1
|
Qu B, Han X, Zhao L, Zhang F, Gao Q. Relationship of HIF‑1α expression with apoptosis and cell cycle in bone marrow mesenchymal stem cells from patients with myelodysplastic syndrome. Mol Med Rep 2022; 26:239. [PMID: 35642674 PMCID: PMC9185697 DOI: 10.3892/mmr.2022.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a group of abnormal clonal disorders with ineffective hematopoiesis, which are incurable with conventional therapy. Of note, MDS features an abnormal bone marrow microenvironment, which is related to its incidence. The hypoxia-inducible factor-1α (HIF-1α) transcriptional signature is generally activated in bone marrow stem/progenitor cells of patients with MDS. To analyze the expression of HIF-1α in bone marrow mesenchymal stem cells (BM-MSCs) and the apoptosis and cell cycle features associated with the disease, BM-MSCs were obtained from 40 patients with a definitive diagnosis of MDS and 20 subjects with hemocytopenia but a negative diagnosis of MDS as a control group. Reverse transcription-quantitative PCR and western blot analyses were used to measure HIF-1α expression in cells from the two groups and apoptosis and cell cycle were also analyzed and compared between the groups using flow cytometry assays. BM-MSCs from both the control group and the MDS group exhibited a fibroblast-like morphology, had similar growth cycles and were difficult to passage stably. It was observed that BM-MSCs from the MDS group had significantly higher HIF-1α expression levels than the control group (P<0.05). Furthermore, the BM-MSCs from the MDS group had a higher proportion of cells in early apoptosis (5.22±1.34 vs. 2.04±0.08%; P<0.0001) and late apoptosis (3.38±0.43 vs. 1.23±0.11%; P<0.01) and exhibited cell cycle arrest. This may be a noteworthy aspect of the pathogenesis of MDS and may be related to high HIF-1α expression under a hypoxic state in the bone marrow microenvironment. Furthermore, the expression of HIF-1α in bone marrow tissue sections from patients with MDS in the International Prognostic Scoring System (IPSS) lower-risk group was higher than that from patients with MDS in the IPSS high-risk group. These results revealed the role of HIF-1α as a central pathobiology mediator of MDS and an effective therapeutic target for a broad spectrum of patients with MDS, particularly for patients in the lower-risk group.
Collapse
Affiliation(s)
- Beibei Qu
- Department of Hematology, Jiading District Central Hospital, Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Xiuhua Han
- Department of Hematology, Jiading District Central Hospital, Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Lan Zhao
- Department of Hematology, Jiading District Central Hospital, Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Feifei Zhang
- Department of Hematology, Jiading District Central Hospital, Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Qingmei Gao
- Department of Hematology, Jiading District Central Hospital, Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| |
Collapse
|
2
|
Tanprasert P, Limpakan Yamada S, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K. Targeting mitochondria as a therapeutic anti-gastric cancer approach. Apoptosis 2022; 27:163-183. [PMID: 35089473 DOI: 10.1007/s10495-022-01709-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 11/29/2022]
Abstract
Gastric cancer is regarded as the fifth most common cancer globally but the third most common cancer death. Although systemic chemotherapy is the primary treatment for advanced gastric cancer patients, the outcome of chemotherapy is unsatisfactory. Novel therapeutic strategies and potential alternative treatments are therefore needed to overcome the impact of this disease. At a cellular level, mitochondria play an important role in cell survival and apoptosis. A growing body of studies have shown that mitochondria play a central role in the regulation of cellular function, metabolism, and cell death during carcinogenesis. Interestingly, the impact of mitochondrial dynamics, including fission/fusion and mitophagy, on carcinogenesis and cancer progression has also been reported, suggesting the potential targeting of mitochondrial dynamics for the treatment of cancer. This review not only comprehensively summarizes the homeostasis of gastric cancer cells, but the potential therapeutic interventions for the targeting of mitochondria for gastric cancer therapy are also highlighted and discussed.
Collapse
Affiliation(s)
- Peticha Tanprasert
- Division of Gastrointestinal Surgery and Endoscopy, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirikan Limpakan Yamada
- Division of Gastrointestinal Surgery and Endoscopy, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Mohsenzadegan M, Moghbeli F, Mirshafiey A, Farajollahi MM. Anti-tumor effect of M2000 (β-d-mannuronic acid) on the expression of inflammatory molecules in the prostate cancer cell. Immunopharmacol Immunotoxicol 2021; 43:419-430. [PMID: 34057866 DOI: 10.1080/08923973.2021.1931301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aim: The importance of chronic inflammation during the progression of prostate cancer (PCa) is well-known. M2000 (β-d-mannuronic acid) is a novel anti-inflammatory drug. According to its potential capacity for the inhibition of molecules involved in creating conditions of inflammation, it is reasonable to assess the anti-inflammatory role of M2000 in PCa cells.Methods: MTT assay was performed to determine the cytotoxicity of M2000 in PC3 cells. Correspondingly, these cells were cultured and then treated with low (25 µg/ml) and high (50 µg/ml) doses of M2000 as optimal doses. Thereafter, real-time RT-PCR, flow cytometry analysis, and zymography were performed to evaluate the expressions of MYD-88, NF-kB, IL-8, COX-2, MMP-2, and MMP-9 molecules. Results: Of note, the M2000 at the concentration of ≤200 μg/ml had no cytotoxicity effect on the cells. MYD-88 gene expression was significantly down-regulated at both low and high doses in the M2000-treated cells compared to the control (p = .017 and p = .001, respectively). The expression of the NF-kB was also reduced at both the gene and protein levels (all p values were <.001). The expression of IL-8 and COX-2 genes was also down-regulated in the high dose of M2000 (p<.001, p = .001, respectively). The decreased expression of the MMP-9 gene was observed at both doses (both p values were <.001).Conclusion: Inhibitory effects of M2000 on the activity of MMPs in the LPS/M2000-treated cells were evident, but not in the M2000-treated cells. M2000 as a new anti-inflammatory drug appears to constitute a potential agent for down-regulation of inflammatory molecules in the PCa cells.
Collapse
Affiliation(s)
- Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moghbeli
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Wang X, Ma R, Shi W, Wu Z, Shi Y. Emerging roles of circular RNAs in systemic lupus erythematosus. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:212-222. [PMID: 33767917 PMCID: PMC7973136 DOI: 10.1016/j.omtn.2021.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs with covalently closed single-stranded structures lacking 5'-3' polarity and a polyadenine tail. Over recent years, a growing body of studies have been conducted to explore the roles of circRNAs in human diseases. Systemic lupus erythematosus (SLE) is a severe autoimmune disorder characterized by the presence of autoantibodies and excessive inflammation, which impact multiple organs. Recent advances have begun to shed light on the roles of circRNAs in SLE, providing fresh insights into the pathogenesis of SLE and the latent capacity for translation into clinical applications. Here, we briefly introduce these "star molecules" and summarize their roles in SLE. In addition, we outline the limitations of the current studies and raise prospects for future research.
Collapse
Affiliation(s)
- Xin Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.,Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rui Ma
- Ministry of Education, Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weimin Shi
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.,Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Ghaderi A, Nodehi SRS, Bakhtiari T, Aslani M, Aghazadeh Z, Matsuo H, Rehm BHA, Cuzzocrea S, Mirshafiey A. Mannuronic Acid in Low-Risk and Intermediate-1-Risk Myelodysplastic Syndromes. J Clin Pharmacol 2020; 60:879-888. [PMID: 32064621 DOI: 10.1002/jcph.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/17/2020] [Indexed: 11/10/2022]
Abstract
The discovery of hematologic improvement and bone marrow modification by the drug β-D mannuronic acid (M2000) during treatment of rheumatoid arthritis in phase 1/2/3 clinical trials prompted us to design a new trial to target hematologic deficits in myelodysplastic syndromes (MDS). In this open-label, randomized phase 2 clinical trial, the potential effect and tolerability of drug M2000 was assessed in patients with low- and intermediate-1-risk MDS. The primary efficacy end point was hematologic improvement after 12 weeks of β-D-mannuronic acid therapy. Among 34 enrolled patients, half received their conventional therapy plus β-D-mannuronic acid, and the other half received only conventional drugs. In the conventional + β-D mannuronic acid treatment group, hematologic improvement and development of transfusion independence and/or reduction in transfusion requirements were seen in 12 patients (92.3%) and 1 patient (7.7%), respectively. Moreover, 5 patients (38.5%), 2 patients (15.4%), and 1 patient (7.7%) in the β-D-mannuronic acid-treated group showed hematologic improvement of the major parameters of erythroid, neutrophil, and platelet responses, respectively, based on the International Working Group criteria), whereas in the conventional treatment group as control, no hematologic improvements including erythroid, neutrophil, and platelet response was seen. In this trial, the addition of β-D mannuronic acid to conventional treatment showed promising results in MDS patients with low and intermediate-1 risk with effects on hematologic improvements without significant adverse effect.
Collapse
Affiliation(s)
- Afshin Ghaderi
- Department of Internal Medicine, Hematology and Medical Oncology Ward, Cancer Research Centre, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayyed Reza Safaee Nodehi
- Department of Internal Medicine, Hematology and Medical Oncology Ward, Cancer Research Centre, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Bakhtiari
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Aghazadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Centre for Immunodeficiencies, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|