1
|
Tonon CR, Polegato BF. Long Non-Coding RNA, Apoptosis, and Doxorubicin-Induced Cardiotoxicity. Arq Bras Cardiol 2024; 121:e20240331. [PMID: 39194066 PMCID: PMC11364448 DOI: 10.36660/abc.20240331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024] Open
Affiliation(s)
- Carolina R Tonon
- Faculdade de Medicina de Botucatu - Departamento de Clínica Médica - Universidade Estadual Paulista (UNESP), Botucatu, SP - Brasil
| | - Bertha F Polegato
- Faculdade de Medicina de Botucatu - Departamento de Clínica Médica - Universidade Estadual Paulista (UNESP), Botucatu, SP - Brasil
| |
Collapse
|
2
|
Wang H, Gao L, Chen Y, Zhang L, Bai Y, Zhao C, Zhang L, Zuo L, Sun H. Identification of hub genes in bladder transitional cell carcinoma through ceRNA network construction integrated with gene network analysis. J Cell Mol Med 2024; 28:e17979. [PMID: 37795791 PMCID: PMC10902574 DOI: 10.1111/jcmm.17979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/25/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Bladder transitional cell carcinoma (BTCC) forms more than 90% of bladder cancer cases. It brings challenges to the early diagnosis and therapy of BTCC, due to lack of efficient screening biomarkers. We used weighted gene co-expression network analysis (WGCNA) combined competing endogenous RNA (ceRNA) network construction depending on TCGA datasets to investigate potential hub genes and regulatory pathways associated with occurrence and progression of BTCC. We further used real-time polymerase chain reaction (RT-PCR) to validate the relative expression genes correlated with BTCC. By WGCNA, the gene co-expression module with 11 genes was found corelated with BTCC tumour stage and prognosis after survival analyses. Ultimately, we put 100 highly stage-related genes into the above constructed ceRNA network and then constructed another new network. Among them, all elements in AC112721.1/LINC00473/AC128709.1-hsa-mir-195-RECK and LINC00460-hsa-mir-429-ZFPM2 axes were simultaneously corelated with overall survival. RT-PCR showed that AKAP12 was downregulated in tumour tissues. The hub genes screened out in the present study may provide ideals for further treatment on BTCC.
Collapse
Affiliation(s)
- Hai Wang
- Department of OncologyThe Affiliated Jintan Hospital of Jiangsu UniversityChangzhouChina
| | - Lei Gao
- Department of UrologyChangzhou Second People's HospitalChangzhouChina
| | - Yin Chen
- Department of UrologyChangzhou Second People's HospitalChangzhouChina
| | - Lei Zhang
- Department of UrologyChangzhou Second People's HospitalChangzhouChina
| | - Yu Bai
- Department of UrologyChangzhou Second People's HospitalChangzhouChina
| | - Cuiping Zhao
- Department of GeriatricsChangzhou Second People's HospitalChangzhouChina
| | - Lifeng Zhang
- Department of UrologyChangzhou Second People's HospitalChangzhouChina
| | - Li Zuo
- Department of UrologyChangzhou Second People's HospitalChangzhouChina
| | - Heyun Sun
- Department of UrologyChangzhou Second People's HospitalChangzhouChina
| |
Collapse
|
3
|
Fu G, Wu H, Wu X, Yang Y, Fan C. LncRNA LBX2-AS1 inhibits acute myeloid leukemia progression through miR-455-5p/MYLIP axis. Heliyon 2024; 10:e24812. [PMID: 38312562 PMCID: PMC10835375 DOI: 10.1016/j.heliyon.2024.e24812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a common blood cancer primarily affecting the bone marrow and blood cells, which is prevalent among adults. Long non-coding RNAs (lncRNAs) have been shown to play a crucial role in the development and progression of AML. LBX2-AS1 is a recently discovered lncRNA that has been linked to the pathogenesis and progression of several types of cancer. This study aimed to investigate the role and possible mechanisms of LBX2-AS1 in AML. Expression levels of LBX2-AS1, miR-455-5p, and their target genes were detected in AML samples and cells by RT-qPCR. Cell proliferation and apoptosis were determined by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays, and flow cytometry, respectively. LBX2-AS1 was downregulated in AML specimens and cells, and overexpression of LBX2-AS1 significantly inhibited cell proliferation and enhanced apoptosis in vitro. We also determined the effects of LBX2-AS1 overexpression in an AML mouse model by in vivo bioluminescence imaging. Mechanistically, LBX2-AS1 acts as a competitive endogenous RNA, which promotes myosin regulatory light chain interacting protein (MYLIP) expression by sponging miR-455-5p. Knockdown of MYLIP or upregulation of miR-455-5p antagonized the effect of LBX2-AS1 overexpression on the progression of AML. LBX2-AS1 may thus be a valuable therapeutic target for AML.
Collapse
Affiliation(s)
- Gongli Fu
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Hao Wu
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Xiaomiao Wu
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Yang Yang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cuihua Fan
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Bao X, Chen Y, Lou X, Du J, Li H, Liu N, Tang Z, Hua J, Guo W, Liu SB. Comprehensive analysis of ERCC3 prognosis value and ceRNA network in AML. Clin Transl Oncol 2023; 25:1053-1066. [PMID: 36472749 DOI: 10.1007/s12094-022-03012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematological malignancy with high molecular and clinical heterogeneity, and is the most common type of acute leukemia in adults. Due to limited treatment options, AML is prone to relapse and has a poor prognosis. Excision repair cross-complementing 3 (ERCC3) is an important member of nucleotide excision repair (NER) that is overexpressed in types of solid cancers and potentially regarded as a prognostic factor. However, its role in AML remains unclear. The purpose of this study was to explore ERCC3 expression and functions in AML. METHODS The Cancer Genome Atlas (TCGA) and GEO (Gene Expression Omnibus) were used to test the accuracy of ERCC3 expression levels for AML diagnosis. Using online databases and R packages, we also explored the signaling pathway, epigenetic regulation, infiltration of immune cells, clinical prognostic value, and ceRNA network in AML. RESULTS Our results revealed that ERCC3 expression was increased in AML and that high ERCC3 expression had good value for disease-free survival and overall survival in AML patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT). We found that ERCC3 and co-expressed genes were mainly involved in chemical carcinogenesis/reactive oxygen species, ubiquitin-mediated protein degradation and oxidative phosphorylation. In addition, almost all the m6A-related coding genes (except GF2BP1) were positively associated with ERCC3 expression. We also constructed a ceRNA regulatory network containing ERCC3 in AML and identified 6 pairs of ceRNA networks, indicating that ERCC3 expression is regulated by a noncoding RNA system. CONCLUSION This study demonstrated that ERCC3 was overexpressed in AML and that high ERCC3 expression can be considered a biomarker conducive to allo-HSCT in AML patients.
Collapse
Affiliation(s)
- Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yao Chen
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Xiao Lou
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Jiahui Du
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Huijun Li
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Nian Liu
- School of Chemistry and Life Science, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Jingsheng Hua
- Department of Hematology, Taizhou Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000, China.
| | - Weiqiang Guo
- School of Chemistry and Life Science, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China.
- School of Chemistry and Life Science, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
5
|
lncRNA-mediated ceRNA network in bladder cancer. Noncoding RNA Res 2022; 8:135-145. [PMID: 36605618 PMCID: PMC9792360 DOI: 10.1016/j.ncrna.2022.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer is a common disease associated with high rates of morbidity and mortality. Although immunotherapy approaches such as adoptive T-cell therapy and immune checkpoint blockade have been investigated for the treatment of bladder cancer, their off-target effects and ability to affect only single targets have led to clinical outcomes that are far from satisfactory. Therefore, it is important to identify novel targets that can effectively control tumor growth and metastasis. It is well known that long noncoding RNAs (lncRNAs) are powerful regulators of gene expression. Increasing evidence has shown that dysregulated lncRNAs in bladder cancer are involved in cancer cell proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT). In this review, we focus on the roles and underlying mechanisms of lncRNA-mediated competing endogenous RNA (ceRNA) networks in the regulation of bladder cancer progression. In addition, we discuss the potential of targeting lncRNA-mediated ceRNA networks to overcome cancer treatment resistance and its association with clinicopathological features and outcomes in bladder cancer patients. We hope this review will stimulate research to develop more effective therapeutic approaches for bladder cancer treatment.
Collapse
|
6
|
Liu P, Fan B, Othmane B, Hu J, Li H, Cui Y, Ou Z, Chen J, Zu X. m 6A-induced lncDBET promotes the malignant progression of bladder cancer through FABP5-mediated lipid metabolism. Am J Cancer Res 2022; 12:6291-6307. [PMID: 36168624 PMCID: PMC9475447 DOI: 10.7150/thno.71456] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/13/2022] [Indexed: 12/23/2022] Open
Abstract
The limited effect of adjuvant therapy for advanced bladder cancer (BCa) leads to a poor prognosis. Increasing evidence has shown that RNA N6-methyladenosine (m6A) modification plays important functional roles in tumorigenesis. Nevertheless, the role and mechanism of m6A-modified noncoding RNAs (ncRNAs) in BCa remain largely unknown. Methods: RT-PCR, western blotting and ONCOMINE dataset were used to determine the dominant m6A-related enzyme in BCa. M6A-lncRNA epitranscriptomic microarray was used to screen candidate targets of METTL14. RT-PCR, MeRIP and TCGA dataset were carried out to confirm the downstream target of METTL14. CHIRP/MS was conducted to identify the candidate proteins binding to lncDBET. RT-PCR, western blotting, RIP and KEGG analysis were used to confirm the target of lncDBET. The levels of METTL14, lncDBET and FABP5 were tested in vitro and in vivo. CCK-8, EdU, transwell and flow cytometry assays were performed to determine the oncogenic function of METTL14, lncDBET and FABP5, and their regulatory networks. Results: We identified that the m6A level of total RNA was elevated and that METTL14 was the dominant m6A-related enzyme in BCa. m6A modification mediated by METTL14 promoted the malignant progression of BCa by promoting the expression of lncDBET. Upregulated lncDBET activated the PPAR signalling pathway to promote the lipid metabolism of cancer cells through direct interaction with FABP5, thus promoting the malignant progression of BCa in vitro and in vivo. Conclusions: Our study establishes METTL14/lncDBET/FABP5 as a critical oncogenic axis in BCa.
Collapse
Affiliation(s)
- Peihua Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Benyi Fan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Belaydi Othmane
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhenyu Ou
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
7
|
Dai W, Liu H. MicroRNA-886 suppresses osteosarcoma cell proliferation and its maturation is suppressed by long non-coding RNA OXCT1-AS1. Bioengineered 2022; 13:5769-5778. [PMID: 35191809 PMCID: PMC8973740 DOI: 10.1080/21655979.2022.2031669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the roles of microRNA-886 (miR-886) and long non-coding RNA (lncRNA) OXCT1-AS1 in osteosarcoma (OS). We predicted that they might interact with each other. The expression of OXCT1-AS1 and miR-886 (mature and premature) in osteosarcoma and paired non-tumor tissues from 66 OS patients was negatively correlated. Overexpression and silencing assays showed that OXCT1-AS1 suppresses miR-886 maturation. RNA-RNA pulldown and subcellular fractionation assays demonstrated the direct interaction between OXCT1-AS1 and miR-886. BrdU proliferation assays revealed that OXCT1-AS1 promoted OS cell proliferation, and miR-886 reduced the enhancing effects of OXCT1-AS1 on OS cell proliferation. Western blot showed that OXCT1-AS1 had no effects on the levels of epithelial-mesenchymal transition biomarkers. Overall, OXCT1-AS1 suppresses miR-886 maturation to promote OS cell proliferation.
Collapse
Affiliation(s)
- Wen Dai
- Joint Surgery Department, First People's Hospital of Shangqiu City, Shangqiu City, Henan Province, China
| | - Han Liu
- General Medicine Department, First People's Hospital of Shangqiu City, Shangqiu City, Henan Province, China
| |
Collapse
|
8
|
Biological functions and clinical significance of long noncoding RNAs in bladder cancer. Cell Death Discov 2021; 7:278. [PMID: 34611133 PMCID: PMC8492632 DOI: 10.1038/s41420-021-00665-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BCa) is one of the 10 most common cancers with high morbidity and mortality worldwide. Long noncoding RNAs (lncRNAs), a large class of noncoding RNA transcripts, consist of more than 200 nucleotides and play a significant role in the regulation of molecular interactions and cellular pathways during the occurrence and development of various cancers. In recent years, with the rapid advancement of high-throughput gene sequencing technology, several differentially expressed lncRNAs have been discovered in BCa, and their functions have been proven to have an impact on BCa development, such as cell growth and proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and drug-resistance. Furthermore, evidence suggests that lncRNAs are significantly associated with BCa patients' clinicopathological characteristics, especially tumor grade, TNM stage, and clinical progression stage. In addition, lncRNAs have the potential to more accurately predict BCa patient prognosis, suggesting their potential as diagnostic and prognostic biomarkers for BCa patients in the future. In this review, we briefly summarize and discuss recent research progress on BCa-associated lncRNAs, while focusing on their biological functions and mechanisms, clinical significance, and targeted therapy in BCa oncogenesis and malignant progression.
Collapse
|
9
|
Mirzaei S, Paskeh MDA, Hashemi F, Zabolian A, Hashemi M, Entezari M, Tabari T, Ashrafizadeh M, Raee P, Aghamiri S, Aref AR, Leong HC, Kumar AP, Samarghandian S, Zarrabi A, Hushmandi K. Long non-coding RNAs as new players in bladder cancer: Lessons from pre-clinical and clinical studies. Life Sci 2021; 288:119948. [PMID: 34520771 DOI: 10.1016/j.lfs.2021.119948] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
The clinical management of bladder cancer (BC) has become an increasing challenge due to high incidence rate of BC, malignant behavior of cancer cells and drug resistance. The non-coding RNAs are considered as key factors involved in BC progression. The long non-coding RNAs (lncRNAs) are RNA molecules and do not encode proteins. They have more than 200 nucleotides in length and affect gene expression at epigenetic, transcriptional and post-transcriptional phases. The lncRNAs demonstrate abnormal expression in BC cells and tissues. The present aims to identifying lncRNAs with tumor-suppressor and tumor-promoting roles, and evaluating their roles as regulatory of growth and migration. Apoptosis, glycolysis and EMT are tightly regulated by lncRNAs in BC. Response of BC cells to cisplatin, doxorubicin and gemcitabine chemotherapy is modulated by lncRNAs. LncRNAs regulate immune cell infiltration in tumor microenvironment and affect response of BC cells to immunotherapy. Besides, lncRNAs are able to regulate microRNAs, STAT3, Wnt, PTEN and PI3K/Akt pathways in affecting both proliferation and migration of BC cells. Noteworthy, anti-tumor compounds and genetic tools such as siRNA, shRNA and CRISPR/Cas systems can regulate lncRNA expression in BC. Finally, lncRNAs and exosomal lncRNAs can be considered as potential diagnostic and prognostic tools in BC.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Hin Chong Leong
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Li HJ, Gong X, Li ZK, Qin W, He CX, Xing L, Zhou X, Zhao D, Cao HL. Role of Long Non-coding RNAs on Bladder Cancer. Front Cell Dev Biol 2021; 9:672679. [PMID: 34422802 PMCID: PMC8371405 DOI: 10.3389/fcell.2021.672679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022] Open
Abstract
Bladder cancer (BC) is the most common malignant tumor in the urinary system, and its early diagnosis is conducive to improving clinical prognosis and prolonging overall survival time. However, few biomarkers with high sensitivity and specificity are used as diagnostic markers for BC. Multiple long non-coding RNAs (lncRNAs) are abnormally expressed in BC, and play key roles in tumorigenesis, progression and prognosis of BC. In this review, we summarize the expression, function, molecular mechanisms and the clinical significance of lncRNAs on bladder cancer. There are more than 100 dysregulated lncRNAs in BC, which are involved in the regulation of proliferation, cell cycle, apoptosis, migration, invasion, metabolism and drug resistance of BC. Meanwhile, the molecular mechanisms of lncRNAs in BC was explored, including lncRNAs interacting with DNA, RNA and proteins. Additionally, the abnormal expression of thirty-six lncRNAs is closely associated with multiple clinical characteristics of BC, including tumor size, metastasis, invasion, and drug sensitivity or resistance of BC. Furthermore, we summarize some potential diagnostic and prognostic biomarkers of lncRNA for BC. This review provides promising novel biomarkers in early diagnosis, prognosis and monitoring of BC based on lncRNAs.
Collapse
Affiliation(s)
- Hui-Jin Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xue Gong
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Zheng-Kun Li
- College of Medical Technology, Xi'an Medical University, Xi'an, China
| | - Wei Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Chun-Xia He
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lu Xing
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xin Zhou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Dong Zhao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hui-Ling Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
11
|
Li B, Zhu L, Li L, Ma R. lncRNA OXCT1-AS1 Promotes Metastasis in Non-Small-Cell Lung Cancer by Stabilizing LEF1, In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4959381. [PMID: 34337014 PMCID: PMC8318766 DOI: 10.1155/2021/4959381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/04/2021] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) play nonnegligible roles in the metastasis of non-small-cell lung cancer (NSCLC). This study is aimed at investigating the biological role of lncRNA OXCT1-AS1 in NSCLC metastasis and the underlying regulatory mechanisms. The expression profiles of lncRNA OXCT1-AS1 in different NSCLC cell lines were examined. Then, the biological function of lncRNA OXCT1-AS1 in NSCLC metastasis was explored by loss-of-function assays in vitro and in vivo. Further, the protective effect of lncRNA OXCT1-AS1 on lymphoid enhancer factor 1 (LEF1) was examined using RNA pull-down and RNA immunoprecipitation assays. Additionally, the role of LEF1 in NSCLC metastasis was investigated. Results indicated that lncRNA OXCT1-AS1 expression was significantly increased in NSCLC cell lines. Functional analysis revealed that knockdown of lncRNA OXCT1-AS1 impaired invasion and migration in vitro. Additionally, the ability of lncRNA OXCT1-AS1 to promote NSCLC metastasis was also confirmed in vivo. Mechanistically, through direct interaction, lncRNA OXCT1-AS1 maintained LEF1 stability by blocking NARF-mediated ubiquitination. Furthermore, LEF1 knockdown impaired invasion and migration of NSCLC in vitro and in vivo. Collectively, these data highlight the ability of lncRNA OXCT1-AS1 to promote NSCLC metastasis by stabilizing LEF1 and suggest that lncRNA OXCT1-AS1 represents a novel therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Binru Li
- Department of Thoracic Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Libo Zhu
- Department of Thoracic Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Linlin Li
- Department of Thoracic Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Rui Ma
- Department of Thoracic Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| |
Collapse
|
12
|
Zhang C, Hu J, Li H, Ma H, Othmane B, Ren W, Yi Z, Qiu D, Ou Z, Chen J, Zu X. Emerging Biomarkers for Predicting Bladder Cancer Lymph Node Metastasis. Front Oncol 2021; 11:648968. [PMID: 33869048 PMCID: PMC8044933 DOI: 10.3389/fonc.2021.648968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer is one of the leading causes of cancer deaths worldwide. Early detection of lymph node metastasis of bladder cancer is essential to improve patients' prognosis and overall survival. Current diagnostic methods are limited, so there is an urgent need for new specific biomarkers. Non-coding RNA and m6A have recently been reported to be abnormally expressed in bladder cancer related to lymph node metastasis. In this review, we tried to summarize the latest knowledge about biomarkers, which predict lymph node metastasis in bladder cancer and their mechanisms. In particular, we paid attention to the impact of non-coding RNA on lymphatic metastasis of bladder cancer and its specific molecular mechanisms, as well as some prediction models based on imaging, pathology, and biomolecules, in an effort to find more accurate diagnostic methods for future clinical application.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongzhi Ma
- Department of Radiation Oncology, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Belaydi Othmane
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenbiao Ren
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,George Whipple Lab for Cancer Research, University of Rochester Medical Institute, Rochester, NY, United States
| | - Zhenglin Yi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongxu Qiu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenyu Ou
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Li Y, Zu X, Hu X, Zhao C, Mo M, Fan B. Competing endogenous RNA network analysis reveals pivotal ceRNAs in bladder urothelial carcinoma. Transl Androl Urol 2021; 10:797-808. [PMID: 33718081 PMCID: PMC7947459 DOI: 10.21037/tau-20-1167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Bladder urothelial cancer (BUC) has become one of the most frequently occurring malignant tumors worldwide and it is of great importance to explore the molecular pathogenesis of bladder cancer. Emerging evidence has demonstrated that dysregulation of noncoding RNAs is critically involved in the tumorigenesis and progression of BUC. Long noncoding RNAs (lncRNAs) can act as microRNA (miRNA) sponges to regulate protein-coding gene expression and therefore form a competing endogenous RNA (ceRNA) network. ceRNA networks have been proven to play vital roles during tumorigenesis and progression. Elements involved in the ceRNA network have also been identified as potential therapeutic targets and prognostic biomarkers in various tumors. Understanding the regulatory mechanisms and functional roles of the ceRNA system will help understand tumorigenesis, progression mechanisms of BUC and develop therapeutics against cancer. Methods In this study, we utilized the TCGA database and analyzed the multilevel expression profile of BUC. ceRNA regulatory networks were constructed by integrating tumor progression and prognosis information. RNA immunoprecipitation (RIP) and qRT-PCR were applied to verify the identified ceRNA networks. KEGG enrichment analysis was implemented to infer the biological functions of the regulatory system. Results We identified a lncRNA-miRNA-mRNA regulatory ceRNA network containing two lncRNAs, one miRNA and 14 mRNAs. The ceRNA network we identified showed significant roles in BUC tumorigenesis, progression, and metastases. Conclusions The proposed ceRNA network may help explain the regulatory mechanism by which lncRNAs function as ceRNAs and improve our understanding of the pathogenesis of BUC. Moreover, the candidate elements involved in the ceRNA network can be further evaluated as potential therapeutic targets and prognostic biomarkers for BUC.
Collapse
Affiliation(s)
- Yangle Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiheng Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Zhao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Benyi Fan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Bi H, Shang Z, Jia C, Wu J, Cui B, Wang Q, Ou T. LncRNA RNF144A-AS1 Promotes Bladder Cancer Progression via RNF144A-AS1/miR-455-5p/SOX11 Axis. Onco Targets Ther 2020; 13:11277-11288. [PMID: 33177836 PMCID: PMC7649250 DOI: 10.2147/ott.s266067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Bladder cancer (BC) is the most commonly occurring malignant tumor of the urinary system worldwide. Long non-coding RNAs (lncRNAs), including lncRNA RNF144A-AS1 (RNF144A-AS1), perform an oncogenic role in BC progression. However, how RNF144A-AS1 is regulated in BC has not been fully investigated, and its role in BC is mostly obscure. In this study, we explore its role in BC progression. Materials and Methods The expression level of RNF144A-AS1 in BC tissues was explored via bioinformatics analysis and quantitative real-time PCR (qRT-PCR). We used RNF144A-AS1 siRNA (si-RNF144A-AS1) to inhibit the RNF144A-AS1 level in BC cell lines (J82 and 5637 cells). A series of experimental studies in vitro (CCK-8 assay, colony formation assay and Transwell assay) was performed to explore the role of si-RNF144A-AS1 on the proliferation, migration and invasion of J82 and 5637 cells. A BC xenograft model was established, and the effect of si-RNF144A-AS1 on xenograft growth was explored in vivo. The interactions among RNF144A-AS1, miR-455-5p and SOX11 were predicted by bioinformatics miRanda and Targetscan database, and verified by the luciferase reporter assay and RNA pull-down assay. Finally, miR-455-5p inhibitor and si-RNF144A-AS1 were cotransfected into J82 and 5637 cells. Results RNF144A-AS1 is overexpressed in BC tumors and cells, and its overexpression is correlated with poor prognosis. Knockdown of RNF144A-AS1 markedly suppressed the proliferation, migration and invasion of J82 and 5637 cells and significantly inhibited xenograft growth in nude mice, compared to si-NC. We found that RNF144A-AS1 serves as a sponge for miR-455-5p. Furthermore, a binding site of miR-455-5p was found in 3ʹ UTR of SOX11 gene, and overexpression of miR-455-5p suppressed SOX11 levels. RNF144A-AS1 knockdown markedly decreased SOX11 expression levels, while miR-455-5p inhibitor restored this repressive effect. Restoration of SOX11 could reverse this repressive effect of RNF144A-AS1 on cell proliferation, migration and invasion abilities. Conclusion Overall, our findings underline the critical role of RNF144A-AS1 in BC development, and our study reveals for the first time that RNF144A-AS1 promotes BC progression via the RNF144A-AS1/miR-455-5p/SOX11 axis.
Collapse
Affiliation(s)
- Huifeng Bi
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China.,Department of Urology, Jincheng General Hospital, Jincheng, Shanxi Province, People's Republic of China
| | - Zhenhua Shang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Chunsong Jia
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Jiangtao Wu
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Bo Cui
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Qi Wang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
15
|
Sun X, Cai Y, Hu X, Mo M, Zhao C, He W, Li Y. Long noncoding RNA MAFG-AS1 facilitates bladder cancer tumorigenesis via regulation of miR-143-3p/SERPINE1 axis. Transl Cancer Res 2020; 9:7214-7226. [PMID: 35117325 PMCID: PMC8799265 DOI: 10.21037/tcr-20-1971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/20/2020] [Indexed: 11/06/2022]
Abstract
Background Numerous studies have shown that long noncoding RNAs (lncRNAs) act as key regulators of bladder cancer progression. While lncRNA MAFG-AS1 has been confirmed as an oncogenic molecule in various cancers and tumorigenesis, in present study, we investigated its function and role in the tumorigenesis of bladder cancer. Methods The expression of MAFG-AS1, miR-143-3p and SERPINE1 in bladder cancer tissues was detected by qRT-PCR methods. The relationship between MAFG-AS1 expression and clinicopathologic characteristics of bladder cancer was analyzed. The effects of MAFG-AS1 depletion on cell proliferation, migration, invasion and apoptosis were investigated. The binding relationship of MAFG-AS1, miR-143-3p and SERPINE1 was examined by luciferase reporter analysis and RNA immunoprecipitation (RIP) assay. Results MAFG-AS1 was upregulated in bladder cancer tissues and cell lines. High MAFG-AS1 expression was associated with bladder cancer histological grade, TNM stage and lymph node metastasis, and patients with high expression showed poor overall survival. Cell function experiments showed that MAFG-AS1 silencing markedly suppressed bladder cancer cell proliferation, migration, invasion and increased cell apoptosis. Moreover, our results demonstrated that MAFG-AS1 functioned as a competing endogenous RNA for miR-143-3p to modulate SERPINE1 levels. Further analysis showed that miR-143-3p inhibition or SERPINE1 overexpression alleviated the suppressive effects of MAFG-AS1 silencing on malignant features. Conclusions Our findings indicated that MAFG-AS1 facilitates tumorigenesis via regulation of the miR-143-3p/SERPINE1 axis and also provides a novel insight into tumorigenesis and identify a promising therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Xi Sun
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Cai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiheng Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Zhao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yangle Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Non-coding RNAs and Ischemic Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32285417 DOI: 10.1007/978-981-15-1671-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The Ischemic Heart Disease (IHD) is considered a clinical condition characterized by myocardial ischemia causing an imbalance between myocardial blood supply and demand, leading to morbidity and mortality across the worldwide. Prompt diagnostic and prognostic represents key factors for the treatment and reduction of the mortality rate. Therefore, one of the newest frontiers in cardiovascular research is related to non-coding RNAs (ncRNAs), which prompted a huge interest in exploring ncRNAs candidates for utilization as potential therapeutic targets for diagnostic and prognostic and/or biomarkers in IHD. However, there are undoubtedly many more functional ncRNAs yet to be discovered and characterized. Here we will discuss our current knowledge and we will provide insight on the roles and effects elicited by some ncRNAs related to IHD.
Collapse
|
17
|
Wang S. Investigation of long non-coding RNA expression profiles in patients with post-menopausal osteoporosis by RNA sequencing. Exp Ther Med 2020; 20:1487-1497. [PMID: 32742382 PMCID: PMC7388310 DOI: 10.3892/etm.2020.8881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the implication of long non-coding RNA (lncRNA) expression profiles in post-menopausal osteoporosis (PMOP). A total of 10 patients with PMOP and 10 age-matched healthy post-menopausal females as controls were consecutively enrolled. Their peripheral blood mononuclear cells were obtained and lncRNA as well as mRNA expression profiles were detected by RNA sequencing, followed by bioinformatics analyses. The lncRNA expression profiles were able to distinguish patients with PMOP from controls based on principal component analysis and heatmap analysis. In total, 254 upregulated lncRNAs and 359 downregulated lncRNAs were identified in patients with PMOP vs. controls. The top 5 upregulated lncRNAs were RP11-704M14.1, RP11-754N21.1, RP11-408E5.5, ANKRD26P3 and TPTEP1. The top 5 downregulated lncRNAs were RP11-310E22.4, RP11-326K13.4, FABP5P1, SERPINB9P1 and RPL13P2. Based on the interaction of dysregulated lncRNAs and mRNAs by RNA sequencing, functional annotations were then performed. Gene Ontology enrichment analysis revealed that the dysregulated lncRNAs were enriched in terms including apoptotic process and positive regulation of NF-κB transaction, and Kyoto Encyclopedia of Genes and Genomes analysis suggested enrichment in PMOP-associated signaling pathways, including osteoclast differentiation, tumor necrosis factor signaling pathway and mitogen-activated protein kinase signaling pathway. In addition, the regulatory network and circos graph further indicated the implication of lncRNA expression profiles in PMOP via interactions with mRNAs. In conclusion, the present study suggested that aberrant lncRNA expression is deeply involved in the pathogenesis of PMOP by affecting osteoclast differentiation, inflammation and apoptotic processes.
Collapse
Affiliation(s)
- Shaohai Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| |
Collapse
|
18
|
Liu S, Xin W, Tang X, Qiu J, Zhang Y, Hua K. LncRNA H19 Overexpression in Endometriosis and its Utility as a Novel Biomarker for Predicting Recurrence. Reprod Sci 2020; 27:1687-1697. [DOI: 10.1007/s43032-019-00129-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
|
19
|
Li C, Hu J, Liu P, Li Q, Chen J, Cui Y, Zhou X, Xue B, Zhang X, Gao X, Zu X. A comprehensive evaluation of differentially expressed mRNAs and lncRNAs in cystitis glandularis with gene ontology, KEGG pathway, and ceRNA network analysis. Transl Androl Urol 2020; 9:232-242. [PMID: 32420128 PMCID: PMC7214972 DOI: 10.21037/tau.2020.03.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background Cystitis glandularis (CG) is a proliferative disorder of the urinary bladder characterized by transitional cells that have undergone glandular metaplasia. The underlying mechanism associated with this transformation is poorly understood. Methods The expression of messenger RNA (mRNA) and long non-coding RNA (lncRNA) from normal bladder mucosa and CG were compared using microarray analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to describe molecular interactions. Results Microarray analysis identified 809 significantly dysregulated mRNAs in CG tissues; 606 were up-regulated and 203 were down-regulated (greater than 2-fold difference in expression from normal tissue, P<0.05). KEGG pathway analysis showed that the mRNAs that co-expressed with lncRNAs were enriched in the cell cycle regulation pathway. Four up-regulated lncRNAs (ENST00000596379, ENST00000463397, NR_001446 and NR_015395) were identified in the coding-non-coding co-expression (CNC) network analysis as being associated with the expression of four mRNAs (SMAD3, ORC1, CCNA2 and CCNB2). NR_015395 was revealed to be a competing endogenous RNA (ceRNA) of miR-133a-3p that targets SMAD3. Conclusions This is the first work to measure the expression of dysregulated lncRNA and ceRNA in CG and identify the crosstalk between mRNA and lncRNA expression patterns in the pathogenesis of CG.
Collapse
Affiliation(s)
- Chao Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Peihua Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiaqia Li
- Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xu Zhou
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bichen Xue
- Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Xin Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xin Gao
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
20
|
Jiang F, Chen Y, Ren S, Li Z, Sun K, Xing Y, Zhu Y, Piao D. Cyclovirobuxine D inhibits colorectal cancer tumorigenesis via the CTHRC1‑AKT/ERK‑Snail signaling pathway. Int J Oncol 2020; 57:183-196. [PMID: 32319595 PMCID: PMC7252468 DOI: 10.3892/ijo.2020.5038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclovirobuxine D (CVB-D) is an alkaloid, which is mainly derived from Buxus microphylla. It has been reported that CVB-D has positive effects on breast cancer, gastric cancer and other malignant tumors. However, to the best of our knowledge, there are no reports regarding the effects of CVB-D on colorectal cancer (CRC). The purpose of the present study was to determine the anticancer effects of CVB-D and further elucidate its molecular mechanism(s). DLD-1 and LoVo cell lines were selected to evaluate the antitumor effect of CVB-D. Cytotoxicity, viability and proliferation were evaluated by the MTT and colony formation assays. Flow cytometry was used to detect the effects on apoptosis and the cell cycle in CVB-D-treated CRC cells. The migration and invasion abilities of CRC cells were examined by wound healing and Transwell assays. In addition, RNA sequencing, bioinformatics analysis and western blotting were performed to investigate the target of drug action and clarify the molecular mechanisms. A xenograft model was established using nude mice, and ultrasound was employed to assess the preclinical therapeutic effects of CVB-D in vivo. It was identified that CVB-D inhibited the proliferation, migration, stemness, angiogenesis and epithelial-mesenchymal transition of CRC cells, and induced apoptosis and S-phase arrest. In addition, CVB-D significantly inhibited the growth of xenografts. It is notable that CVB-D exerted anticancer effects in CRC cells partly by targeting collagen triple helix repeat containing 1 (CTHRC1), which may be upstream of the AKT and ERK pathways. CVB-D exerted anticancer effects through the CTHRC1-AKT/ERK-Snail signaling pathway. Targeted therapy combining CTHRC1 with CVB-D may offer a promising novel therapeutic approach for CRC treatment.
Collapse
Affiliation(s)
- Fengqi Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yaodong Chen
- Department of Ultrasonic Imaging, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Shuo Ren
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zizhuo Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Kan Sun
- Department of General Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Yanwei Xing
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Daxun Piao
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
21
|
Jiang J, Bi Y, Liu XP, Yu D, Yan X, Yao J, Liu T, Li S. To construct a ceRNA regulatory network as prognostic biomarkers for bladder cancer. J Cell Mol Med 2020; 24:5375-5386. [PMID: 32233022 PMCID: PMC7205833 DOI: 10.1111/jcmm.15193] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 01/09/2023] Open
Abstract
Emerging evidence demonstrates that competing endogenous RNA (ceRNA) hypothesis has played a role in molecular biological mechanisms of cancer occurrence and development. But the effect of ceRNA network in bladder cancer (BC), especially lncRNA‐miRNA‐mRNA regulatory network of BC, was not completely expounded. By means of The Cancer Genome Atlas (TCGA) database, we compared the expression of RNA sequencing (RNA‐Seq) data between 19 normal bladder tissue and 414 primary bladder tumours. Then, weighted gene co‐expression network analysis (WGCNA) was conducted to analyse the correlation between two sets of genes with traits. Interactions between miRNAs, lncRNAs and target mRNAs were predicted by MiRcode, miRDB, starBase, miRTarBase and TargetScan. Next, by univariate Cox regression and LASSO regression analysis, the 86 mRNAs obtained by prediction were used to construct a prognostic model which contained 4 mRNAs (ACTC1 + FAM129A + OSBPL10 + EPHA2). Then, by the 4 mRNAs in the prognostic model, a ceRNA regulatory network with 48 lncRNAs, 14 miRNAs and 4 mRNAs was constructed. To sum up, the ceRNA network can further explore gene regulation and predict the prognosis of BC patients.
Collapse
Affiliation(s)
- Jiazhi Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaqiong Bi
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Donghu Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Yao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Wuhan, China
| |
Collapse
|
22
|
Wang J, Zhang H, Situ J, Li M, Sun H. KCNQ1OT1 aggravates cell proliferation and migration in bladder cancer through modulating miR-145-5p/PCBP2 axis. Cancer Cell Int 2019; 19:325. [PMID: 31827399 PMCID: PMC6889643 DOI: 10.1186/s12935-019-1039-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background The large involvement of long non-coding RNAs (LncRNAs) in the biological progression of numerous cancers has been reported. The function of lncRNA KCNQ1OT1 in bladder cancer (BC) remains largely unknown. This study aimed to explore the critical role of KCNQ1OT1 in BC. Materials and methods The qRT-PCR was applied to test the expression of RNAs. Cell proliferation was detected by CCK-8 and colony formation assays. Cell apoptosis was measured by TUNEL and flow cytometry experiments. Wound healing and transwell assays were employed to evaluate cell migration and invasion ability respectively. Western blot assay was used to measure relevant protein expression. Immunofluorescence (IF) staining was used to observe EMT process in BC. Results KCNQ1OT1 was significantly overexpressed in BC tissue and cell lines. KCNQ1OT1 depletion repressed cell proliferation, migration and invasion, whereas encouraged cell apoptosis. KCNQ1OT1 was a negatively/positively correlated with miR-145-5p/PCBP2 in respect with expression. Mechanically, KCNQ1OT1 was sponge of miR-145-5p and up-regulated the expression of PCBP2. MiR-145-5p inhibition and PCBP2 up-regulation could countervail the tumor-inhibitor role of KCNQ1OT1 knockdown in BC. Conclusion KCNQ1OT1 serves as competing endogenous RNA (ceRNA) to up-regulate PCBP2 via sponging miR-145-5p in BC progression.
Collapse
Affiliation(s)
- Jingyu Wang
- 1Department of Urology, Affiliated Hospital of Beihua University, No.12, Jiefangzhong Road, Jilin, 132001 Jilin China
| | - Hao Zhang
- 2Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000 Guangdong China
| | - Jie Situ
- 2Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000 Guangdong China
| | - Mingzhao Li
- 2Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000 Guangdong China
| | - Hua Sun
- 3Department of Endocrinology, Affiliated Hospital of Beihua University, No.12, Jiefangzhong Road, Jilin, 132001 Jilin China
| |
Collapse
|
23
|
Long non-coding RNA MEG3 inhibits chondrogenic differentiation of synovium-derived mesenchymal stem cells by epigenetically inhibiting TRIB2 via methyltransferase EZH2. Cell Signal 2019; 63:109379. [PMID: 31376524 DOI: 10.1016/j.cellsig.2019.109379] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 01/05/2023]
Abstract
Osteoarthritis (OA) is a highly prevalent skeletal disease. Mesenchymal stem cell-derived cartilage tissue engineering is a clinical method used for OA treatment. Investigations on the molecular regulatory mechanisms of the chondrogenic differentiation of synovium-derived mesenchymal stem cells(SMSCs) will help promote its clinical applications. In this study, bioinformatics analysis from three different databases indicated that the long non-coding RNA (lncRNA) MEG3 may regulate the chondrogenic differentiation of SMSCs by targeting TRIB2. We then performed assays and found that both knockdown of MEG3 or overexpression of TRIB2 can stimulate the chondrogenic differentiation of SMSCs and increase Col2A1 and aggrecan expression. Knockdown of MEG3 can induce the expression of TRIB2; conversely, overexpression of MEG3 can inhibit the expression of TRIB2. Futhermore, knockdown of the TRIB2 can rescue the MEG3 silencing-mediated promotion of chondrogenic differentiation. Moreover, RNA immunoprecipitation(RIP) and RNA pull-down assays demonstrated that MEG3 can interact with EZH2, thus recruiting it to induce H3K27me3, which promotes the methylation of TRIB2 by binding with the promoter of TRIB2 in SMSCs. Additionally, EZH2 silencing significantly rescued the MEG3 overexpression-mediated inhibition of TRIB2 expression and chondrogenic differentiation of SMSCs. Taken together, these data indicated that MEG3 regulates chondrogenic differentiation by inhibiting TRIB2 expression through EZH2-mediated H3K27me3.
Collapse
|
24
|
Gao H, Li X, Zhan G, Zhu Y, Yu J, Wang J, Li L, Wu W, Liu N, Guo X. Long noncoding RNA MAGI1-IT1 promoted invasion and metastasis of epithelial ovarian cancer via the miR-200a/ZEB axis. Cell Cycle 2019; 18:1393-1406. [PMID: 31122127 PMCID: PMC6592227 DOI: 10.1080/15384101.2019.1618121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy, and its vulnerability to metastasis contributes to the poor outcomes of EOC patients. Long noncoding RNAs (lncRNAs) were verified to play a pivotal role in EOC metastasis. However, the potential role of lncRNA membrane-associated guanylate kinase inverted 1 (MAGI1) intronic transcript (MAGI1-IT1) in EOC is largely unknown. In this study, the function and mechanisms of MAGI1-IT1 in EOC metastasis were explored profoundly. First, MAGI1-IT1 expression was found to be significantly decreased in overexpressing miR-200a EOC cells. Second, MAGI1-IT1 expression was remarkably increased in metastatic EOC tissues, and high MAGI1-IT1 was dramatically associated with EOC FIGO III-IV stage; in addition, MAGI1-IT1 might be related to EOC dissemination via epithelial-mesenchymal transition (EMT). Next, a series of gain- and loss-of-function assays verified that, although MAGI1-IT1 has no significant role in EOC proliferation and subcutaneous xenograft growth, the upregulation of MAGI1-IT1 can remarkably facilitate EOC EMT phenotype, cells migration and invasion ability and intraperitoneal metastasis in nude mice, while downregulation of MAGI1-IT1 led to the opposite effect in vitro. Moreover, MAGI1-IT1 was validated to promote EOC metastasis through upregulation of ZEB1 and ZEB2 by competitively binding miR-200a, and the restrictive effects of MAGI1-IT1 depletion on EOC metastasis could be reversed by inhibition of miR-200a and upregulation of ZEB1 and ZEB2. Collectively, these results suggest that MAGI1-IT1 may work as a ceRNA in promoting EOC metastasis through miR-200a and ZEB1/2 and may be a potential therapeutic target for EOC.
Collapse
Affiliation(s)
- Hao Gao
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Xiaofeng Li
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Guangxi Zhan
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Yong Zhu
- b Department of Obstetrics and Gynecology , Central Theater of the Chinese PLA , Wuhan , China
| | - Jing Yu
- c Department of Pathology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Jiapo Wang
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Li Li
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Weimin Wu
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Na Liu
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Xiaoqing Guo
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| |
Collapse
|