1
|
Han J, Xia T, Jiang Y, Fan W, Wang N, Zhang Y, Liu A, Zhao K, Xin H. Effect of Xanthohumol from Humulus lupulus L. Against Gouty Bone Damage in Arthritis of Rats Induced by Mono-sodium Urate. Cell Biochem Biophys 2024; 82:3425-3435. [PMID: 39033477 DOI: 10.1007/s12013-024-01429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Xanthohumol (XAN) is an isoprenyl flavonoid from Humulus lupulus L. known for beer brewing, and an osteoprotective agent due to its active improvement in bone loss of osteoporosis. This study was first time to investigate its effects on anti-gouty bone injury in rats of gouty arthritis (GA) induced by monosodium urate (MSU). Results showed that XAN could significantly exert anti-inflammatory activity by alleviating swelling degree of joints, reducing serum level of inflammatory factors, improving inflammatory injury and degrading the Markin's score in lesion joint. Meanwhile, XAN could also fight against gouty bone damage by improving pathological changes of bone tissue and parameters of bone micro-structure. Moreover, XAN could even promote bone formation by effectively enhancing expression of Runx2 and OPG, while inhibit bone resorption with depressing matrix metalloproteinase-9 (MMP-9), MMP-13 and CTSK expression, reducing RANKL secretion, and abating the ratio of RANKL/OPG. Therefore, it was the first time to reveal the mechanism of XAN against gouty bone injury via inhibiting RANKL/OPG/RANK signaling pathway. Above all, this study provided potential strategy for the treatment of GA, and further contributed to research and resource development for hops.
Collapse
Affiliation(s)
- Jianyong Han
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
- Outpatient Department of PLA Unit 92919, Ningbo, Zhejiang, 315000, China
| | - Tianshuang Xia
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yiping Jiang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Weiqing Fan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200433, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Yue Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Aijun Liu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Kai Zhao
- Hebei Kingsci Pharmaceutical Technology, Shijiazhuang, 050035, China
| | - Hailiang Xin
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Shi X, Cao Y, Wang H, Zhao Q, Yan C, Li S, Jing L. Vaccarin Ameliorates Doxorubicin-Induced Cardiotoxicity via Inhibition of p38 MAPK Mediated Mitochondrial Dysfunction. J Cardiovasc Transl Res 2024; 17:1155-1171. [PMID: 38886316 PMCID: PMC11519163 DOI: 10.1007/s12265-024-10525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Doxorubicin is a frequently used chemotherapeutic agent for treating various malignancies. However, it leads to severe cardiotoxic side effects, such as heart failure, and elevates the risk of sudden cardiac death among cancer patients. While oxidative stress has been identified as the primary cause of doxorubicin-induced cardiotoxicity, therapeutic antioxidant approaches have yielded unsatisfactory outcomes. The aim of this study is to explore the therapeutic potential of vaccarin, an active flavonoid glycoside extracted from traditional Chinese herbal agent Semen Vaccariae, in doxorubicin-induced cardiotoxicity. We observed that vaccarin significantly ameliorates doxorubicin-induced heart dysfunction in mouse model and suppresses oxidative stress mediated cell apoptosis via specifically inhibiting the activation of p38 MAPK pathway. In vitro, we observed that vaccarin alleviates doxorubicin-induced mitochondrial membrane depolarization and ROS generation in H9c2 cell, but the p38 MAPK agonist anisomycin reverses these effects. Our findings provide a promising natural antioxidant to protect against DOX-induced cardiotoxicity.
Collapse
MESH Headings
- Animals
- p38 Mitogen-Activated Protein Kinases/metabolism
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Doxorubicin/toxicity
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Cardiotoxicity
- Oxidative Stress/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Apoptosis/drug effects
- Disease Models, Animal
- Cell Line
- Male
- Antioxidants/pharmacology
- Membrane Potential, Mitochondrial/drug effects
- Mice, Inbred C57BL
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
- Heart Diseases/chemically induced
- Heart Diseases/prevention & control
- Heart Diseases/pathology
- Heart Diseases/metabolism
- Heart Diseases/enzymology
- Rats
- Ventricular Function, Left/drug effects
- Glycosides/pharmacology
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Xin Shi
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang Qu, Harbin, 150001, Heilongjiang, China
| | - Yang Cao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang Qu, Harbin, 150001, Heilongjiang, China
| | - Hongyu Wang
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang Qu, Harbin, 150001, Heilongjiang, China
| | - Qi Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang Qu, Harbin, 150001, Heilongjiang, China
| | - Cong Yan
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang Qu, Harbin, 150001, Heilongjiang, China
| | - Shengzhu Li
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang Qu, Harbin, 150001, Heilongjiang, China
| | - Ling Jing
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang Qu, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
3
|
Zhu XX, Meng XY, Zhang AY, Zhao CY, Chang C, Chen TX, Huang YB, Xu JP, Fu X, Cai WW, Hou B, Du B, Zheng GL, Zhang JR, Lu QB, Bai N, Han ZJ, Bao N, Qiu LY, Sun HJ. Vaccarin alleviates septic cardiomyopathy by potentiating NLRP3 palmitoylation and inactivation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155771. [PMID: 38851101 DOI: 10.1016/j.phymed.2024.155771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Sepsis often leads to significant morbidity and mortality due to severe myocardial injury. As is known, the activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome crucially contributes to septic cardiomyopathy (SCM) by facilitating the secretion of interleukin (IL)-1β and IL-18. The removal of palmitoyl groups from NLRP3 is a crucial step in the activation of the NLRP3 inflammasome. Thus, the potential inhibitors that regulate the palmitoylation and inactivation of NLRP3 may significantly diminish sepsis-induced cardiac dysfunction. PURPOSE The present study sought to explore the effects of the prospective flavonoid compounds targeting NLRP3 on SCM and to elucidate the associated underlying mechanisms. STUDY DESIGN The palmitoylation and activation of NLRP3 were detected in H9c2 cells and C57BL/6 J mice. METHODS/RESULTS Echocardiography, histological staining, western blotting, co-immunoprecipitation, qPCR, ELISA and network pharmacology were used to assess the impact of vaccarin (VAC) on SCM in mice subjected to lipopolysaccharide (LPS) injection. From the collection of 74 compounds, we identified that VAC had the strongest capability to suppress NLRP3 luciferase report gene activity in cardiomyocytes, and the anti-inflammatory characteristics of VAC were further ascertained by the network pharmacology. Exposure of LPS triggered apoptosis, inflammation, oxidative stress, mitochondrial disorder in cardiomyocytes. The detrimental alterations were significantly reversed upon VAC treatment in both septic mice and H9c2 cells exposed to LPS. In vivo experiments demonstrated that VAC treatment alleviated septic myocardial injury, indicated by enhanced cardiac function parameters, preserved cardiac structure, and reduced inflammation/oxidative response. Mechanistically, VAC induced NLRP3 palmitoylation to inactivate NLRP3 inflammasome by acting on zDHHC12. In support, the NLRP3 agonist ATP and the acylation inhibitor 2-bromopalmitate (2-BP) prevented the effects of VAC. CONCLUSION Our findings suggest that VAC holds promise in protecting against SCM by mitigating cardiac oxidative stress and inflammation via priming NLRP3 palmitoylation and inactivation. These results lay the solid basis for further assessment of the therapeutic potential of VAC against SCM.
Collapse
Affiliation(s)
- Xue-Xue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Xin-Yu Meng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Ao-Yuan Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Chen-Yang Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Chang Chang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Tian-Xiao Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Yan-Bo Huang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Peng Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Xiao Fu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Wei-Wei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Bin Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Guan-Li Zheng
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214122, PR China
| | - Ji-Ru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214122, PR China
| | - Qing-Bo Lu
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214122, PR China
| | - Ning Bai
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214122, PR China
| | - Zhi-Jun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi 214001, Jiangsu Province, PR China.
| | - Neng Bao
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Wuxi 214125, PR China.
| | - Li-Ying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China.
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, PR China.
| |
Collapse
|
4
|
Feng X, Liu Z, Su Y, Lian H, Gao Y, Zhao J, Xu J, Liu Q, Song F. Tussilagone inhibits osteoclastogenesis by modulating mitochondrial function and ROS production involved Nrf2 activation. Biochem Pharmacol 2023; 218:115895. [PMID: 38084677 DOI: 10.1016/j.bcp.2023.115895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Reactive Oxygen Species (ROS) play an essential role in the pathogenesis of osteoporosis mainly characterized by excessive osteoclasts (OCs) activity. OCs are rich in mitochondria for energy support, which is a major source of total ROS. Tussilagone (TSG), a natural Sesquiterpenes from the flower of Tussilago farfara, has plentiful beneficial pharmacological characteristics with anti-inflammatory and anti-oxidative activity, but its effects and mechanism in osteopathology are still unclear. In our study, we investigated the regulation of ROS generated from the mitochondria in OCs. We found that TSG inhibited OCs differentiation and bone resorption without any cytotoxicity. Mechanistically, TSG reduced RANKL-mediated total ROS level by down-regulating intracellular ROS production and mitochondrial function, leading to the suppression of NFATc1 transcription. We also found that nuclear factor erythroid 2-related factor 2 (Nrf2) could enhance ROS scavenging enzymes in response to RANKL-induced oxidative stress. Furthermore, TSG up-regulated the expression of Nrf2 by inhibiting its proteosomal degradation. Interestingly, Nrf2 deficiency reversed the suppressive effect of TSG on mitochondrial activity and ROS signaling in OCs. Consistent with this finding, TSG attenuated post-ovariectomy (OVX)- and lipopolysaccharide (LPS) induced bone loss by ameliorating osteoclastogenesis. Taken together, TSG has an anti-bone resorptive effect by modulating mitochondrial function and ROS production involved Nrf2 activation.
Collapse
Affiliation(s)
- Xiaoliang Feng
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhijuan Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Haoyu Lian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Yijie Gao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- School of Biomedical Sciences, the University of Western Australia, Perth, Australia; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Fangming Song
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Wang Z, Tao H, Chu M, Yu L, Yang P, Wang Q, Lu J, Yang H, Wang Z, Zhang H, Geng D. Byakangelicol suppresses TiPs-stimulated osteoclastogenesis and bone destruction via COX-2/NF-κB signaling pathway. Regen Biomater 2023; 11:rbad092. [PMID: 38173778 PMCID: PMC10758544 DOI: 10.1093/rb/rbad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 01/05/2024] Open
Abstract
Aseptic loosening (AL) is considered a significant cause of prosthesis revision after arthroplasty and a crucial factor in the longevity of an artificial joint prosthesis. The development of AL is primarily attributed to a series of biological reactions, such as peri-prosthetic osteolysis (PPO) induced by wear particles around the prosthesis. Chronic inflammation of the peri-prosthetic border tissue and hyperactivation of osteoclasts are key factors in this process, which are induced by metallic wear particles like Ti particles (TiPs). In our in vitro study, we observed that TiPs significantly enhanced the expression of inflammation-related genes, including COX-2, IL-1β and IL-6. Through screening a traditional Chinese medicine database, we identified byakangelicol, a traditional Chinese medicine molecule that targets COX-2. Our results demonstrated that byakangelicol effectively inhibited TiPs-stimulated osteoclast activation. Mechanistically, we found that byakangelicol suppressed the expression of COX-2 and related pro-inflammatory factors by modulating macrophage polarization status and NF-κB signaling pathway. The in vivo results also demonstrated that byakangelicol effectively inhibited the expression of inflammation-related factors, thereby significantly alleviating TiPs-induced cranial osteolysis. These findings suggested that byakangelicol could potentially be a promising therapeutic approach for preventing PPO.
Collapse
Affiliation(s)
- Zhidong Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Peng Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Changshu 215500, China
| | - Jun Lu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhong Shan Road, Nanjing 210000, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Zhenheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Hailin Zhang
- Department of Orthopedics, Jiangyin People’s Hospital Affiliated to Nantong University, No. 163 Shoushan Road, Jiangyin 214400, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| |
Collapse
|
6
|
Cong Y, Wang Y, Yuan T, Zhang Z, Ge J, Meng Q, Li Z, Sun S. Macrophages in aseptic loosening: Characteristics, functions, and mechanisms. Front Immunol 2023; 14:1122057. [PMID: 36969165 PMCID: PMC10030580 DOI: 10.3389/fimmu.2023.1122057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
Aseptic loosening (AL) is the most common complication of total joint arthroplasty (TJA). Both local inflammatory response and subsequent osteolysis around the prosthesis are the fundamental causes of disease pathology. As the earliest change of cell behavior, polarizations of macrophages play an essential role in the pathogenesis of AL, including regulating inflammatory responses and related pathological bone remodeling. The direction of macrophage polarization is closely dependent on the microenvironment of the periprosthetic tissue. When the classically activated macrophages (M1) are characterized by the augmented ability to produce proinflammatory cytokines, the primary functions of alternatively activated macrophages (M2) are related to inflammatory relief and tissue repair. Yet, both M1 macrophages and M2 macrophages are involved in the occurrence and development of AL, and a comprehensive understanding of polarized behaviors and inducing factors would help in identifying specific therapies. In recent years, studies have witnessed novel discoveries regarding the role of macrophages in AL pathology, the shifts between polarized phenotype during disease progression, as well as local mediators and signaling pathways responsible for regulations in macrophages and subsequent osteoclasts (OCs). In this review, we summarize recent progress on macrophage polarization and related mechanisms during the development of AL and discuss new findings and concepts in the context of existing work.
Collapse
Affiliation(s)
- Yehao Cong
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zheng Zhang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jianxun Ge
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Qi Meng
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Ziqing Li, ; Shui Sun,
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Ziqing Li, ; Shui Sun,
| |
Collapse
|
7
|
Song F, Xie T, Liu X, Chin B, Luo X, Liao S, Feng W, He M, Huang N, Su Z, Liu Y. UPLC/Q-TOF-MS-based Metabolomics Study of the Antiosteoporosis Effects of Vaccarin in Ovariectomized Mice. PLANTA MEDICA 2023; 89:218-230. [PMID: 36100252 DOI: 10.1055/a-1942-5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Osteoporosis is a systemic and metabolic bone disease that usually occurs in postmenopausal women, which mainly manifests as bone loss and increased bone fragility that both facilitate fracture. However, few drugs for osteoporosis have shown good efficacy and limited side effects. Vaccarin has demonstrated its antiosteoporosis effects by inhibiting the formation and osteolytic activities of osteoclasts in our previous investigation. In this study, multivariate statistical analysis and ultrahigh-performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry were used to analyze the serum metabolites of ovariectomized mice treated with or without vaccarin. As a result, 9 serum metabolites were identified as biomarkers. The metabolic levels of 3 crucial biomarkers, namely, lysophosphatidylcholine [22 : 6, (4Z, 7Z, 10Z, 13Z, 16Z, 19Z)], 1-linoleoylglycerophosphocholine and 1-palmitoyl-Sn-glycero-3-phosphocholine, that were correlated with glycerophospholipid metabolism increased and then decreased significantly after vaccarin treatment. Molecular docking analysis and osteoclasts differentiation experiment further revealed that vaccarin may bind with phospholipase A2 and downregulated its activity to reduce the osteoclastogenesis. Therefore, the occurrence of osteoporosis is closely related with glycerophospholipid metabolism disorders, and vaccarin exerts antiosteoporosis effects by reducing the levels of glycerophospholipid metabolites.
Collapse
Affiliation(s)
- Fangming Song
- Research Centre of Regenerative Medicine, Guangxi Medical University, Nanning City, China
| | - Tianyu Xie
- Department of Traumatic Orthopaedic, the First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Xi Liu
- College of Chemistry and Chemical Engineering, Xiamen University, Nanning City, China
| | - Bonnie Chin
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Xiaoting Luo
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Shijie Liao
- Research Centre of Regenerative Medicine, Guangxi Medical University, Nanning City, China
| | - Wenyu Feng
- Department of Traumatic Orthopaedic, the First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Mingwei He
- Department of Traumatic Orthopaedic, the First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Nenggan Huang
- Department of Traumatic Orthopaedic, the First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning City, China
| | - Yun Liu
- Department of Spine and Bone Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning City, China
- Research Centre of Regenerative Medicine, Guangxi Medical University, Nanning City, China
| |
Collapse
|
8
|
Liu X, Guo R, Huo S, Chen H, Song Q, Jiang G, Yu Y, Huang J, Xie S, Gao X, Lu L. CaP-based anti-inflammatory HIF-1α siRNA-encapsulating nanoparticle for rheumatoid arthritis therapy. J Control Release 2022; 343:314-325. [PMID: 35085700 DOI: 10.1016/j.jconrel.2022.01.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is a common inflammatory disease and its treatment is largely limited by drug ineffectiveness or severe side effects. In RA progression, multiple signalling pathways, such as hypoxia-inducible factor (HIF)-1α, nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways, act synergistically to maintain the inflammatory response. To downregulate HIF-1α, NF-κB, and MAPK expression, we proposed HIF-1α siRNA-loaded calcium phosphate nanoparticles encapsulated in apolipoprotein E3-reconstituted high-density lipoprotein (HIF-CaP-rHDL) for RA therapy. Here, we evaluated the potential of CaP-rHDL nanoparticles in RA therapy using a murine macrophage line (RAW 264.7) and a collagen-induced arthritis (CIA) mouse model. The CaP-rHDL nanoparticles showed significant anti-inflammatory effects along with HIF-1α knockdown and NF-κB and MAPK signalling pathway inhibition in lipopolysaccharide-activated macrophages. Moreover, they inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. In CIA mice, their intravenous administration resulted in high accumulation at the arthritic joint sites, and HIF-CaP-rHDL effectively suppressed inflammatory cytokine secretion and relieved bone erosion, cartilage damage, and osteoclastogenesis. Thus, HIF-CaP-rHDL demonstrated great potential in RA precision therapy by inhibiting multiple inflammatory signalling pathways.
Collapse
Affiliation(s)
- Xuesong Liu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Rd, Shanghai 200001, China; Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Ruru Guo
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Shicheng Huo
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Huan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ye Yu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Jialin Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shaowei Xie
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Rd, Shanghai 200001, China; Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China; Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Rd, Shanghai 200001, China.
| |
Collapse
|
9
|
Hu Y, Wang Y, Chen T, Hao Z, Cai L, Li J. Exosome: Function and Application in Inflammatory Bone Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6324912. [PMID: 34504641 PMCID: PMC8423581 DOI: 10.1155/2021/6324912] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
In the skeletal system, inflammation is closely associated with many skeletal disorders, including periprosthetic osteolysis (bone loss around orthopedic implants), osteoporosis, and rheumatoid arthritis. These diseases, referred to as inflammatory bone diseases, are caused by various oxidative stress factors in the body, resulting in long-term chronic inflammatory processes and eventually causing disturbances in bone metabolism, increased osteoclast activity, and decreased osteoblast activity, thereby leading to osteolysis. Inflammatory bone diseases caused by nonbacterial factors include inflammation- and bone resorption-related processes. A growing number of studies show that exosomes play an essential role in developing and progressing inflammatory bone diseases. Mechanistically, exosomes are involved in the onset and progression of inflammatory bone disease and promote inflammatory osteolysis, but specific types of exosomes are also involved in inhibiting this process. Exosomal regulation of the NF-κB signaling pathway affects macrophage polarization and regulates inflammatory responses. The inflammatory response further causes alterations in cytokine and exosome secretion. These signals regulate osteoclast differentiation through the receptor activator of the nuclear factor-kappaB ligand pathway and affect osteoblast activity through the Wnt pathway and the transcription factor Runx2, thereby influencing bone metabolism. Overall, enhanced bone resorption dominates the overall mechanism, and over time, this imbalance leads to chronic osteolysis. Understanding the role of exosomes may provide new perspectives on their influence on bone metabolism in inflammatory bone diseases. At the same time, exosomes have a promising future in diagnosing and treating inflammatory bone disease due to their unique properties.
Collapse
Affiliation(s)
- Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Chen W, Xian G, Gu M, Pan B, Wu X, Ye Y, Zheng L, Zhang Z, Sheng P. Autophagy inhibitors 3-MA and LY294002 repress osteoclastogenesis and titanium particle-stimulated osteolysis. Biomater Sci 2021; 9:4922-4935. [PMID: 34052845 DOI: 10.1039/d1bm00691f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aseptic loosening caused by peri-implant osteolysis (PIO) is a common complication after joint replacement, and there is still no better treatment than revision surgery. The wear particle-induced inflammation response, especially subsequent osteoclastic bone resorption, is responsible for PIO. As the importance of wear particles in inducing autophagy in cells around the prosthesis in PIO has been discovered, this might be a central process underlying aseptic loosening. However, the role of autophagy induced by wear particles in osteoclastogenesis during PIO remains unclear. In this study, we investigated the role of autophagy in osteoclastogenesis and verified it in a mouse calvarial osteolysis model. We found that osteoclasts were increased in the interface membranes of patients with aseptic loosening. In vitro, knocking down the Atg5 gene or using autophagy inhibitors (3-MA, LY294002) to inhibit autophagy was found to repress osteoclastogenesis and decrease expression of the osteoclast-related genes TRAP, cathepsin K, and matrix metalloprotein 9 (MMP-9) with or without titanium (Ti) particles. In vivo, 3-MA and LY294002 repressed Ti particle-stimulated osteolysis and osteoclastogenesis and reduced expression of the pro-inflammatory factors TNF-α, IL-1β, and IL-6. Our results suggest that 3-MA and LY294002 might be the potential medicines to prevent and treat PIO and aseptic loosening.
Collapse
Affiliation(s)
- Weishen Chen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Guoyan Xian
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Minghui Gu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Baiqi Pan
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaoyu Wu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yongyu Ye
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Linli Zheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
11
|
Tian M, Huang Y, Wang X, Cao M, Zhao Z, Chen T, Yuan C, Wang N, Zhang B, Li C, Zhou X. Vaccaria segetalis: A Review of Ethnomedicinal, Phytochemical, Pharmacological, and Toxicological Findings. Front Chem 2021; 9:666280. [PMID: 33996757 PMCID: PMC8117358 DOI: 10.3389/fchem.2021.666280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
Vaccaria segetalis is a dry mature seed of Vaccaria hispanica (Mill.) Rauschert, which belongs to the genus V. segetalis (Neck.) Garcke. There are multiple medicinal parts of V. segetalis, according to the records, including roots, stems, leaves, flowers, and seeds, which should be used together. Currently, V. segetalis is most frequently used in the treatment of menstruation, dysmenorrhea, breast milk stoppages, and chylorrhea. Numerous studies present historical evidence of the use of V. segetalis to treat several diseases and describe its beneficial effects including prolactin- (PRL-) like, estrogen-like, antitumor, antiangiogenesis, and antioxidant activity. We summarized the period from January 1980 to December 2019 regarding V. segetalis. This review paper indicates that V. segetalis has promising clinical applications. The main active ingredients of the plant have been elucidated in recent years. We summarized the previously and newly discovered pharmacological effects of V. segetalis in addition to its active ingredients, ethnopharmacological uses, and toxicological properties, and provided a focus for future research.
Collapse
Affiliation(s)
- Meng Tian
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yuwen Huang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xin Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Zijiao Zhao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chenfeng Yuan
- College of Animal Sciences, Jilin University, Changchun, China
| | - Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
12
|
Liao S, Feng W, Liu Y, Wang Z, Ding X, Song F, Lin X, Song H, Kc A, Su Y, Liang J, Xu J, Liu Q, Zhao J. Inhibitory effects of biochanin A on titanium particle-induced osteoclast activation and inflammatory bone resorption via NF-κB and MAPK pathways. J Cell Physiol 2020; 236:1432-1444. [PMID: 32853427 DOI: 10.1002/jcp.29948] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 01/11/2023]
Abstract
Revision operations have become a new issue after successful artificial joint replacements, and periprosthetic osteolysis leading to prosthetic loosening is the main cause of why the overactivation of osteoclasts (OCs) plays an important role. The effect of biochanin A (BCA) has been examined in osteoporosis, but no study on the role of BCA in prosthetic loosening osteolysis has been conducted yet. In this study, we utilised enzyme-linked immunosorbent assay, computed tomography imaging, and histological analysis. Results showed that BCA downregulated the secretion levels of tumor necrosis factor-α, interleukin-1α (IL-1α), and IL-1β to suppress inflammatory responses. The secretion levels of receptor-activated nuclear factor-κB ligand, CTX-1, and osteoclast-associated receptor as well as Ti-induced osteolysis were also reduced. BCA effectively inhibited osteoclastogenesis and suppressed hydroxyapatite resorption by downregulating OC-related genes in vitro. Analysis of mechanisms indicated that BCA inhibited the signalling pathways of mitogen-activated protein kinase (P38, extracellular signal-regulated kinase, and c-JUN N-terminal kinase) and nuclear factor-κB (inhibitor κB-α and P65), thereby downregulating the expression of nuclear factor of activated T cell 1 and c-Fos. In conclusion, BCA may be an alternative choice for the prevention of prosthetic loosening caused by OCs.
Collapse
Affiliation(s)
- Shijie Liao
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Wenyu Feng
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Liu
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ziyi Wang
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Xiaofei Ding
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Fangming Song
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Xixi Lin
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Huijie Song
- Department of Anesthesiology, The First Affliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Anil Kc
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuangang Su
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiamin Liang
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Qian Liu
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
13
|
Yu Y, Yuan X, Li P, Wang Y, Yu M, Gao X. Vaccarin promotes proliferation of and milk synthesis in bovine mammary epithelial cells through the Prl receptor-PI3K signaling pathway. Eur J Pharmacol 2020; 880:173190. [DOI: 10.1016/j.ejphar.2020.173190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/23/2022]
|
14
|
Yang C, Zhu K, Yuan X, Zhang X, Qian Y, Cheng T. Curcumin has immunomodulatory effects on RANKL-stimulated osteoclastogenesis in vitro and titanium nanoparticle-induced bone loss in vivo. J Cell Mol Med 2019; 24:1553-1567. [PMID: 31845532 PMCID: PMC6991655 DOI: 10.1111/jcmm.14842] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 12/25/2022] Open
Abstract
Wear particle‐stimulated inflammatory bone destruction and the consequent aseptic loosening remain the primary causes of artificial prosthesis failure and revision. Previous studies have demonstrated that curcumin has a protective effect on bone disorders and inflammatory diseases and can ameliorate polymethylmethacrylate‐induced osteolysis in vivo. However, the effect on immunomodulation and the definitive mechanism by which curcumin reduces the receptor activators of nuclear factor‐kappa B ligand (RANKL)‐stimulated osteoclast formation and prevents the activation of osteoclastic signalling pathways are unclear. In this work, the immunomodulation effect and anti‐osteoclastogenesis capacities exerted by curcumin on titanium nanoparticle‐stimulated macrophage polarization and on RANKL‐mediated osteoclast activation and differentiation in osteoclastic precursor cells in vitro were investigated. As expected, curcumin inhibited RANKL‐stimulated osteoclast maturation and formation and had an immunomodulatory effect on macrophage polarization in vitro. Furthermore, studies aimed to identify the potential molecular and cellular mechanisms revealed that this protective effect of curcumin on osteoclastogenesis occurred through the amelioration of the activation of Akt/NF‐κB/NFATc1 pathways. Additionally, an in vivo mouse calvarial bone destruction model further confirmed that curcumin ameliorated the severity of titanium nanoparticle‐stimulated bone loss and destruction. Our results conclusively indicated that curcumin, a major biologic component of Curcuma longa with anti‐inflammatory and immunomodulatory properties, may serve as a potential therapeutic agent for osteoclastic diseases.
Collapse
Affiliation(s)
- Chao Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kechao Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangwei Yuan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xianlong Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yebin Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tao Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
15
|
Li Z, Zhu X, Xu R, Wang Y, Hu R, Xu W. Deacylcynaropicrin Inhibits RANKL-Induced Osteoclastogenesis by Inhibiting NF-κB and MAPK and Promoting M2 Polarization of Macrophages. Front Pharmacol 2019; 10:599. [PMID: 31231214 PMCID: PMC6567936 DOI: 10.3389/fphar.2019.00599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation can promote the maturity of osteoclasts and bone resorption in many bone disease such as osteoporosis and arthritis. Here, we aimed to investigate the inhibitory effects of deacylcynaropicrin (DAC) on osteoclastogenesis and bone resorption induced by RANKL. Bone-marrow-derived macrophages were used for assessing the influence of DAC on polarization of macrophages and osteoclastogenesis in vitro. Inducible nitric oxide synthase (iNOS) and CD206, as well as osteoclastogenesis markers, nuclear factor of activated T-cells 1 (NFATc1), and c-Fos, were qualitatively analyzed by immunofluorescence, flow cytometry, reverse transcription polymerase chain reaction, and Western blotting. The results showed that DAC significantly inhibited osteoclastogenesis by suppressing the expression levels of c-Fos and NFATc1 through nuclear factor-κB, c-Jun N-terminal kinase (JNK), and Akt pathway. Moreover, immunohistochemistry and enzyme-linked immunosorbent assays showed that DAC reduced the release of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in vivo. Finally, DAC also promoted macrophage polarization from M1 to M2 types. In conclusion, these results demonstrated that DAC suppressed RANKL-induced inflammation and osteoclastogenesis and therefore it can be used as a potential treatment for osteoporosis, arthritis, osteolysis, and aseptic loosening of artificial prostheses.
Collapse
Affiliation(s)
- Zhikun Li
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xiaodong Zhu
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Ruijun Xu
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yi Wang
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Ruixi Hu
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Wei Xu
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|