1
|
Liu Z, Geng Y, Huang Y, Hu R, Li F, Ding J, Ma W, Dong H, Song K, Xu X, Wu X, Song Y, Zhang M. Bushen Antai recipe alleviates embryo absorption by enhancing immune tolerance and angiogenesis at the maternal-fetal interface via mobilizing MDSCs in abortion-prone mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155164. [PMID: 37952407 DOI: 10.1016/j.phymed.2023.155164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) is a tricky puzzle that disturbs female reproduction worldwide. According to previous research, Bushen Antai recipe (BAR), a classic Chinese herbal formula widely used in clinic for miscarriage, exhibited multifaceted benefits in improving embryo implantation and attenuating early pregnancy loss. Myeloid-derived suppressor cells (MDSCs), a set of immunoregulatory cells critical in inflammation balance, get growing attention for their indispensable role in successful pregnancy. PURPOSE To investigate the therapeutic efficacy of BAR in abortion-prone mice and explore the potential mechanisms of BAR regarding MDSCs. METHODS RPL mice (CBA/J females paired with DBA/2 males, BALB/c males were used as the control) were administered with BAR1 (5.7 g/kg), BAR2 (11.4 g/kg), progesterone (P4), or distilled water from embryo day (D) 0.5 until D10.5. The rate of embryo absorption on D10.5 and the health status of progeny were measured. The systemic inflammatory states and the placenta-uterus milieu were assessed by serum cytokine levels, placenta-uterus architecture, and related protein expression at the maternal-fetal interface. Flow cytometry analysis was carried out to measure the frequency of MDSCs. Furthermore, we established the MDSCs-depletion mouse model by using C57BL/6 females mated with BALB/c males via intraperitoneal injection of anti-Gr-1 antibody on D6.5, while irrelative LTF antibody was used as the control. Similarly, BAR1, BAR2, P4, or distilled water was separately applied. Embryo absorption rate, systemic inflammatory states, placenta-uterus milieu, and MDSCs frequency were evaluated as mentioned above. RESULTS Significantly, embryo absorption rate was increased with disrupted placenta-uterus milieu and exorbitant proinflammatory cytokines in RPL mice, meanwhile, MDSCs number in the placenta-uterus unit were apparently reduced (⁎⁎⁎p < 0.001). BAR treatment markedly alleviated the poor conditions above and increased MDSCs number (####p < 0.0001). Flow cytometry analysis validated the efficacy of anti-Gr-1 antibody and the raised embryo absorption rate confirmed the essentiality of MDSCs in normal pregnancy (⁎⁎p < 0.01). Besides, the placenta-uterus milieu was destroyed, accompanied by the impaired expression of immune tolerance and angiogenesis related factors in the MDSCs-depletion mice. Even though, BAR treatment reversed the embryo resorption phenotype and optimized the serum cytokine milieu, mobilizing MDSCs and rejuvenating active intercellular communication. Thereby, BAR facilitated the expression of MDSCs-related functional molecules, promoting immune tolerance and vascular remodeling at the placenta-uterus unit. CONCLUSION We unfurled the remarkable therapeutic ability of BAR in abortion-prone mice, and this was achieved by mobilizing MDSCs, thus favoring immune tolerance and angiogenesis at the maternal-fetal interface.
Collapse
Affiliation(s)
- Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Ding
- Department of Obstetrics and Gynecology, School of medicine, Wayne state university, Detroit, MI, USA
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoxu Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohu Xu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Shah NK, Xu P, Shan Y, Chen C, Xie M, Li Y, Meng Y, Shu C, Dong S, He J. MDSCs in pregnancy and pregnancy-related complications: an update†. Biol Reprod 2023; 108:382-392. [PMID: 36504233 DOI: 10.1093/biolre/ioac213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Maternal-fetal immune tolerance is a process that involves complex interactions of the immune system, and myeloid-derived suppressor cells have emerged as one of the novel immunomodulator in the maintenance of maternal-fetal immune tolerance. Myeloid-derived suppressor cells are myeloid progenitor cells with immunosuppressive activities on both innate and adaptive cells through various mechanisms. Emerging evidence demonstrates the accumulation of myeloid-derived suppressor cells during healthy pregnancy to establish maternal-fetal immune tolerance, placentation, and fetal-growth process. By contrast, the absence or decreased myeloid-derived suppressor cells in pregnancy complications like preeclampsia, preterm birth, stillbirth, and recurrent spontaneous abortion have been reported. Here, we have summarized the origin, mechanisms, and functions of myeloid-derived suppressor cells during pregnancy along with the recent advancements in this dynamic field. We also shed light on the immunomodulatory activity of myeloid-derived suppressor cells, which can be a foundation for potential therapeutic manipulation in immunological pregnancy complications.
Collapse
Affiliation(s)
- Neelam Kumari Shah
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Peng Xu
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chen Chen
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Min Xie
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yan Li
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yizi Meng
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chang Shu
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shuai Dong
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jin He
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
3
|
Tim-3: An inhibitory immune checkpoint is associated with maternal-fetal tolerance and recurrent spontaneous abortion. Clin Immunol 2022; 245:109185. [DOI: 10.1016/j.clim.2022.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
4
|
Dong S, Shah NK, He J, Han S, Xie M, Wang Y, Cheng T, Liu Z, Shu C. The abnormal expression of Tim-3 is involved in the regulation of myeloid-derived suppressor cells and its correlation with preeclampsia. Placenta 2021; 114:108-114. [PMID: 34509865 DOI: 10.1016/j.placenta.2021.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Maternal immune system tolerance to the semi-allogeneic fetus is critical to a successful pregnancy. We previously reported that myeloid-derived suppressor cells (MDSC) was associated with maternal immune imbalance. T cell immunoglobulin and mucin-containing protein 3 (Tim-3)/Galectin-9 (Gal-9) pathway modulates function of various immune cells in maternal-fetal interface. However, the regulatory effects of Tim-3/Gal-9 signaling on MDSCs and its role in preeclampsia (PE) remain unclear. METHODS In the current study we investigated the expression of Tim-3 on MDSC in preeclampsia (PE) patients to further explore the pathogenesis of PE. RESULTS The proportion of Tim-3+ M-MDSC (monocytic MDSC) cells was higher in PE patients than in healthy control. Meanwhile, the protein expression of Gal-9, as the ligand of Tim-3, was increased in placenta of PE patients. M-MDSC also expressed a higher level of interferon-γ (IFN-γ) and a lower level of transforming growth factor-β (TGF-β) in PE. Furthermore, our study suggested that blocking Tim-3 could attenuate the inhibitory function of MDSC. DISCUSSION The abnormal expression of Tim-3 on MDSC might be involved in the pathogenesis of PE, and could be a marker to evaluate the immune function in PE.
Collapse
Affiliation(s)
- Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Neelam Kumari Shah
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Shumei Han
- Department of Medical Administration, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China
| | - Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Ying Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Tingting Cheng
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Zitao Liu
- Hope Fertility Center, New York, NY10019, USA
| | - Chang Shu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China.
| |
Collapse
|
5
|
Jiang H, Zhu M, Guo P, Bi K, Lu Z, Li C, Zhai M, Wang K, Cao Y. Impaired myeloid-derived suppressor cells are associated with recurrent implantation failure: A case-control study. J Reprod Immunol 2021; 145:103316. [PMID: 33866110 DOI: 10.1016/j.jri.2021.103316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Studies have reported that myeloid-derived suppressor cells (MDSCs) contribute to maintain pregnancy. The aim of this case-control study was to test whether there is a dysregulation of peripheral MDSCs in recurrent implantation failure (RIF). METHODS 26 RIF patients and 30 controls were recruited. Flow cytometry was applied to characterize polymorphonuclear (PMN)-MDSCs, monocytic-MDSCs (M-MDSCs), effector T cells (Teffs) and regulatory T cells (Tregs) in blood. ELISA was used to define MDSCs correlative cytokines and chemokines in serum from all patients. RESULTS Compared with controls, RIF patients showed significant reductions of blood PMN-MDSCs, M-MDSCs, Tregs and NO production by PMN-MDSCs, whereas the expression of ζ chain on CD4+T cell receptor (TCR) and CD8+TCR displayed a remarkable upregulation in RIF patients. Moreover, RIF patients presented a lower concentration of serum chemokine (C-C motif) ligand (CCL) 5 and transforming growth factor (TGF)-β than those from controls. Furthermore, the level of TCR ζ chain on CD4+ and CD8+ Teffs was negatively correlated not only with the percentage of PMN-MDSCs, but also with the amount of NO produced by PMN-MDSCs. The frequency of PMN-MDSCs had positive correlations with the concentration of CCL5 and TGF-β. CONCLUSIONS This study indicated that the dysregulation of MDSCs might impair maternal-fetal immune balance thus resulting in RIF.
Collapse
Affiliation(s)
- Huanhuan Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Mengting Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peipei Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kaihuan Bi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhimin Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Caihua Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Muxin Zhai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kangxia Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|