
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Serenella M Pupa
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Lucia Signorini
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Nicoletta Gagliano
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Serena Delbue
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Elda Tagliabue
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| |
Collapse
|
3
|
Zhou X, Zhu C, Li H. BK polyomavirus: latency, reactivation, diseases and tumorigenesis. Front Cell Infect Microbiol 2023; 13:1263983. [PMID: 37771695 PMCID: PMC10525381 DOI: 10.3389/fcimb.2023.1263983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The identification of the first human polyomavirus BK (BKV) has been over half century, The previous epidemiological and phylogenetic studies suggest that BKV prevailed and co-evolved with humans, leading to high seroprevalence all over the world. In general, BKV stays latent and symptomless reactivation in healthy individuals. BKV has been mainly interlinked with BKV-associated nephropathy (BKVAN) in kidney-transplant recipients and hemorrhagic cystitis (HC) in hematopoietic stem cell transplant recipients (HSCTRs). However, the mechanisms underlying BKV latency and reactivation are not fully understood and lack of extensive debate. As Merkel cell polyomavirus (MCV) was identified as a pathogenic agent of malignant cutaneous cancer Merkel cell carcinoma (MCC) since 2008, linking BKV to tumorigenesis of urologic tumors raised concerns in the scientific community. In this review, we mainly focus on advances of mechanisms of BKV latency and reactivation, and BKV-associated diseases or tumorigenesis with systematical review of formerly published papers following the PRISMA guidelines. The potential tumorigenesis of BKV in two major types of cancers, head and neck cancer and urologic cancer, was systematically updated and discussed in depth. Besides, BKV may also play an infectious role contributing to HIV-associated salivary gland disease (HIVSGD) presentation. As more evidence indicates the key role of BKV in potential tumorigenesis, it is important to pay more attention on its etiology and pathogenicity in vitro and in vivo.
Collapse
Affiliation(s)
- Xianfeng Zhou
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Nanchang, China
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Chunlong Zhu
- Clinical Laboratory, Third Hospital of Nanchang, Nanchang, China
| | - Hui Li
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| |
Collapse
|
4
|
Favi E, Signorini L, Villani S, Dolci M, Ticozzi R, Basile G, Ferrante P, Ferraresso M, Delbue S. In Vitro Study Evaluating the Effect of Different Immunosuppressive Agents on Human Polyomavirus BK Replication. Transplant Proc 2022; 54:2035-2041. [PMID: 35659782 DOI: 10.1016/j.transproceed.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/08/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Human polyomavirus BK (BKPyV) is the etiologic agent of polyomavirus-associated nephropathy, a leading cause of kidney transplant dysfunction. Because of the lack of antiviral therapies, immunosuppression minimization is the recommended treatment. This strategy offers suboptimal outcomes and entails a significant risk of rejection. Our aim was to evaluate the effect of different immunosuppressive drugs (leflunomide, tacrolimus, mycophenolic acid, sirolimus, and everolimus) and their combinations in an in vitro model of BKPyV infection. METHODS Human renal tubular epithelial cells were infected with BKPyV and treated with leflunomide, tacrolimus, mycophenolic acid, sirolimus, and everolimus, administered alone or in some combination thereof. Viral replication was assessed every 24 hours (up to 72 hours) by BKPyV-specific quantitative real-time polymerized chain reaction for the VIRAL PROTEIN 1 sequence in cell supernatants and by western blot analysis targeting the viral protein 1 and the glyceraldehyde 3-phosphate dehydrogenase on total protein lysates. Results were described as viral copies/mL and compared between treatments at any prespecified time point of the study. RESULTS The highest inhibitory effects were observed using leflunomide or everolimus plus mycophenolic acid (mean BKPyV replication log reduction 0.28). The antiviral effect of everolimus persisted when it was used in combination with tacrolimus (mean BKPyV replication log reduction 0.27). CONCLUSIONS Our experience confirms that everolimus has anti-BKPyV properties and prompts future research to investigate possible mechanisms of action. It also provides a rational basis for targeted clinical trials evaluating alternative immunosuppressive modification strategies.
Collapse
Affiliation(s)
- Evaldo Favi
- Kidney Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Lucia Signorini
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Sonia Villani
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Maria Dolci
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Rosalia Ticozzi
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | | | - Pasquale Ferrante
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Mariano Ferraresso
- Kidney Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Serena Delbue
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Chen Y, Wu FH, Wu PQ, Xing HY, Ma T. The Role of The Tumor Microbiome in Tumor Development and Its Treatment. Front Immunol 2022; 13:935846. [PMID: 35911695 PMCID: PMC9334697 DOI: 10.3389/fimmu.2022.935846] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 01/05/2023] Open
Abstract
Commensal bacteria and other microorganisms that reside in the human body are closely associated with the development and treatment of cancers. Recently, tumor microbiome (TM) has been identified in a variety of cancers such as pancreatic, lung, and breast cancers. TM has different compositions in different tumors and has different effects on tumors. TM plays an important role in the formation of the tumor microenvironment, regulation of local immunity, and modification of tumor cell biology, and directly affects the efficacy of drug treatment for tumors. TM is expected to be a biomarker for tumors, and engineered tumor-targeting bacteria and anti-cancer microbial agents (GEN-001) have an important role in the treatment of tumors. This paper reviews the relevant studies on TM in recent years and describes its distribution in different tumors, its correlation with clinical features, its effect on local immunity, and the research directions of TM in tumor treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fa-Hong Wu
- Department of General Surgery, Hepatic-Biliary-Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Peng-Qiang Wu
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong-Yun Xing
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Hong-Yun Xing, ; Tao Ma,
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Hong-Yun Xing, ; Tao Ma,
| |
Collapse
|
6
|
Che B, Zhang W, Xu S, Yin J, He J, Huang T, Li W, Yu Y, Tang K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front Oncol 2021; 11:805459. [PMID: 34956913 PMCID: PMC8702560 DOI: 10.3389/fonc.2021.805459] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although the incidence and mortality of prostate cancer have gradually begun to decline in the past few years, it is still one of the leading causes of death from malignant tumors in the world. The occurrence and development of prostate cancer are affected by race, family history, microenvironment, and other factors. In recent decades, more and more studies have confirmed that prostate microflora in the tumor microenvironment may play an important role in the occurrence, development, and prognosis of prostate cancer. Microorganisms or their metabolites may affect the occurrence and metastasis of cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor microenvironment bacteria in interventional targeting therapy of tumors also shows a unique advantage. In this review, we introduce the pathway of microbiota into prostate cancer, focusing on the mechanism of microorganisms in tumorigenesis and development, as well as the prospect and significance of microorganisms as tumor biomarkers and tumor prevention and treatment.
Collapse
Affiliation(s)
- Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingju Yin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Pharmacological Modulation of Steroid Activity in Hormone-Dependent Breast and Prostate Cancers: Effect of Some Plant Extract Derivatives. Int J Mol Sci 2020; 21:ijms21103690. [PMID: 32456259 PMCID: PMC7279356 DOI: 10.3390/ijms21103690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
The great majority of breast and prostate tumors are hormone-dependent cancers; hence, estrogens and androgens can, respectively, drive their developments, making it possible to use pharmacological therapies in their hormone-dependent phases by targeting the levels of steroid or modulating their physiological activity through their respective nuclear receptors when the tumors relapse. Unfortunately, at some stage, both breast and prostate cancers become resistant to pharmacological treatments that aim to block their receptors, estrogen (ER) or androgen (AR) receptors, respectively. So far, antiestrogens and antiandrogens used in clinics have been designed based on their structural analogies with natural hormones, 17-β estradiol and dihydrotestosterone. Plants are a potential source of drug discovery and the development of new pharmacological compounds. The aim of this review article is to highlight the recent advances in the pharmacological modulation of androgen or estrogen levels, and their activity through their cognate nuclear receptors in prostate or breast cancer and the effects of some plants extracts.
Collapse
|
8
|
Zhang C, Berndt-Paetz M, Neuhaus J. Identification of Key Biomarkers in Bladder Cancer: Evidence from a Bioinformatics Analysis. Diagnostics (Basel) 2020; 10:E66. [PMID: 31991631 PMCID: PMC7168923 DOI: 10.3390/diagnostics10020066] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BCa) is one of the most common malignancies and has a relatively poor outcome worldwide. However, the molecular mechanisms and processes of BCa development and progression remain poorly understood. Therefore, the present study aimed to identify candidate genes in the carcinogenesis and progression of BCa. Five GEO datasets and TCGA-BLCA datasets were analyzed by statistical software R, FUNRICH, Cytoscape, and online instruments to identify differentially expressed genes (DEGs), to construct protein‒protein interaction networks (PPIs) and perform functional enrichment analysis and survival analyses. In total, we found 418 DEGs. We found 14 hub genes, and gene ontology (GO) analysis revealed DEG enrichment in networks and pathways related to cell cycle and proliferation, but also in cell movement, receptor signaling, and viral carcinogenesis. Compared with noncancerous tissues, TPM1, CRYAB, and CASQ2 were significantly downregulated in BCa, and the other hub genes were significant upregulated. Furthermore, MAD2L1 and CASQ2 potentially play a pivotal role in lymph nodal metastasis. CRYAB and CASQ2 were both significantly correlated with overall survival (OS) and disease-free survival (DFS). The present study highlights an up to now unrecognized possible role of CASQ2 in cancer (BCa). Furthermore, CRYAB has never been described in BCa, but our study suggests that it may also be a candidate biomarker in BCa.
Collapse
Affiliation(s)
| | | | - Jochen Neuhaus
- Department of Urology, University of Leipzig, 04103 Leipzig, Germany; (C.Z.); (M.B.-P.)
| |
Collapse
|