1
|
Wu X, Wu Z, Xie Z, Huang H, Wang Y, Lv K, Yang H, Liu X. The role of EMG1 in lung adenocarcinoma progression: Implications for prognosis and immune cell infiltration. Int Immunopharmacol 2024; 138:112553. [PMID: 38943975 DOI: 10.1016/j.intimp.2024.112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AND AIMS Lung adenocarcinoma (LUAD) is the most common and aggressive cancer with a high incidence. N1-specific pseudouridine methyltransferase (EMG1), a highly conserved nucleolus protein, plays an important role in the biological development of ribosomes. However, the role of EMG1 in the progression of LUAD is still unclear. METHODS The expression of EMG1 in LUAD cells, and LUAD tissues, and adjacent noncancerous tissues was quantified using real-time polymerase chain reaction (PCR) and western blotting. The roles of EMG1 in LUAD cell proliferation, migration, invasion and tumorigenicity were explored in vitro and in vivo. Western blot analysis to underlying molecular mechanism of EMG1 regulating the biological function of LUAD. EMG1 expression and its impact on tumor prognosis were analyzed using a range of databases including GEPIA, UALCAN, cBioPortal, LinkedOmics, and Kaplan-Meier Plotter. RESULTS EMG1 expression was elevated in LUAD patients compared to normal tissues, and EMG1 expression was strongly correlated with prognosis in LUAD patients. EMG1 expression correlated with age, gender, N stage, T stage, and pathologic stage. EMG1 expression was strongly positively correlated with MRPL51, PHB2, SNRPG, ATP5MD, and TPI1, and strongly negatively correlated with MACF1, DOCK9, RAPGEF2, SYNJ1, and KIDINS220, the major enrichment pathways for EMG1 and related genes include Cell cycle, DNA Replication and Pathways in cancer signaling pathways. EMG1 expression level was significantly increased in LUAD cell lines and tissues. Knockdown of EMG1 could inhibit LUAD cell proliferation, migration, invasion, and tumorigenicity. Besides, EMG1 overexpression could promote LUAD cell proliferation, migration, and invasion. High expression of EMG1 predicts poor prognosis in LUAD patients, and EMG1 may play an oncogenic role in the tumor microenvironment by participating in the infiltration of LUAD immune cells. CONCLUSIONS EMG1 regulated various functions in LUAD by directly mediating Akt/mTOR/p70s6k signaling pathways activation. The results suggest that EMG1 may be a novel biomarker for assessing prognosis and immune cell infiltration in LUAD.
Collapse
Affiliation(s)
- Xingwei Wu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Zhenguo Wu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Zehang Xie
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Haoyu Huang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Yingying Wang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Department of Nuclear Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Kun Lv
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| | - Hui Yang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| | - Xiaocen Liu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Department of Nuclear Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| |
Collapse
|
2
|
Sun YY, Li S, Liu C, Pan Y, Xiao Y. Identification of a methyltransferase-related long noncoding RNA signature as a novel prognosis biomarker for lung adenocarcinoma. Aging (Albany NY) 2024; 16:8747-8771. [PMID: 38771129 PMCID: PMC11164517 DOI: 10.18632/aging.205837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/18/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) accounts for a high proportion of tumor deaths globally, while methyltransferase-related lncRNAs in LUAD were poorly studied. METHODS In our study, we focused on two distinct cohorts, TCGA-LUAD and GSE3021, to establish a signature of methyltransferase-related long non-coding RNAs (MeRlncRNAs) in LUAD. We employed univariate Cox and LASSO regression analyses as our main analytical tools. The GSE30219 cohort served as the validation cohort for our findings. Furthermore, to explore the differential pathway enrichments between groups stratified by risk, we utilized Gene Set Enrichment Analysis (GSEA). Additionally, single-sample GSEA (ssGSEA) was conducted to assess the immune infiltration landscape within each sample. Reverse transcription quantitative PCR (RT-qPCR) was also performed to verify the expression of prognostic lncRNAs in both clinically normal and LUAD samples. RESULTS In LUAD, we identified a set of 32 MeRlncRNAs. We further narrowed our focus to six prognostic lncRNAs to develop gene signatures. The TCGA-LUAD cohort and GSE30219 were utilized to validate the risk score model derived from these signatures. Our analysis showed that the risk score served as an independent prognostic factor, linked to immune-related pathways. Additionally, the analysis of immune infiltration revealed that the immune landscape in high-risk groups was suppressed, which could contribute to poorer prognoses. We also constructed a regulatory network comprising 6 prognostic lncRNAs, 19 miRNAs, and 21 mRNAs. Confirmatory RT-qPCR results aligned with public database findings, verifying the expression of these prognostic lncRNAs in the samples. CONCLUSION The prognostic gene signature of LUAD associated with MeRlncRNAs that we provided, may offer us a comprehensive picture of the prognosis prediction for LUAD patients.
Collapse
Affiliation(s)
- Yang Yong Sun
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Shuang Li
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Chang Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yaqiang Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Ying Xiao
- Department of Emergency, Nanjing Jiangning Hospital, Jiangsu, China
| |
Collapse
|
3
|
Braga EA, Fridman MV, Burdennyy AM, Loginov VI, Dmitriev AA, Pronina IV, Morozov SG. Various LncRNA Mechanisms in Gene Regulation Involving miRNAs or RNA-Binding Proteins in Non-Small-Cell Lung Cancer: Main Signaling Pathways and Networks. Int J Mol Sci 2023; 24:13617. [PMID: 37686426 PMCID: PMC10487663 DOI: 10.3390/ijms241713617] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial players in the pathogenesis of non-small-cell lung cancer (NSCLC). A competing binding of lncRNAs and mRNAs with microRNAs (miRNAs) is one of the most common mechanisms of gene regulation by lncRNAs in NSCLC, which has been extensively researched in the last two decades. However, alternative mechanisms that do not depend on miRNAs have also been reported. Among them, the most intriguing mechanism is mediated by RNA-binding proteins (RBPs) such as IGF2BP1/2/3, YTHDF1, HuR, and FBL, which increase the stability of target mRNAs. IGF2BP2 and YTHDF1 may also be involved in m6A modification of lncRNAs or target mRNAs. Some lncRNAs, such as DLGAP1-AS2, MALAT1, MNX1-AS1, and SNHG12, are involved in several mechanisms depending on the target: lncRNA/miRNA/mRNA interactome and through RBP. The target protein sets selected here were then analyzed using the DAVID database to identify the pathways overrepresented by KEGG, Wikipathways, and the Reactome pathway. Using the STRING website, we assessed interactions between the target proteins and built networks. Our analysis revealed that the JAK-STAT and Hippo signaling pathways, cytokine pathways, the VEGFA-VEGFR2 pathway, mechanisms of cell cycle regulation, and neovascularization are the most relevant to the effect of lncRNA on NSCLC.
Collapse
Affiliation(s)
- Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Sergey G. Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| |
Collapse
|
4
|
Khan MM, Serajuddin M, Bharadwaj M. Potential plasma microRNAs signature miR-190b-5p, miR-215-5p and miR-527 as non-invasive biomarkers for prostate cancer. Biomarkers 2023; 28:227-237. [PMID: 36644827 DOI: 10.1080/1354750x.2022.2163694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BackgroundProstate cancer (PCa) is the most prevalent (20%) pathological cancer among males globally. MicroRNAs (miRNAs) are short (19-22 nucleotide), conserved, noncoding molecules that regulate post-transcriptional processes either by repressing or degrading mRNA or by translation inhibition binding to complementary sites on mRNA. The goal of this study was to find out whether differentially expressed microRNA (DEM) could be used as a potential marker in the prognosis and diagnosis of PCa.MethodologyThe miRNAs profiling was done both from plasma and tissue samples of the same PCa patient (n = 3) by real-time quantitative PCR (qRT-PCR) and compared with BPH (benign prostatic hyperplasia) patients (n = 3) as controls and further validation of selected miRNAs.ResultsWe found 55 significant overexpressed DEMs, 44 significant underexpressed DEMs in plasma and 6 significant overexpressed DEMs, 27 significant underexpressed DEMs in tissue compared between PCa and BPH. Furthermore, there were eight miRNAs namely miR-190b, miR-215, miR-300, miR-329, miR-504, miR-525-3p, miR-527, miR-548a-3p found to be significantly differentially expressed in plasma and tissue samples via profiling, however only three showed concordant expression. After validation, miR-190b-5p were shown to be significantly downexpressed with fold changes of 0.4177 (p value - 0.0072) and 0.7264 (p value - 0.0143) in plasma and tissue samples, respectively. The expression of miR-215-5p was shown to be significantly overexpressed with fold change of 1.820 (p - 0.0016) and 1.476 (p - 0.0407) in plasma and tissue samples, respectively. Furthermore, miR-527 was shown to be significantly downexpressed with fold changes of 0.6018 (p - 0.0095) and 0.6917 (p - 0.0155) in plasma and tissue samples, respectively.ConclusionAccording to our findings, plasma miR-190b-5p, miR-215-5p, miR-527 levels alteration is consistently linked with PCa tissue. For establishing significant miRNAs as biomarkers, additional research of a larger population is needed.
Collapse
Affiliation(s)
- Mohd Mabood Khan
- Division of Molecular Genetics & Biochemistry, National Institute of Cancer Prevention & Research (ICMR-NICPR), Noida, India.,Department of Zoology, University of Lucknow, Lucknow, India
| | | | - Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, National Institute of Cancer Prevention & Research (ICMR-NICPR), Noida, India
| |
Collapse
|
5
|
Voutsadakis IA. Characteristics and Prognosis of 8p11.23-Amplified Squamous Lung Carcinomas. J Clin Med 2023; 12:jcm12051711. [PMID: 36902501 PMCID: PMC10002535 DOI: 10.3390/jcm12051711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Copy number alterations are common genetic lesions in cancer. In squamous non-small cell lung carcinomas, the most common copy-number-altered loci are at chromosomes 3q26-27 and 8p11.23. The genes that may be drivers in squamous lung cancers with 8p11.23 amplifications are unclear. METHODS Data pertaining to copy number alterations, mRNA expression and protein expression of genes located in the 8p11.23 amplified region were extracted from various sources including The Cancer Genome Atlas, the Human Protein Atlas and the Kaplan Meier Plotter. Genomic data were analyzed using the cBioportal platform. Survival analysis of cases with amplifications compared to nonamplified cases was performed using the Kaplan Meier Plotter platform. RESULTS The 8p11.23 locus is amplified in 11.5% to 17.7% of squamous lung carcinomas. The most frequently amplified genes include NSD3, FGFR1 and LETM2. Only some of the amplified genes present concomitant overexpression at the mRNA level. These include NSD3, PLPP5, DDHD2, LSM1 and ASH2L, while other genes display lower levels of correlation, and still, some genes in the locus show no mRNA overexpression compared with copy-neutral samples. The protein products of most locus genes are expressed in squamous lung cancers. No significant difference in overall survival in 8p11.23-amplified squamous cell lung cancers versus nonamplified cancers is observed. In addition, there is no adverse effect of mRNA overexpression for relapse-free survival of any of the amplified genes. CONCLUSION Several genes that are part of the commonly amplified locus 8p11.23 in squamous lung carcinomas are putative oncogenic candidates. A subset of genes of the centromeric part of the locus, which is amplified more commonly than the telomeric part, show high concomitant mRNA expression.
Collapse
Affiliation(s)
- Ioannis A. Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, ON P6B 0A8, Canada; or
- Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
6
|
Activation of MYO1G by lncRNA MNX1-AS1 Drives the Progression in Lung Cancer. Mol Biotechnol 2023; 65:72-83. [PMID: 35819746 DOI: 10.1007/s12033-022-00531-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/27/2022] [Indexed: 01/25/2023]
Abstract
Lung cancer represents the most prevalent cancer worldwide and causes the death of many patients. Cancer stem cells (CSCs), a subpopulation of cancer cells, have the capacities of self-renewal, unlimited proliferation, and multiple differentiation potential. The purpose of this study was to explore the potential role of long noncoding RNA (lncRNA) MNX1-AS1 on maintaining the stemness of CSC in lung cancer. CSCs were firstly sorted by flow cytometry. After the determination of the target of the present study using Gene Expression Omnibus dataset, MNX1-AS1was found to be highly expressed in lung cancer tissues and cells. Deletion of MNX1-AS1 inhibited proliferation, migration, invasion and sphere-forming abilities of CSC. Furthermore, subcellular fractionation, fluorescence in situ hybridization, RNA immunoprecipitation, and dual-luciferase experiments demonstrated that MNX1-AS1 recruited the transcription factor POU domain class 2 transcription factor 2 (POU2F2) to the nucleus and activated the myosin IG (MYO1G) expression. MYO1G overexpression partially reversed the si-MNX1-AS1-decreased stemness of CSCs. Finally, MNX1-AS1 suppression significantly repressed the growth of xenografts in vivo. Our study highlights the importance of the MNX1-AS1/POU2F2/MYO1G axis in stem cell-like properties of lung cancer cells.
Collapse
|
7
|
Wu Y, Wang Y, Yao H, Li H, Meng F, Li Q, Lin X, Liu L. MNX1-AS1, a c-Myc induced lncRNA, promotes the Warburg effect by regulating PKM2 nuclear translocation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:337. [PMID: 36476366 PMCID: PMC9727912 DOI: 10.1186/s13046-022-02547-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Altered glycolysis is the most fundamental metabolic change associated with the Warburg effect. Some glycolytic enzymes such as PKM2, the dominant pyruvate kinase in cancer cells, have been shown to engage in non-glycolytic functions that contribute to tumor metabolism. However, the precise mechanisms are not completely understood. METHODS The role of MNX1-AS1 in hepatocellular carcinoma progression was assessed both in vitro and in vivo. Northern blotting, RNA pulldown, mass spectrometry, RNA-binding protein immunoprecipitation, ChIP, luciferase reporter assays, RNA FISH and immunofluorescence staining were used to explore the detail molecular mechanism of MNX1-AS1 in hepatocellular carcinoma (HCC). RESULTS Here we dissect how MNX1-AS1, a long non-coding RNA (lncRNA), reinforces the Warburg effect through facilitating the non-glycolytic actions of PKM2 in the cell nucleus. We found that MNX1-AS1 expression was frequently overexpressed in HCC-derived cell lines and tissues compared to their normal hepatic cell counterparts, a finding consistent with its status as pan-cancer expressed lncRNA. In the context of HCC, we show MNX1-AS1 acts as a scaffold to promote interactions between PKM2 and importin α5. In response to EGFR activation, the resulting ternary complex drives the translocation of PKM2 into the nucleus. In consequence, glycolytic pathway components including key mediators of the Warburg effect (LDHA, GLUT1 and PDK1) are upregulated though the coactivator function of PKM2. Manipulating MNX1-AS1 elicited robust effects on glycolysis associated with marked changes in HCC growth in vitro and in xenograft models, indicative of the significant contribution of MNX1-AS1 to tumorigenic phenotypes. Moreover, while MNX1-AS1 expression is driven by c-Myc, its actions associated with PKM2 were shown to be downstream and independent of c-Myc. CONCLUSIONS Given the status of MNX1-AS1 as a pan-cancer upregulated lncRNA, this implicitly highlights the potential of targeting MNX1-AS1 to selectively counter the Warburg effect in a range of tumor types.
Collapse
Affiliation(s)
- Yang Wu
- grid.27255.370000 0004 1761 1174Cheeloo College of Medicine, Shandong University, Jinan, 250002 China ,grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001 China
| | - Yichun Wang
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001 China
| | - Hanhui Yao
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001 China
| | - Heng Li
- grid.27255.370000 0004 1761 1174Cheeloo College of Medicine, Shandong University, Jinan, 250002 China ,grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001 China
| | - Fanzheng Meng
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001 China
| | - Qidong Li
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001 China
| | - Xiansheng Lin
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001 China
| | - Lianxin Liu
- grid.27255.370000 0004 1761 1174Cheeloo College of Medicine, Shandong University, Jinan, 250002 China ,grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001 China
| |
Collapse
|
8
|
Ragusa D, Tosi S, Sisu C. Pan-Cancer Analysis Identifies MNX1 and Associated Antisense Transcripts as Biomarkers for Cancer. Cells 2022; 11:cells11223577. [PMID: 36429006 PMCID: PMC9688723 DOI: 10.3390/cells11223577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of diagnostic and prognostic biomarkers is a major objective in improving clinical outcomes in cancer, which has been facilitated by the availability of high-throughput gene expression data. A growing interest in non-coding genomic regions has identified dysregulation of long non-coding RNAs (lncRNAs) in several malignancies, suggesting a potential use as biomarkers. In this study, we leveraged data from large-scale sequencing projects to uncover the expression patterns of the MNX1 gene and its associated lncRNAs MNX1-AS1 and MNX1-AS2 in solid tumours. Despite many reports describing MNX1 overexpression in several cancers, limited studies exist on MNX1-AS1 and MNX1-AS2 and their potential as biomarkers. By employing clustering methods to visualise multi-gene relationships, we identified a discriminative power of the three genes in distinguishing tumour vs. normal samples in several cancers of the gastrointestinal tract and reproductive systems, as well as in discerning oesophageal and testicular cancer histological subtypes. Notably, the expressions of MNX1 and its antisenses also correlated with clinical features and endpoints, uncovering previously unreported associations. This work highlights the advantages of using combinatory expression patterns of non-coding transcripts of differentially expressed genes as clinical evaluators and identifies MNX1, MNX1-AS1, and MNX1-AS2 expressions as robust candidate biomarkers for clinical applications.
Collapse
Affiliation(s)
- Denise Ragusa
- Leukaemia and Chromosome Research Laboratory, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
- Centre for Genome Engineering and Maintenance (CenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Sabrina Tosi
- Leukaemia and Chromosome Research Laboratory, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
- Centre for Genome Engineering and Maintenance (CenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Cristina Sisu
- Centre for Genome Engineering and Maintenance (CenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
- Correspondence:
| |
Collapse
|
9
|
Sobolewski C, Dubuquoy L, Legrand N. MicroRNAs, Tristetraprolin Family Members and HuR: A Complex Interplay Controlling Cancer-Related Processes. Cancers (Basel) 2022; 14:cancers14143516. [PMID: 35884580 PMCID: PMC9319505 DOI: 10.3390/cancers14143516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary AU-rich Element Binding Proteins (AUBPs) represent important post-transcriptional regulators of gene expression by regulating mRNA decay and/or translation. Importantly, AUBPs can interfere with microRNA-dependent regulation by (i) competing with the same binding sites on mRNA targets, (ii) sequestering miRNAs, thereby preventing their binding to their specific targets or (iii) promoting miRNA-dependent regulation. These data highlight a new paradigm where both miRNA and RNA binding proteins form a complex regulatory network involved in physiological and pathological processes. However, this interplay is still poorly considered, and our current models do not integrate this level of complexity, thus potentially giving misleading interpretations regarding the role of these regulators in human cancers. This review summarizes the current knowledge regarding the crosstalks existing between HuR, tristetraprolin family members and microRNA-dependent regulation. Abstract MicroRNAs represent the most characterized post-transcriptional regulators of gene expression. Their altered expression importantly contributes to the development of a wide range of metabolic and inflammatory diseases but also cancers. Accordingly, a myriad of studies has suggested novel therapeutic approaches aiming at inhibiting or restoring the expression of miRNAs in human diseases. However, the influence of other trans-acting factors, such as long-noncoding RNAs or RNA-Binding-Proteins, which compete, interfere, or cooperate with miRNAs-dependent functions, indicate that this regulatory mechanism is much more complex than initially thought, thus questioning the current models considering individuals regulators. In this review, we discuss the interplay existing between miRNAs and the AU-Rich Element Binding Proteins (AUBPs), HuR and tristetraprolin family members (TTP, BRF1 and BRF2), which importantly control the fate of mRNA and whose alterations have also been associated with the development of a wide range of chronic disorders and cancers. Deciphering the interplay between these proteins and miRNAs represents an important challenge to fully characterize the post-transcriptional regulation of pro-tumorigenic processes and design new and efficient therapeutic approaches.
Collapse
|
10
|
Liang D, Tian C, Zhang X. lncRNA MNX1‑AS1 promotes prostate cancer progression through regulating miR‑2113/MDM2 axis. Mol Med Rep 2022; 26:231. [PMID: 35616155 PMCID: PMC9178709 DOI: 10.3892/mmr.2022.12747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
A growing number of dysregulated long non-coding (lnc)RNAs have been verified to serve an essential role in human prostate cancer. However, the underlying mechanisms of lncRNA MNX1 Antisense RNA 1 (MNX1-AS1) in prostate cancer has not been explored. Therefore, the present study aimed to explore the function of MNX1-AS1 in prostate cancer tumorigenesis and investigate the in-depth mechanism. The expression of MNX1-AS1, microRNA (miR)-2113 and murine double min 2 (MDM2) in prostate cancer tissues and corresponding normal tissues were assessed by reverse transcription-quantitative PCR. The protein expression levels of MDM2 were detected by western blotting. LNCaP and PC-3 cells were transfected with short hairpin (sh)-MNX1-AS1, miR-2113 mimics, miR-2113 inhibitor and pCDH-MDM2 vector using Lipofectamine® 3000. Cell proliferation, migration and invasion abilities were assessed by CCK-8 assay, colony formation and Transwell assay, respectively. Dual luciferase reporter assay was carried out to confirm the putative targets of MNX1-AS1 and miR-2113. Tumor formation experiment in nude mice was applied to evaluate the tumor growth effect of MNX1-AS1 in vivo. The expression of MNX1-AS1 was significantly upregulated in the prostate cancer tissues and cell lines. MNX1-AS1 knockdown suppressed the abilities of cell viability and migration and invasion in vitro and inhibited tumor growth in vivo. Additionally, luciferase reporter assay revealed that MNX1-AS1 could target miR-2113 and negatively interacted with miR-2113 in prostate cancer cells. miR-2113 directly targeted to MDM2 and negatively modulated the expression of MDM2. Rescue assays suggested that the viability, migration and invasion of impaired cells triggered by transfection with sh-MNX1-AS1 alone could be recovered by co-transfection with sh-MNX1-AS1 + miR-2113 inhibitor or sh-MNX1-AS1 + pCDH- MDM2 vector. The present study demonstrated that MNX1-AS1 promoted prostate cancer progression through regulating miR-2113/ MDM2 axis.
Collapse
Affiliation(s)
- Dong Liang
- Department of Urology Surgery, Binhai County Hospital of TCM, Yancheng, Jiangsu 224500, P.R. China
| | - Chuanjie Tian
- Department of Urology Surgery, Heqiao Hospital, Heqiao, Yixing, Jiangsu 214200, P.R. China
| | - Xiaowen Zhang
- Department of Urology Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
11
|
LncRNA MNX1-AS1: A novel oncogenic propellant in cancers. Biomed Pharmacother 2022; 149:112801. [PMID: 35290890 DOI: 10.1016/j.biopha.2022.112801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
To date, recent studies have shown that long non-coding RNAs (lncRNAs) are key players in gene regulation processes involved in cancer pathogenesis. In general, Motor neuron and pancreas homeobox 1-antisense RNA1 (MNX1-AS1) is highly expressed in all cancers as reported so far and exerts oncogenic effects through different mechanisms. In this review, we comprehensively summarize the detailed mechanisms of potential functions of MNX1-AS1 in different cancer types as well as the latest knowledge highlighting the potential of MNX1-AS1 as a therapeutic target for cancer. Aberrant expression of MNX1-AS1 closely correlates with clinicopathological parameters. such as lymphatic metastasis, tumor size, tumor stage, OS and DFS. Thus, MNX1-AS1 can be used as a diagnostic and prognostic biomarker or even a therapeutic prognostic target. This article reviews its function, molecular mechanism and clinical prognosis in various malignancies.
Collapse
|
12
|
Wu Q, Jiang J. LncRNA MAFG-AS1 Promotes Lung Adenocarcinoma Cell Migration and Invasion by Targeting miR-3196 and Regulating SOX12 Expression. Mol Biotechnol 2022; 64:970-983. [PMID: 35275356 DOI: 10.1007/s12033-022-00455-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
Abstract
Lung adenocarcinoma (LUAD) patients exhibit poor prognosis, primarily due to metastasis. Emerging studies have demonstrated that long noncoding RNAs (lncRNAs) play critical roles in cancer progression and metastasis besides their physiological function. Here, we investigated the potential role of lncRNA MAF BZIP Transcription Factor G Antisense RNA 1 (MAFG-AS1) in LUAD metastasis by analyzing its expression in The Cancer Genome Atlas (TCGA) LUAD database, and its function in LUAD using in vitro and in vivo experiments. We performed bioinformatics analysis, western blotting, dual-luciferase reporter gene assay, RNA immunoprecipitation (RIP), and rescue assays to reveal the molecular mechanisms underlying MAFG-AS1 function. We observed augmented expression of MAFG-AS1 in LUAD tissues compared with normal adjacent tissues, and its association with poor prognosis. Furthermore, MAFG-AS1 overexpression promoted LUAD cell migration, proliferation, invasion, and epithelial mesenchymal transition (EMT). Besides, MAFG-AS1 also targeted miR-3196 directly by acting as an endogenous sponge, thereby rescuing the inhibition of SOX12, a target of miR-3196. Thus, the rescue assays demonstrated that MAFG-AS1 promotes cell migration, invasion, and EMT by modulating the miR-3196/SOX12 pathway. In conclusion, our findings suggest that MAFG-AS1/miR-3196/SOX12 axis regulates LUAD progression and is a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Qian Wu
- Department of Respiratory, Quzhou People's Hospital Affiliated to Wenzhou Medical University, No.2, zhongloudi, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Jianyang Jiang
- Department of Respiratory, Quzhou People's Hospital Affiliated to Wenzhou Medical University, No.2, zhongloudi, Kecheng District, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
13
|
The circular RNA hsa_circ_0001394 promotes hepatocellular carcinoma progression by targeting the miR-527/UBE2A axis. Cell Death Dis 2022; 8:81. [PMID: 35210429 PMCID: PMC8873434 DOI: 10.1038/s41420-022-00866-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/05/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022]
Abstract
Circular RNAs (circRNAs) have been recognized as significant participants in the progression of different cancers; however, the detailed mechanisms of circRNAs in hepatocellular carcinoma (HCC) remain unclear. In this study, hsa_circ_0001394 was identified by RNA-seq analysis, and hsa_circ_0001394 was determined to be highly expressed in HCC specimens and cell lines. Patients with high expression of hsa_circ_0001394 tended to exhibit poor survival. Increased hsa_circ_0001394 expression in plasma was closely correlated with clinicopathological features including elevated vascular invasion and an advanced TNM stage, as indicated by alpha-fetoprotein (AFP) analysis. Hsa_circ_0001394 promoted the proliferation, migration, and invasion of HCC cells, whereas knockdown of hsa_circ_0001394 inhibited HCC tumorigenesis in vivo. In addition, mechanistic studies showed that miR-527 negatively interacted with hsa_circ_0001394. Furthermore, UBE2A was revealed to serve as a target of miR-527. Overall, the present study suggested that hsa_circ_0001394 may function as a sponge to promote HCC progression by regulating the miR-527/UBE2A pathway. Thus, hsa_circ_0001394 may become a promising biomarker and potential therapeutic target in HCC treatment.
Collapse
|
14
|
Identification and Validation of 7-lncRNA Signature of Epigenetic Disorders by Comprehensive Epigenetic Analysis. DISEASE MARKERS 2022; 2022:5118444. [PMID: 35237359 PMCID: PMC8885251 DOI: 10.1155/2022/5118444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
The survival rate of patients with lung adenocarcinoma (LUAD) is low. This study analyzed the correlation between the expression of long noncoding RNA (lncRNA) and epigenetic alterations along with the investigation of the prognostic value of these outcomes for LUAD. Differentially expressed lncRNAs were identified based on multiomic data and positively related genes using DESeq2 in R, differentially histone-modifying genes specific to LUAD based on histone modification data, gene enhancers from information collected from the FANTOM5 (Function Annotation Of The Mammalian Genome-5) (fantom.gsc.riken.jp/5) human enhancer database, gene promoters using the ChIPseeker and the human lincRNAs Transcripts database in R, and differentially methylated regions (DMRs) using Bumphunter in R. Overall survival was estimated by Kaplan-Meier, comparisons were performed among groups using log-rank tests to derive differences between sample subclasses, and epigenetic lncRNAs (epi-lncRNAs) potentially relevant to LUAD prognosis were identified. A total of seven dysregulated epi-lncRNAs in LUAD were identified by comparing histone modifications and alterations in histone methylation regions on lncRNA promoter and enhancer elements, including H3K4me2, H3K27me3, H3K4me1, H3K9me3, H4K20me1, H3K9ac, H3K79me2, H3K27ac, H3K4me3, and H3K36me3. Furthermore, 69 LUAD-specific dysregulated epi-lncRNAs were identified. Moreover, lncRNAs-based prognostic analysis of LUAD samples was performed and explored that seven of these lncRNAs, including A2M-AS1, AL161431.1, DDX11-AS1, FAM83A-AS1, MHENCR, MNX1-AS1, and NKILA (7-EpiLncRNA), showed the potential to serve as markers for LUAD prognosis. Additionally, patients having a high 7-EpiLncRNA score showed a generally more unfavorable prognosis compared with those which scored lower. Seven lncRNAs were identified as markers of prognosis in patients with LUAD. The outcomes of this research will help us understand epigenetically aberrant regulation of lncRNA expression in LUAD in a better way and have implications for research advances in the regulatory role of lncRNAs in LUAD.
Collapse
|
15
|
Li L, Li Z, Qu J, Wei X, Suo F, Xu J, Liu X, Chen C, Zheng S. Novel long non‐coding RNA CYB561‐5 promotes aerobic glycolysis and tumorigenesis by interacting with basigin in non‐small cell lung cancer. J Cell Mol Med 2022; 26:1402-1412. [PMID: 35064752 PMCID: PMC8899181 DOI: 10.1111/jcmm.17057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Abnormally expressed long non‐coding RNAs (lncRNAs) have been recognized as potential diagnostic biomarkers or therapeutic targets in non‐small cell lung cancer (NSCLC). The role of the novel lnc‐CYB561‐5 in NSCLC and its specific biological activity remain unknown. In this study, lncRNAs highly expressed in NSCLC tissue samples compared with paired adjacent normal tissue samples and atypical adenomatous hyperplasia were identified by RNA‐seq analysis. Lnc‐CYB561‐5 is highly expressed in human NSCLC and is associated with a poor prognosis in lung adenocarcinoma. In vivo, downregulation of lnc‐CYB561‐5 significantly decreases tumour growth and metastasis. In vitro, lnc‐CYB561‐5 knockdown treatment inhibits cell migration, invasion and proliferation ability, as well as glycolysis rates. In addition, RNA pulldown and RNA immunoprecipitation (RIP) assays show that basigin (Bsg) protein interacts with lnc‐CYB561‐5. Overall, this study demonstrates that lnc‐CYB561‐5 is an oncogene in NSCLC, which is involved in the regulation of cell proliferation and metastasis. Lnc‐CYB561‐5 interacts with Bsg to promote the expression of Hk2 and Pfk1 and further lead to metabolic reprogramming of NSCLC cells.
Collapse
Affiliation(s)
- Longfei Li
- Department of Thoracic Surgery The First Affiliated Hospital of Soochow University Suzhou China
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Zhimin Li
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Jingming Qu
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Xiangju Wei
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Feng Suo
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Jilei Xu
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Xiucheng Liu
- Department of Thoracic Surgery Shanghai Pulmonary HospitalTongji University School of Medicine Shanghai China
| | - Chang Chen
- Department of Thoracic Surgery Shanghai Pulmonary HospitalTongji University School of Medicine Shanghai China
| | - Shiying Zheng
- Department of Thoracic Surgery The First Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
16
|
Li J, Wang H. H3K27ac-activated EGFR-AS1 promotes cell growth in cervical cancer through ACTN4-mediated WNT pathway. Biol Direct 2022; 17:3. [PMID: 34998421 PMCID: PMC8742952 DOI: 10.1186/s13062-021-00315-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
Background Recently, extensive studies unveiled that lncRNAs exert critical function in the development and progression of cervical cancer (CC). EGFR-AS1 is a novel lncRNA which has not been well-explored in CC. Aims Our study aimed to research the function and molecular mechanism of EGFR-AS1 in CC cells. qRT-PCR analysis was performed to detect gene expression. Colony formation, EdU, flow cytometry, TUNEL, western blot and transwell assays were performed to assess the effect of EGFR-AS1 on CC cell growth. The regulatory mechanism of EGFR-AS1 was dug out through mechanism experiments. Results EGFR-AS1 was notably overexpressed in CC cell lines. Loss-of-functional experiments revealed that EGFR-AS1 promoted CC cell proliferation, migration and invasion, and suppressed cell apoptosis. Mechanistically, up-regulation of EGFR-AS1 was attributed to the activation of H3K27 acetylation (H3K27ac). Further, EGFR-AS1 was revealed to function as miR-2355-5p sponge. Additionally, miR-2355-5p was down-regulated in CC cells and ACTN4 was identified as a target gene of miR-2355-5p. Ultimately, overexpressed ACTN4 could reserve the suppressive role of EGFR-AS1 silencing in CC cell growth. Last but not least, EGFR-AS1 facilitated CC cell growth via ACTN4-mediated WNT pathway. Conclusions H3K27ac-activated EGFR-AS1 sponged miR-2355-5p and promoted CC cell growth through ACTN4-mediated WNT pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-021-00315-5.
Collapse
Affiliation(s)
- Jingyan Li
- Zibo Maternal and Child Health Hospital of Shandong Province, Zibo, 255000, Shandong, China
| | - Hongbing Wang
- Department of Gynecology and Oncology, Hubei Cancer Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Hongshan District, No. 116 Zhuodaoquan South Road, Wuhan, 430079, Hubei, China.
| |
Collapse
|
17
|
Huang S, Huang P, Wu H, Wang S, Liu G. LINC02381 aggravates breast cancer through the miR-1271-5p/FN1 axis to activate PI3K/AKT pathway. Mol Carcinog 2021; 61:346-358. [PMID: 34882856 DOI: 10.1002/mc.23375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/27/2021] [Accepted: 11/12/2021] [Indexed: 01/23/2023]
Abstract
Emerging investigations have demonstrated that lncRNAs are key crucial modulators in cancer. In this study, we investigated the role of LINC02381 in breast cancer (BC). Reverse transcriptase quantitative polymerase chain reaction measured the LINC02381 level in BC tissues and cells. Colony formation, EdU staining, wound healing and Transwell experiments examined the impact of LINC02381 depletion on BC cell phenotypes. Relationship among miR-1271-5p, LINC02381, and FN1 was tested through applying RIP, luciferase reporter, and RNA pull-down assays. We found that LINC02381 expression was elevated in BC. Functionally, LINC02381 knockdown hampered BC cell proliferation, migration, and invasion. LINC02381 overexpression accelerated tumor formation in vivo. Mechanistically, LINC02381 acted as a ceRNA to increase FN1 via decoying miR-1271-5p. Additionally, LINC02381 activated PI3K/AKT pathway by upregulating FN1. Rescue assays indicated that FN1 upregulation or PI3K/AKT activation rescued the LINC02381 knockdown-mediated inhibition on malignant phenotypes of BC cells. Overall, LINC02381 exerts carcinogenic effects in BC by the miR-1271-5p/FN1 axis to activate PI3K/AKT pathway.
Collapse
Affiliation(s)
- Shoucheng Huang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Ping Huang
- College of Chemical and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Huazhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
| | - Song Wang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Guodong Liu
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, China
| |
Collapse
|
18
|
Chen K, Gan JX, Huang ZP, Liu J, Liu HP. Clinical significance of long noncoding RNA MNX1-AS1 in human cancers: a meta-analysis of cohort studies and bioinformatics analysis based on TCGA datasets. Bioengineered 2021; 12:875-885. [PMID: 33685348 PMCID: PMC8291812 DOI: 10.1080/21655979.2021.1888596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023] Open
Abstract
MNX1-AS1 expression has been proposed to be abnormally upregulated in multiple human malignancies and be linked with the survival outcome of patients. However, relevant conclusions were yielded based on the limited samples. Therefore, we herein implemented a meta-analysis of the published cohort studies to further decipher the relationship of MNX1-AS1 level to prognosis and clinicopathological features in various cancers. Additionally, using The Cancer Genome Atlas (TCGA) datasets we carried out a bioinformatics analysis to make a further evaluation on the prognostic value of MNX1-AS1 expression. The results of meta-analysis indicated elevated MNX1-AS1 level closely correlated with poorer overall survival (OS) (HR = 1.97, 95% CI, 1.73-2.24; P < 0.00001), and disease-free survival (DFS) (HR = 2.24, 95% CI, 1.48-3.38; P = 0.0001) in cancers, which was confirmed by the bioinformatics analysis. Besides, it was observed the upregulated MNX1-AS1 level was significantly related to invasion depth, disease stage, tumor metastasis, and differentiation. Collectively, high MNX1-AS1 level correlated with poor survival outcome and aggressive clinicopathological characteristics in various cancers, suggesting that MNX1-AS1 may be applied as a prognostic marker and even a therapeutic target. Nevertheless, more high-quality studies designed with a large sample size should be conducted to further determine the clinical role of MNX1-AS1 in specific cancer types.
Collapse
Affiliation(s)
- Kang Chen
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jian-Xin Gan
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Ze-Ping Huang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jun Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai-Peng Liu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Shen Y, Lv M, Fang Y, Lu J, Wu Y. LncRNA MNX1-AS1 promotes ovarian cancer process via targeting the miR-744-5p/SOX12 axis. J Ovarian Res 2021; 14:161. [PMID: 34789303 PMCID: PMC8596928 DOI: 10.1186/s13048-021-00910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose Ovarian cancer (OC) is the most common malignancy in women with high mortality. Increasing studies have revealed that long non-coding RNA (lncRNA) MNX1-AS1 has a promoting effect on various cancers. However, the mechanisms of MNX1-AS1 in OC are still unclear. Therefore, this study focused on exploring the mechanisms of MNX1-AS1 in OC. Materials and methods The expression of SOX12 at the protein level was detected by western blot. Cell proliferation was detected by CCK8 assay and colony formation assay. Cell cycle and cell apoptosis were detected by flow cytometry. Wound-healing assay, transwell assay and western blot were used to detect the ability of cell migration and invasion. The target binding was confirmed through the luciferase reporter assay. Results The expression of MNX1-AS1 was increased in OC tumor tissues and cells. Elevated MNX1-AS1 expression is associated with advanced stage and lower overall survival rate. Knockdown of MNX1-AS1 inhibited cell proliferation, migration and invasion, blocked cell cycle, and promoted cell apoptosis in SKOV-3 and OVCAR-3 cells. MNX1-AS1 was competitively binding with miR-744-5p, and its downstream target gene was SOX12. miR-544-5p expression was decreased, while SOX12 expression was increased in OC tumor tissues and cells. Overexpression of miR-744-5p inhibited cell proliferation, migration, invasion and promoted cell apoptosis in SKOV-3 and OVCAR-3 cells. Conclusion MNX1-AS1 promoted the development of OC through miR-744-5p/SOX12 axis. This study revealed a novel mechanism of MNX1-AS1 in OC, which may provide a new treatment or scanning target for OC. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00910-0.
Collapse
Affiliation(s)
- Yang Shen
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Mengmeng Lv
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Yichen Fang
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Jin Lu
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Yuzhong Wu
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
20
|
Wei X, Wang Y, Ji C, Luan J, Yao L, Zhang X, Wang S, Yao B, Qin C, Song N. Genomic Instability Promotes the Progression of Clear Cell Renal Cell Carcinoma Through Influencing the Immune Microenvironment. Front Genet 2021; 12:706661. [PMID: 34712264 PMCID: PMC8546190 DOI: 10.3389/fgene.2021.706661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) are now under discussion as novel promising biomarkers for clear cell renal cell carcinoma (ccRCC). However, the role of genomic instability-associated lncRNA signatures in tumors has not been thoroughly uncovered. The purpose of our study is to probe the role of genomic instability-derived lncRNA signature (GILncSig) and to further investigate the mechanism of genomic instability-mediated ccRCC progression. Methods: The transcriptome data and somatic mutation profiles of ccRCC as well as clinical characteristics used in this study were obtained from The Cancer Genome Atlas database and Gene Expression Omnibus database. Lasso regression analysis was performed to construct the GILncSig. Gene set enrichment analysis (GSEA) was performed to elucidate the biological functions and relative pathways. CIBERSORT and EPIC algorithm were applied to calculate the proportion of immune cells in ccRCC. ESTIMATE algorithm was utilized to compute the immune microenvironment scores. Results: In total, 148 novel genomic instability-derived lncRNAs in ccRCC were identified. Immediately, on the basis of univariate cox analysis and lasso analysis, a GILncSig was appraised, through which the patients were allocated into High-Risk and Low-Risk groups with significantly different characteristics and prognoses. In addition, we confirmed that the somatic mutation count, tumor mutation burden, and the expression of UBQLN4, which were ascertainably associated with genomic instability, were significantly correlated with the GILncSig, indicating its reliability as a measurement of the genomic instability. Furthermore, the efficiency of GILncSig in prognostic aspects was better than the single mutation gene in ccRCC. In addition, MNX1-AS1 was defined to be a potential biomarker characterized by strong correlation with clinical features. Moreover, GSEA results indicated that the IL6/JAK/STAT3/SIGNALING pathway could be considered as a potential mechanism of genomic instability to influence tumor progression. Besides, the immune microenvironment showed significant differences between the GS-like group and the GU-like group, which was specifically manifested as high expression of CTLA4, GITR, TNFSF14, and regulatory T cells (Tregs) as well as low expression of endothelial cells (ECs) in the GU-like group. Finally, the prognostic value and clinical relevance of GILncSig were verified in GEO datasets and other urinary tumors in TCGA dataset. Conclusion: In conclusion, our study provided a new perspective for the role of lncRNAs in genomic instability and revealed that genomic instability may mediate tumor progression by affecting immunity. Besides, MNX1-AS1 played critical roles in promoting the progression of ccRCC, which may be a potential therapeutic target. What is more, the immune atlas of genomic instability was characterized by high expression of CTLA4, GITR, TNFSF14, and Tregs, and low expression of ECs.
Collapse
Affiliation(s)
- Xiyi Wei
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengjian Ji
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaocheng Luan
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liangyu Yao
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Zhang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Wang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bing Yao
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Chao Qin
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ninghong Song
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, China
| |
Collapse
|
21
|
Xiao F, Jia H, Wu D, Zhang Z, Li S, Guo J. LINC01234 aggravates cell growth and migration of triple-negative breast cancer by activating the Wnt pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:1999-2012. [PMID: 34173712 DOI: 10.1002/tox.23318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Triple-negative breast cancer (TNBC) is a common cancer with increasing incidence and mortality in female. Increasing studies have revealed that long noncoding RNAs (lncRNAs) are novel molecules regulating tumors. Long intergenic non-protein coding RNA 1234 (LINC01234) has been demonstrated to function as an oncogene in several tumors. However, the role of LINC01234 in TNBC remains unelucidated. Herein, RT-qPCR showed that LINC01234 expression was upregulated in both TNBC tissues and cell lines. Functionally, knockdown of LINC01234 suppressed proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) process, and promoted apoptosis in TNBC cells. Xenograft mouse models revealed that LINC01234 downregulation inhibited TNBC tumor growth in vivo. Furthermore, LINC01234 was transcriptionally elevated by Sp1 transcription factor (SP1) in TNBC cells. Mechanistically, LINC01234 interacted with miR-525-5p and miR-525-5p targeted MEIS2. Rescue assays manifested that MEIS2 overexpression rescued the cellular processes inhibited by silenced LINC01234. Moreover, we validated that LINC01234 regulated the activation of the Wnt pathway through modulating MEIS2 in TNBC cells. In conclusion, LINC01234 aggravated TNBC cell growth, migration, invasion and EMT by modulating the miR-525-5p/MEIS2 axis and activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Oncology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongyao Jia
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Di Wu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiru Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianjin Guo
- Department of Endocrinology and Metabolism, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
22
|
LINC01342 silencing upregulates microRNA-508-5p to inhibit progression of lung cancer by reducing cysteine-rich secretory protein 3. Cell Death Discov 2021; 7:238. [PMID: 34504061 PMCID: PMC8429695 DOI: 10.1038/s41420-021-00613-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are critical players during cancer progression. Nevertheless, the effect of most lncRNAs in lung cancer (LC) remains unclear. We aimed to explore the role of LINC01342 in LC development through the microRNA-508-5p (miR-508-5p)/cysteine-rich secretory protein 3 (CRISP3) axis. LINC01342, miR-508-5p, and CRISP3 expression in clinical samples and cell lines were determined, and their correlations in LC were analyzed. The prognostic role of LINC01342 in LC patients was evaluated. LC cells were screened and, respectively, transfected to alter the expression of LINC01342, miR-508-5p, and CRISP3. Then, proliferation, migration, invasion, and apoptosis of transfected LC cells were determined, and the in vivo tumor growth was observed as well. Binding relationships between LINC01342 and miR-508-5p, and between miR-508-5p and CRISP3 were identified. LINC01342 and CRISP3 were upregulated and miR-508-5p was downregulated in LC tissues and cells. High LINC01342 expression indicated a poor prognosis of LC patients. The LINC01342/CRISP3 silencing or miR-508-5p elevation inhibited proliferation, migration, and invasion of LC cells and promoted LC cell apoptosis, and also suppressed the in vivo tumor growth. LINC01342 bound to miR-508-5p and miR-508-5p targeted CRISP3. LINC01342 plays a prognostic role in LC and LINC01342 silencing upregulates miR-508-5p to inhibit the progression of LC by reducing CRISP3.
Collapse
|
23
|
Yin J, Huang HY, Long Y, Ma Y, Kamalibaike M, Dawuti R, Li L. circ_C20orf11 enhances DDP resistance by inhibiting miR-527/YWHAZ through the promotion of extracellular vesicle-mediated macrophage M2 polarization in ovarian cancer. Cancer Biol Ther 2021; 22:440-454. [PMID: 34382916 DOI: 10.1080/15384047.2021.1959792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is a fatal gynecologic tumor, and conventional treatment is mainly limited by chemoresistance. The mechanism contributing to chemoresistance in ovarian cancer has yet to be established. This study aimed to investigate the specific role of circ_C20orf11 in regulating chemoresistance to cisplatin (DDP)in ovarian cancer. We first established two DDP-resistant ovarian cancer cell lines. Then, we identified the effect of circ_C20orf11 on specific cellular characteristics (proliferation, apoptosis, DDP resistance) via a series of experiments. The binding sites between circ_C20orf11 and miR-527 and between miR-527 and YWHAZ were predicted using a bioinformatics tool and confirmed with a dual-luciferase reporter assay. Furthermore, extracellular vesicles (EVs) derived from DDP-resistant cell lines were identified, and the effect of EVs on macrophage polarization was examined. circ_C20orf11 was upregulated in ovarian cancer. Increased circ_C20orf11 expression enhanced DDP resistance and cell proliferation and reduced cell apoptosis in DDP-resistant cell lines after DDP treatment by sponging miR-527 and promoting YWHAZ expression. In addition, we found that DDP-resistant cell-derived EVs can induce macrophage M2 polarization, whereas silencing of circ_C20orf11 inhibited EV-induced macrophage M2 polarization. Consistent with these results, silencing of circ_C20orf11 enhanced sensitivity to DDP in vivo. Importantly, we proved that circ_C20orf11 expression was upregulated in EVs extracted from the serum of DDP-resistant patients. Our study demonstrated that silencing circ_C20orf11 sensitizes ovarian cancer to DDP by promoting miR-527/YWHAZ signaling and EV-mediated macrophage M2 polarization.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pharmacy, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Hai-Yan Huang
- Department of Medical Image Center, The Frist Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Ying Long
- Translational Medicine Center, Hunan Cancer Hospital, Changsha, Hunan Province, P.R. China
| | - Yan Ma
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Maerkeya Kamalibaike
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Reyanguli Dawuti
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Li Li
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| |
Collapse
|
24
|
Guo Q, Li D, Luo X, Yuan Y, Li T, Liu H, Wang X. The Regulatory Network and Potential Role of LINC00973-miRNA-mRNA ceRNA in the Progression of Non-Small-Cell Lung Cancer. Front Immunol 2021; 12:684807. [PMID: 34394080 PMCID: PMC8358408 DOI: 10.3389/fimmu.2021.684807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/25/2021] [Indexed: 01/05/2023] Open
Abstract
Background The occurrence and development of cancer could be promoted by abnormally competing endogenous RNAs (ceRNA) network. This article aims to determine the prognostic biomarker of ceRNA for non-small-cell lung cancer (NSCLC) prognosis. Methods The expression and clinical significance of LINC00973 in NSCLC tissues were analyzed via the The Cancer Genome Atlas (TCGA), Gene Expression Profiling Interactive Analysis (GEPIA), lnCAR, and clinical samples in Taihe Hospital. The biological functions and signaling pathways involved in target genes of ceRNA network were analyzed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Survival analysis, univariate and multivariate Cox regression analysis were used for prognostic-related mRNA. Results Expression of LINC00973 was increased in NSCLC tissues. High expression of LINC00973 was associated with poor prognosis of NSCLC patients. There were 15 miRNA and 238 differential mRNA in the INC00973-miRNA-mRNA ceRNA network, involving cell migration, endothelial cell proliferation, tumor growth factor (TGF)-β, cellular senescence, phosphatidylinositol 3-hydroxy kinase (PI3K)-Akt, Hippo, Rap1, mitogen-activated protein kinase (MAPK), cell cycle signaling pathway, etc. The expression levels of RTKN2, NFIX, PTX3, BMP2 and LOXL2 were independent risk factors for the poor prognosis of NSCLC patients. Conclusions LINC00973-miRNA-mRNA ceRNA network might be the basis for determining pivotal post-translational regulatory mechanisms in the progression of NSCLC. BMP2, LOXL2, NFIX, PTX3 and RTKN2 might be valuable prognostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dan Li
- Department of Oncology, Huanggang Central Hospital, Huanggang, China
| | - Xiangyu Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ye Yuan
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Huasong Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xinju Wang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Respiratory, Xinchang People's Hospital, Xinchang, China
| |
Collapse
|
25
|
Ren P, Chang L, Hong X, Xing L, Zhang H. Long non-coding RNA LINC01116 is activated by EGR1 and facilitates lung adenocarcinoma oncogenicity via targeting miR-744-5p/CDCA4 axis. Cancer Cell Int 2021; 21:292. [PMID: 34090440 PMCID: PMC8180037 DOI: 10.1186/s12935-021-01994-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Background Lung adenocarcinoma (LAD) is one of the most frequently diagnosed pathological categories of human lung cancer. Nevertheless, the link between long non-coding RNA (lncRNA) LINC01116 and LAD remains poorly investigated. Methods QRT-PCR and western blot were applied for quantifying the expression of RNAs and proteins. Both functional experiments assays in vitro and xenografts model in vivo were implemented for analyzing LINC01116 function in LAD while molecular relationship among RNAs was investigated via mechanism experiments. Results LINC01116 was expressed at an abnormally high level in LAD, which was induced by transcription activator EGR1. LINC01116 depletion restrained proliferation, migration and invasion, yet facilitated apoptosis of LAD cells. MiR-744-5p could bind to LINC01116. MiR-744-5p inhibitor reversed the inhibitory effects of silencing LINC01116 on LAD malignant behaviors. In addition, cell division cycle-associated protein 4 (CDCA4) shared binding sites with miR-744-5p. Silencing LINC01116 elicited decline in CDCA4 mRNA and protein levels. Moreover, CDCA4 up-regulation could counteract the biological effects of LINC01116 knockdown on LAD cells. Conclusion Our data revealed that LINC01116 promoted malignant behaviors of LAD cells by targeting miR-744-5p/CDCA4 axis, implying the theoretical potential of LINC01116 as a novel target for LAD treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01994-w.
Collapse
Affiliation(s)
- Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, No. 71, Xinmin Road, Changchun, 130021, Jilin, China
| | - Liang Chang
- Department of Thoracic Surgery, The First Hospital of Jilin University, No. 71, Xinmin Road, Changchun, 130021, Jilin, China
| | - Xiaodong Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, No. 71, Xinmin Road, Changchun, 130021, Jilin, China
| | - Lei Xing
- Department of Thoracic Surgery, The First Hospital of Jilin University, No. 71, Xinmin Road, Changchun, 130021, Jilin, China
| | - Hong Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, No. 71, Xinmin Road, Changchun, 130021, Jilin, China.
| |
Collapse
|
26
|
Wu L, Wen Z, Song Y, Wang L. A novel autophagy-related lncRNA survival model for lung adenocarcinoma. J Cell Mol Med 2021; 25:5681-5690. [PMID: 33987935 PMCID: PMC8184679 DOI: 10.1111/jcmm.16582] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Long non‐coding RNA (lncRNA) is an important regulatory factor in the development of lung adenocarcinoma, which is related to the control of autophagy. LncRNA can also be used as a biomarker of prognosis in patients with lung adenocarcinoma. Therefore, it is important to determine the prognostic value of autophagy‐related lncRNA in lung adenocarcinoma. In this study, autophagy‐related mRNAs‐lncRNAs were screened from lung adenocarcinoma and a co‐expression network of autophagy‐related mRNAs‐lncRNAs was constructed by using The Cancer Genome Atlas (TCGA). The univariate and multivariate Cox proportional hazard analyses were used to evaluate the prognostic value of the autophagy‐related lncRNAs and finally obtained a survival model composed of 11 autophagy‐related lncRNAs. Through Kaplan‐Meier analysis, univariate and multivariate Cox regression analysis and time‐dependent receiver operating characteristic (ROC) curve analysis, it was further verified that the survival model was a new independent prognostic factor for patients with lung adenocarcinoma. In addition, based on the survival model, gene set enrichment analysis (GSEA) was used to illustrate the function of genes in low‐risk and high‐risk groups. These 11 lncRNAs were GAS6‐AS1, AC106047.1, AC010980.2, AL034397.3, NKILA, AL606489.1, HLA‐DQB1‐AS1, LINC01116, LINC01806, FAM83A‐AS1 and AC090559.1. The hazard ratio (HR) of the risk score was 1.256 (1.196‐1.320) (P < .001) in univariate Cox regression analysis and 1.215 (1.149‐1.286) (P < .001) in multivariate Cox regression analysis. And the AUC value of the risk score was 0.809. The 11 autophagy‐related lncRNA survival models had important predictive value for the prognosis of lung adenocarcinoma and may become clinical autophagy‐related therapeutic targets.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zilu Wen
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanzheng Song
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,TB Center, Shanghai Emerging & Re-emerging Infectious Diseases Institute, Shanghai, China
| | - Lin Wang
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Jantrapirom S, Koonrungsesomboon N, Yoshida H, M Candeias M, Pruksakorn D, Lo Piccolo L. Long noncoding RNA-dependent methylation of nonhistone proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1661. [PMID: 33913612 DOI: 10.1002/wrna.1661] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022]
Abstract
In the last decade, an intriguing new paradigm of regulation has emerged in which some transcripts longer than 200 nucleotides and no coding potential, long noncoding RNA (lncRNAs), exhibit the capability to control posttranslational modifications of nonhistone proteins in both invertebrates and vertebrates. The extent of such a regulation is still largely unknown. We performed a systematic review to identify and evaluate the potential impact of lncRNA-dependent methylation of nonhistone proteins. Collectively, these lncRNAs primarily act as scaffolds upon which methyltransferases (MTases) and targets are brought in proximity. In this manner, the N-MTase activity of EZH2, protein arginine-MTase 1/4/5, and SMYD2 is exploited to modulate the stability or the compartmentalization of several nonhistone proteins with roles in cell signaling, gene expression, and RNA processing. Moreover, these lncRNAs can indirectly affect the methylation of nonhistone proteins by transcriptional or posttranscriptional regulation of MTases. Strikingly, the lncRNAs/MTases/nonhistone proteins networking seem to be relevant to carcinogenesis and neurological disorders. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Drosophila Center for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Musculoskeletal Science and Translational Research Center (MSTR), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Marco M Candeias
- MaRCU-Molecular and RNA Cancer Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Human Genetics, National Health Institute Dr Ricardo Jorge, Lisbon, Portugal
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center (MSTR), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
28
|
Ma B, Ren G, Xu J, Yin C, Shi Y. LncRNA MNX1-AS1 Contributes to Laryngeal Squamous Cell Carcinoma Growth and Migration by Regulating mir-744-5p/bcl9/β-Catenin Axis. Cell Transplant 2021; 30:9636897211005682. [PMID: 33821684 PMCID: PMC8033468 DOI: 10.1177/09636897211005682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence has indicated that long noncoding RNAs (lncRNAs) are involved in the progression of laryngeal squamous cell carcinoma (LSCC). Here, we aimed to disclose the role of MNX1-AS1 in LSCC progression, and explore whether MNX1-AS1 participates in LSCC progression via targeting miR-744-5p to active BCL9/β-catenin signaling. Sixty-five human LSCC tissues and the paracancerous normal tissues were recruited to determine the levels of MNX1-AS1, miR-744-5p and BCL9 using qRT-PCR. The interaction of miR-744-5p and MNX1-AS1/BCL9 was determined by using the RNA immunoprecipitation (RIP) assay and/or luciferase gene reporter assay. Cell viability, in vivo tumor formation, invasion and migration abilities were detected by MTT, Xenograft models and Transwell assays. MNX1-AS1 level was increased significantly in human LSCC tissues as compared with the normal tissues, which showed a positive correlation with BCL9 level while a negative correlation with miR-744-5p level. High level of MNX1-AS1 predicted a poor prognosis and an advanced clinical process in LSCC patients. miR-744-5p targeted upregulation weakened the luciferase activity of MNX1-AS1 and /BCL9, and downregulated their expression levels-wt, while showed no effect when the binding sites were mutated. Knockdown of MNX1-AS1 markedly weakened cell viability, migration, and invasion abilities, while BCL9 overexpression abolished these tendencies. In addition, MNX1-AS1 downregulation induced decreases in tumor volumes and weights in vivo, accompanied by reductions in BCL9, Ki-67 and β-catenin expression and an increase in miR-744-5p expression. Collectively, this study reveals that MNX1-AS1 contributes to cell growth and migration by regulating miR-744-5p/BCL9/β-catenin axis in LSCC.
Collapse
Affiliation(s)
- Bingliang Ma
- Department of Otolaryngology, the First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, Huzhou City, Zhejiang Province, China
| | - Gang Ren
- Department of Otolaryngology, the First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, Huzhou City, Zhejiang Province, China
| | - Jue Xu
- Department of Otolaryngology, the First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, Huzhou City, Zhejiang Province, China
| | - Chenyi Yin
- Department of Otolaryngology, the First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, Huzhou City, Zhejiang Province, China
| | - Yuye Shi
- Department of Surgical Anesthesiology, the First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, Huzhou City, Zhejiang Province, China
| |
Collapse
|
29
|
Li Y, Dong R, Lu M, Cheng C, Feng Z, Zhao R, Liang J, Han J, Jiang J, Xu-Welliver M, Renaud S, Tian H. Let-7b-3p inhibits tumor growth and metastasis by targeting the BRF2-mediated MAPK/ERK pathway in human lung adenocarcinoma. Transl Lung Cancer Res 2021; 10:1841-1856. [PMID: 34012797 PMCID: PMC8107730 DOI: 10.21037/tlcr-21-299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Lung cancer is a malignant tumor with the highest morbidity and mortality rates worldwide, of which lung adenocarcinoma (LUAD) is the most common subtype. Overall, current treatments of LUAD are not satisfactory; therefore, novel targets need to be explored. Let-7b-3p is an important member of the let-7 family of microRNAs (miRNAs), and has not been studied separately in LUAD. This study aimed to investigate the role and molecular mechanism of let-7b-3p in LUAD. Methods Herein, let-7b-3p expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence in situ hybridization (FISH) assays. MTT, colony formation assay, flow cytometry analysis, wound-healing, Transwell and in vivo experiments were conducted to assess let-7b-3p’s function in LUAD. The downstream target TFIIB-related factor 2 (BRF2) was predicted using bioinformatics analyses and confirmed by dual-luciferase reporter assay and rescue experiments. Additionally, BRF2 was found to affect the MAPK/ERK pathway through transcriptome sequencing analysis and western blot (WB) assay. Results Let-7b-3p is downregulated in LUAD cells and tissue samples and low let-7b-3p expression is correlated with a poor prognosis in LUAD patients. Let-7b-3p suppresses the proliferation and metastasis of LUAD cells both in vivo and in vitro by directly targeting the BRF2-mediated MAPK/ERK pathway. Conclusions Let-7b-3p inhibits the development of LUAD and is an ideal novel therapeutic target for the treatment of LUAD.
Collapse
Affiliation(s)
- Yongmeng Li
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Dong
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Lu
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanle Cheng
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zitong Feng
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Renchang Zhao
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinghui Liang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyi Han
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin Jiang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Xu-Welliver
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stéphane Renaud
- Department of Thoracic Surgery, Institut Lorrain Du Coeur Et Des Vaisseaux Louis Mathieu, Nancy University Hospital, Nancy, France
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
30
|
Cui X, Yu H, Yu T, Xiao D, Wang X. LncRNA MNX1-AS1 drives aggressive laryngeal squamous cell carcinoma progression and serves as a ceRNA to target FoxM1 by sponging microRNA-370. Aging (Albany NY) 2021; 13:9900-9910. [PMID: 33882027 PMCID: PMC8064170 DOI: 10.18632/aging.202746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022]
Abstract
Long non-coding RNA (LncRNA) MNX1 antisense RNA 1(MNX1-AS1) is associated with the pathology of numerous cancers. But, the role and underlying pathways of MNX1-AS1 in the regulation of laryngeal squamous cell carcinoma (LSCC) is not known. We demonstrated remarkably elevated levels of MNX1-AS1 in the LSCC tissues, which was correlated with poor disease prognosis. Moreover, MNX1-AS1-silencing strongly suppressed LSCC cell proliferation, migration, and invasion. We also demonstrated that MNX1-AS1 sequesters that activity of miR-370, thereby releasing Forkhead Box ml (FoxM1) from the inhibitory actions of MNX1-AS1. Furthermore, the positive correlation of MNX1-AS1 and FoxM1 as well as the converse correlation between miR-370 and MNX1-AS1 (or FoxM1) were revealed in LSCC tissues using experiments. Based on rescue assays, FoxM1 overexpression or miR-370 downregulation partially recovered the inhibitory effect of MNX1-AS1 silencing on LSCC cells. Moreover, knockdown of MNX1-AS1 retarded tumor growth in nude mice model. In summary, these findings verified that MNX1-AS1 modulated LSCC progression by competitively binding with miR-370 to regulate FoxM1.
Collapse
Affiliation(s)
- Xiangyan Cui
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Hong Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Tingting Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Dong Xiao
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Xin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
31
|
Chen J, Li X, Yang L, Zhang J. Long Non-coding RNA LINC01969 Promotes Ovarian Cancer by Regulating the miR-144-5p/LARP1 Axis as a Competing Endogenous RNA. Front Cell Dev Biol 2021; 8:625730. [PMID: 33614632 PMCID: PMC7889973 DOI: 10.3389/fcell.2020.625730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence has shown that long non-coding RNAs (lncRNAs) can be used as biological markers and treatment targets in cancer and play various roles in cancer-related biological processes. However, the lncRNA expression profiles and their roles and action mechanisms in ovarian cancer (OC) are largely unknown. Here, we assessed the lncRNA expression profiles in OC tissues from The Cancer Genome Atlas (TCGA) database, and one upregulated lncRNA, LINC01969, was selected for further study. LINC01969 expression levels in 41 patients were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The in vitro effects of LINC01969 on OC cell migration, invasion, and proliferation were determined by the CCK-8, ethynyl-2-deoxyuridine (EdU), wound healing, and Transwell assays. Epithelial–mesenchymal transition (EMT) was evaluated using qRT-PCR and Western blotting. The molecular mechanisms of LINC01969 in OC were assessed through bioinformatics analysis, RNA-binding protein immunoprecipitation (RIP), dual luciferase reporter gene assays, and a rescue experiment. Finally, in vivo experiments were conducted to evaluate the functions of LINC01969. The results of the current study showed that LINC01969 was dramatically upregulated in OC, and patients with lower LINC01969 expression levels tended to have better overall survival. Further experiments demonstrated that LINC01969 promoted the migration, invasion, and proliferation of OC cells in vitro and sped up tumor growth in vivo. Additionally, LINC01969, which primarily exists in the cytoplasm, boosted LARP1 expression by sponging miR-144-5p and promoted the malignant phenotypes of OC cells. In conclusion, the LINC01969/miR-144-5p/LARP1 axis is a newly identified regulatory signaling pathway involved in OC progression.
Collapse
Affiliation(s)
- Jinxin Chen
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaocen Li
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Lu Yang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jingru Zhang
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Zhang X, Yang H, Jia Y, Xu Z, Zhang L, Sun M, Fu J. circRNA_0005529 facilitates growth and metastasis of gastric cancer via regulating miR-527/Sp1 axis. BMC Mol Cell Biol 2021; 22:6. [PMID: 33472586 PMCID: PMC7816457 DOI: 10.1186/s12860-020-00340-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are endogenous non-coding RNAs, which are associated with various biological processes, including microRNA (miRNA) interaction, protein binding and regulatory splicing. circRNA_0005529 (circ_0005529) is derived from vacuolar protein sorting 33 homologue B (VPS33B), and its biological role in gastric cancer (GC) has not been examined. In this study, the expression and location of circ_0005529 and microRNA-527 (miR-527) were determined by qRT-PCR and fluorescence in situ hybridization (FISH). Cell proliferation and cell migration were determined by MTT, EdU incorporation, colony formation, wound scratch and transwell assays. In addition, immunohistochemistry and western blotting were performed to determine the expressions of specificity protein 1 (Sp1), PCNA, c-myc, E-cadherin and N-cadherin. Western blotting and luciferase reporter assay were performed to study the interaction between circ_0005529 and miR-527 or miR-527 and Sp1. The functional effects of circ_0005529 on GC through regulating Sp1 were further evaluated using xenograft and metastatic mouse models in vivo. RESULTS Our results showed that circ_0005529 was upregulated in GC tissues and cells, and had promoting effects on cell proliferation and cell migration. Mechanism analysis suggested that circ_0005529 could bind to microRNA-527 (miR-527) and reduce its expression. The interaction between miR-527 and Sp1 in GC was systematically studied. In addition, the results indicated that Sp1 upregulation could rescue the effects on cell proliferation and migration caused by circ_0005529. Moreover, the inhibitory effects of circ_0005529 downregulation on GC growth and metastasis were evaluated in mouse models. These findings suggested that the axis of circ_0005529/miR-527/Sp1 may serve as a promising treatment target for GC diagnosis and treatment. CONCLUSIONS These findings suggested that the signal axis of circ_0005529/miR-527/Sp1 may has the potential to be explored as a novel therapeutic target for GC diagnosis and treatment. Mechanism diagram: During GC development, overexpressed circ_0005529 sponged miR-527 and then upregulated the expression of Sp1. Subsequently, epithelial-mesenchymal transition (EMT), cell proliferation and cell migration were promoted, which ultimately facilitated the tumor metastasis.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Gastrointestinal Surgery, Suining Central Hospital, Suining City, 629000, Sichuan Province, China
| | - Hongwei Yang
- Department of Breast and Thyroid Surgery, Suining Central Hospital, Suining City, 629000, Sichuan Province, China
| | - Yingdong Jia
- Department of Gastrointestinal Surgery, Suining Central Hospital, Suining City, 629000, Sichuan Province, China
| | - Zhengwen Xu
- Department of Gastrointestinal Surgery, Suining Central Hospital, Suining City, 629000, Sichuan Province, China
| | - Liuping Zhang
- Department of Gastrointestinal Surgery, Suining Central Hospital, Suining City, 629000, Sichuan Province, China
| | - Meng Sun
- Department of Gastrointestinal Surgery, Suining Central Hospital, Suining City, 629000, Sichuan Province, China
| | - Jing Fu
- Department of Emergency, Huai'an Hospital Affiliated of Xuzhou Medical University and Huai'an Second People's Hospital, No. 62 Huaihai South Road, Huai 'an City, Jiangsu Province, China.
| |
Collapse
|
33
|
Seo D, Kim D, Chae Y, Kim W. The ceRNA network of lncRNA and miRNA in lung cancer. Genomics Inform 2020; 18:e36. [PMID: 33412752 PMCID: PMC7808869 DOI: 10.5808/gi.2020.18.4.e36] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Since lung cancer is a major causative for cancer-related deaths, the investigations for discovering biomarkers to diagnose at an early stage and to apply therapeutic strategies have been continuously conducted. Recently, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are being exponentially studied as promising biomarkers of lung cancer. Moreover, supportive evidence provides the competing endogenous RNA (ceRNA) network between lncRNAs and miRNAs participating in lung tumorigenesis. This review introduced the oncogenic or tumor-suppressive roles of lncRNAs and miRNAs in lung cancer cells and summarized the involvement of the lncRNA/miRNA ceRNA networks in carcinogenesis and therapeutic resistance of lung cancer.
Collapse
Affiliation(s)
- Danbi Seo
- Department of Science Education, Korea National University of Education, Cheongju 28173, Korea
| | - Dain Kim
- Department of Science Education, Korea National University of Education, Cheongju 28173, Korea
| | - Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju 28173, Korea.,Department of Science Education, Chungbuk Science High School, Cheongju 28189, Korea
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju 28173, Korea.,Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
| |
Collapse
|
34
|
Voutsadakis IA. Amplification of 8p11.23 in cancers and the role of amplicon genes. Life Sci 2020; 264:118729. [PMID: 33166592 DOI: 10.1016/j.lfs.2020.118729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
Copy number alterations are widespread in cancer genomes and are part of the genomic instability underlying the pathogenesis of neoplastic diseases. Recurrent copy number alterations of specific chromosomal loci may result in gains of oncogenes or losses of tumor suppressor genes and become entrenched in the genomic framework of certain types of cancers. The locus at chromosome 8p11.23 presents recurrent amplifications most commonly in squamous lung carcinomas, breast cancers, squamous esophageal carcinomas, and urothelial carcinomas. Amplification is rare in other cancers. The amplified segment involves several described oncogenes that may promote cancer cell survival and proliferation, as well as less well characterized genes that could also contribute to neoplastic processes. Genes proposed to be "drivers" in 8p11.23 amplifications include ZNF703, FGFR1 and PLPP5. Additional genes in the locus that could be functionally important in neoplastic networks include co-chaperone BAG4, lysine methyltransferase NSD3, ASH2L, a member of another methyltransferase complex, MLL and the mRNA processing and translation regulators LSM1 and EIF4EBP1. In this paper, genes located in the amplified segment of 8p11.23 will be examined for their role in cancer and data arguing for their importance for cancers with the amplification will be presented.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada; Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|
35
|
Wang Z, Jin J. LncRNA SLCO4A1-AS1 promotes colorectal cancer cell proliferation by enhancing autophagy via miR-508-3p/PARD3 axis. Aging (Albany NY) 2020; 11:4876-4889. [PMID: 31308265 PMCID: PMC6682525 DOI: 10.18632/aging.102081] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022]
Abstract
Aberrant expressions of various long non-coding RNAs (lncRNAs) have been involved in the progression and pathogenesis of various carcinomas. However, the expression and biological function of SLCO4A1-AS1 in colorectal cancer (CRC) remain poorly understood. Gain- and loss-of-function assays were applied to determine the roles of SLCO4A1-AS1 in autophagy and CRC progression. qRT-PCR and in situ hybridization (ISH) results showed that SLCO4A1-AS1 was positively associated with PARD3 expression in CRC tissues. In vitro and in vivo studies revealed that SLCO4A1-AS1 knockdown repressed cytoprotective autophagy as assayed by transmission electron microscopy (TEM), and inhibited cell proliferation by directly targeting partition-defective 3 (PARD3). Mechanistically, SLCO4A1-AS1 acted as a sponge of miR-508-3p, leading to upregulation of PARD3 and promotion of CRC cell proliferation. The current study demonstrates that the SLCO4A1-AS1/miR-508-3p/PARD3/autophagy pathway play a critical role in CRC cell proliferation, and might provide novel targets for developing therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Zhaozhi Wang
- Department of Gastrointestinal Medicine, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Jianjun Jin
- Department of Gastrointestinal Medicine, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| |
Collapse
|
36
|
Bian Y, Li Q, Li Q, Pan R. Silencing of BRF2 inhibits the growth and metastasis of lung cancer cells. Mol Med Rep 2020; 22:1767-1774. [PMID: 32705258 PMCID: PMC7411291 DOI: 10.3892/mmr.2020.11285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factor II B (TFIIB)‑related factor 2 (BRF2) is involved in the development of cancer, but its role in lung cancer is underreported. The present study aimed to explore the role of BRF2 in the regulation of lung cancer cells. Immunofluorescence staining and immunohistochemistry were performed to detect BRF2 protein expression in human lung cancer cells and tissues. Following cell transfection with small interfering RNA for silencing BRF2, the cell proliferation was examined by Cell Counting Kit‑8 and MTT assays. Cell apoptosis, migration and invasion were determined by flow cytometry, wound‑healing and Transwell assay. The expression levels of Akt, phosphorylated (p)‑Akt, Bax, E‑cadherin, Bcl‑2, N‑cadherin, Snail and epidermal growth factor receptor (EGFR) in human lung cancer A549 cells were detected by western blotting. The results demonstrated that BRF2 expression was increased in human lung cancer cells and tissues, and that silencing of BRF2 promoted cell apoptosis but inhibited cell proliferation and migration. The protein expression levels of Akt, E‑cadherin, p‑Akt, Bcl‑2, N‑cadherin, Snail and EGFR in A549 cells were inhibited by silencing of BRF2, while expression levels of Bax and E‑cadherin were increased by silencing BRF2. In conclusion, BRF2 demonstrates high expression in lung cancer and silencing of BRF2 inhibits the growth and metastasis of lung cancer cells. The current findings provide a novel approach for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yuan Bian
- Department of Respiratory Medicine, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, P.R. China
| | - Qiu Li
- Department of Respiratory Medicine, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, P.R. China
| | - Qiaolian Li
- Department of Respiratory Medicine, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, P.R. China
| | - Ruigen Pan
- Department of Radiology, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, P.R. China
| |
Collapse
|
37
|
He Y, Huang H, Jin L, Zhang F, Zeng M, Wei L, Tang S, Chen D, Wang W. CircZNF609 enhances hepatocellular carcinoma cell proliferation, metastasis, and stemness by activating the Hedgehog pathway through the regulation of miR-15a-5p/15b-5p and GLI2 expressions. Cell Death Dis 2020; 11:358. [PMID: 32398664 PMCID: PMC7217914 DOI: 10.1038/s41419-020-2441-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022]
Abstract
Emerging evidence has revealed that aberrantly expressed circular RNAs (circRNAs) play vital roles in tumorigenesis and progression of diverse human malignancies. Although an existing literature has elucidated the regulatory role of circZNF609 in breast cancer, the crucial function that circZNF609 exerted on hepatocellular carcinoma (HCC) remains unclear. Herein, we determined to explore the molecular mechanism of circZNF609 in HCC. In this study, circZNF609 was conspicuously overexpressed and featured with loop structure in HCC. Functional tests revealed that decreased expression of circZNF609 suppressed cell proliferation, metastasis and stemness, whereas induced cell apoptosis in HCC. Subsequent molecular mechanism assays indicated that circZNF609 contributed to HCC progression through activation of Hedgehog pathway. Moreover, circZNF609 was found to be negatively correlated with miR-15a-5p/15b-5p but positively correlated with GLI2. Moreover, there was a negative correlation between miR-15a-5p/15b-5p and GLI2. Rescue experiments testified that GLI2 overexpression could recover circZNF609 depletion-mediated function on HCC development while miR-15a-5p/15b-5p inhibition could partially rescue circZNF609 silencing-mediated effect on HCC progression. Final experiments in vivo further elucidated the suppressive function of circZNF609 knockdown on the tumorigenesis of HCC. Briefly, circZNF609 enhances HCC cell proliferation, metastasis, and stemness by activating the Hedgehog pathway through the regulation of miR-15a-5p/15b-5p and GLI2 expressions.
Collapse
Affiliation(s)
- Yangke He
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.,Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Hui Huang
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.,Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Li Jin
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55# Renmin South Road, 610041, Chengdu, Sichuan, China
| | - Fang Zhang
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55# Renmin South Road, 610041, Chengdu, Sichuan, China.,Department of Burn and Plastic Surgery, Affiliated hospital of Chengdu Medical College, 610000, Chengdu, Sichuan, China
| | - Ming Zeng
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.,Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Liang Wei
- Department of Burn and Plastic Surgery, Affiliated hospital of Chengdu Medical College, 610000, Chengdu, Sichuan, China
| | - Shijia Tang
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.,Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Dongqin Chen
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Pudong New District, 200127, Shanghai, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University&Jiangsu Cancer Hospital&Jiangsu Institute of Cancer Research, No. 42 Baiziting Road, Xuanwu District, 210009, Nanjing, China. .,Department of Medical Oncology, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Gusu District, 215006, Suzhou, Jiangsu, China.
| | - Wansheng Wang
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Gusu District, 215006, Suzhou, Jiangsu, China
| |
Collapse
|
38
|
Yang Z, Dong X, Pu M, Yang H, Chang W, Ji F, Liu T, Wei C, Zhang X, Qiu X. LBX2-AS1/miR-219a-2-3p/FUS/LBX2 positive feedback loop contributes to the proliferation of gastric cancer. Gastric Cancer 2020; 23:449-463. [PMID: 31673844 DOI: 10.1007/s10120-019-01019-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are increasingly investigated in numerous carcinomas containing gastric cancer (GC). The aim of our research is to inquire about the expression profile and role of LBX2-AS1 in GC. METHODS The expressions of LBX2-AS1, miR-219a-2-3p, FUS and LBX2 were measured by qRT-PCR. Western blot evaluated FUS and LBX2 protein levels. Cell proliferation and apoptosis were, respectively, evaluated by CCK-8, colony formation, EdU, flow cytometry and TUNEL assays. FISH and subcellular fractionation assays examined the position of LBX2-AS1. The binding between genes were certified by RIP, RNA pull-down, ChIP and luciferase reporter assays. Pearson correlation analysis analyzed the association of genes. Kaplan-Meier method detected the relationship of LBX2-AS1 expression with overall survival. RESULTS The up-regulation of LBX2-AS1 in GC tissues and cells was verified. Function assays proved that LBX2-AS1 down-regulation restricted the proliferation ability. Then, we unveiled the LBX2-AS1/miR-219a-2-3p/FUS axis. Additionally, LBX2-AS1 positively regulated LBX2 mRNA stability via FUS. LBX2 transcriptionally modulated LBX2-AS1. In the end, rescue and in vivo experiments validated the whole regulatory mechanism. CONCLUSION LBX2-AS1/miR-219a-2-3p/FUS/LBX2 positive feedback loop mainly affected the proliferation and apoptosis abilities of GC cells, offering novel therapeutic targets for the treatment of patients with GC.
Collapse
Affiliation(s)
- Zhen Yang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.,General Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Xinhua Dong
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.,General Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Minglong Pu
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Hongwei Yang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Weilong Chang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Feihong Ji
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Tao Liu
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Chongqing Wei
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Xiefu Zhang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Xinguang Qiu
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China. .,General Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
39
|
Ghafouri-Fard S, Shoorei H, Branicki W, Taheri M. Non-coding RNA profile in lung cancer. Exp Mol Pathol 2020; 114:104411. [PMID: 32112788 DOI: 10.1016/j.yexmp.2020.104411] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer is the most frequently diagnosed malignancy and the leading source of cancer-associated mortality. This kind of cancer has heterogeneous nature and is divided into two broad classes of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). In addition to aberrant expression of several signaling pathways and oncogenes, lung cancer is associated with dysregulation of expression of non-coding RNAs including both long non-coding RNAs (lncRNAs) and miRNAs. These aberrantly expressed transcripts are putative therapeutic targets and diagnostic/ prognostic markers. Integrative assessment of expression of lncRNAs, miRNAs and mRNAs has led to construction of competing endogenous RNA networks in which several lncRNAs act as molecular sponges to inhibit regulatory function of miRNAs on mRNAs. Notably, some of these networks seem to have subtype-specific functions in lung cancer. In this review, we summarize recent findings about the importance of these networks in the pathogenesis of lung cancer and provide a list of onco-miRNAs, tumor suppressor miRNAs, oncogenic lncRNAs and tumor suppressor lncRNAs based on their roles in the carcinogenic process in lung cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Chen R, Zhang X, Wang C. LncRNA HOXB-AS1 promotes cell growth in multiple myeloma via FUT4 mRNA stability by ELAVL1. J Cell Biochem 2019; 121:4043-4051. [PMID: 31886581 DOI: 10.1002/jcb.29573] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM) is defined as the second most common hematological tumor in the globe. Long noncoding RNAs (lncRNAs) have been reported to play stimulative or suppressive role in the progression of different carcinomas. The investigation of lncRNAs in MM is still inadequate. LncRNA HOXB cluster antisense RNA 1 (HOXB-AS1) was once revealed to facilitate glioma progression by affecting cellular activities of glioma cells. However, whether HOXB-AS1 participates in the development of MM still remains an enigma. In this study, we unveiled that HOXB-AS1 was highly expressed in MM and loss-of-function assays certified that HOXB-AS1 obstruction suppressed MM cell proliferation, and stimulated cell apoptosis. In addition, HOXB-AS1 could modulate fucosyltransferase 4 (FUT4) and FUT4-mediated Wnt/β-catenin pathway. In subsequence, it was observed from mechanism assays that HOXB-AS1 enhanced the interaction between ELAVL1 and FUT4 so as to stabilize FUT4 messenger RNA. In the end, rescue experiments affirmed that HOXB-AS1 affected the cell growth through FUT4 in MM. In conclusion, the whole modulation mechanism of HOXB-AS1/ELAVL1/FUT4 axis in MM was validated in this study, which suggested that HOXB-AS1 might function as a powerful and promising therapeutic biomarker for the clinical treatment of patients with MM.
Collapse
Affiliation(s)
- Rongsheng Chen
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaobo Zhang
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Changsheng Wang
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
41
|
Wang J, Xing H, Nikzad AA, Liu B, Zhang Y, Li S, Zhang E, Jia Z. Long Noncoding RNA MNX1 antisense RNA 1 Exerts Oncogenic Functions in Bladder Cancer by Regulating miR-218-5p/RAB1A Axis. J Pharmacol Exp Ther 2019; 372:237-247. [PMID: 31843814 DOI: 10.1124/jpet.119.262949] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Abstract
LncRNA MNX1 antisense RNA 1 (MNX1-AS1) is significantly overexpressed in patients with bladder cancer, suggesting that it might be associated with bladder cancer. However, the molecular mechanism of MNX1-AS1 in bladder cancer remained indistinct. To illustrate the role of MNX1-AS1 in bladder cancer, the gain- and loss-of-function experiments were conducted in bladder cancer cells. Reduced expression of MNX1-AS1 could suppress cell proliferation, migration, invasion, and epithelial-mesenchymal transition in bladder cancer cells, whereas overexpression of MNX1-AS1 resulted in the opposite effects. Mechanistic analysis demonstrated that miR-218-5p was a direct target of RAB1A. MNX1-AS1 could competitively bind to miR-218-5p to regulate RAB1A expression in bladder cancer cells. Furthermore, in vivo experiments revealed that reduced expression of MNX1-AS1 inhibited tumor growth and metastasis. Taken together, MNX1-AS1 functions as a sponge to miR-218-5p to modulate RAB1A expression in bladder cancer, which suggests that MNX1-AS1 might serve as a novel therapeutic target and a novel biomarker for metastasis and prognosis in bladder cancer. SIGNIFICANCE STATEMENT: Our study demonstrates that long noncoding RNA MNX1-AS1 promotes the initiation and progression of bladder cancer. MNX1-AS1 regulates RAB1A expression to promote proliferation, migration, invasion, and epithelial-mesenchymal transitions of bladder cancer cells via miR-218-5p, which contributes to the tumor growth and metastasis of bladder cancer. Collectively, these results suggest that MNX1-AS1 might serve as a potential biomarker for bladder cancer.
Collapse
Affiliation(s)
- Jun Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Huiwu Xing
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Abdul Aziz Nikzad
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Bowen Liu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yu Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Songchao Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Erwei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhankui Jia
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
42
|
Sun J, Zhang Y, Li B, Dong Y, Sun C, Zhang F, Jin L, Chen D, Wang W. PITPNA-AS1 abrogates the inhibition of miR-876-5p on WNT5A to facilitate hepatocellular carcinoma progression. Cell Death Dis 2019; 10:844. [PMID: 31700026 PMCID: PMC6838072 DOI: 10.1038/s41419-019-2067-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/27/2023]
Abstract
LncRNA PITPNA-AS1 was a newly identified lncRNA which has never been studied in cancers. Whether PITPNA-AS1 participated in the development of hepatocellular carcinoma (HCC) is obscure. Given the coaction of lncRNAs and miRNAs to carcinogenesis, the purpose of the present research is to inquire how PITPNA-AS1 affects HCC progression. Firstly, PITPNA-AS1 was observed to be heightened in HCC tissues. Then function assays proved that overexpressing or silencing PITPNA-AS1 could manipulate the proliferation and motility of HCC cells. Besides, PITPNA-AS1 was located in the cytoplasm. Among the candidate miRNAs of PITPNA-AS1, miR-876-5p was an obvious target. Moreover, mechanism experiments validated that PITPNA-AS1 modulated WNT5A expression by targeting miR-876-5p. Rescue experiments affirmed that WNT5A silencing rescued the miR-876-5p suppression-induced cellular processes in PITPNA-AS1-silenced Hep3B cells. And in vivo experiments determined that PITPNA-AS1 regulated HCC progression in vivo via miR-876-5p/WNT5A pathway. In conclusion, this work shed lights on the modulatory mechanism of PITPNA-AS1/miR-876-5p/WNT5A axis in HCC, which might be pivotal for exploring effective diagnostic biomarkers and treatment strategies for HCC patients.
Collapse
Affiliation(s)
- Jianmin Sun
- Department of Hepatopancreatobiliary Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Yubao Zhang
- Department of Hepatopancreatobiliary Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Bing Li
- Department of Hepatopancreatobiliary Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Yuandi Dong
- Department of Hepatopancreatobiliary Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Chengming Sun
- Department of Hepatopancreatobiliary Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Fang Zhang
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Renmin South Rd 55#, Chengdu, 610041, Sichuan, China
| | - Li Jin
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Renmin South Rd 55#, Chengdu, 610041, Sichuan, China.,Laboratory for Advanced Interdisciplinary Research, the First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Lane, Wenzhou, 325000, Zhejiang, China
| | - Dongqin Chen
- Department of Medical Oncology, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No. 42 Baiziting Road, Xuanwu District, Nanjing, 210000, Jiangsu, China. .,Department of Medical Oncology, the First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China.
| | - Wansheng Wang
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
43
|
Li X, Yu M, Yang C. YY1-mediated overexpression of long noncoding RNA MCM3AP-AS1 accelerates angiogenesis and progression in lung cancer by targeting miR-340-5p/KPNA4 axis. J Cell Biochem 2019; 121:2258-2267. [PMID: 31693222 DOI: 10.1002/jcb.29448] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer is famous as an aggressive malignant tumor and is the main cause of cancer-associated mortality globally. Tumor angiogenesis is a vital part in cancer, which influences cell proliferation and metastasis. Increasing studies have claimed that long noncoding RNAs (lncRNAs) were involved in the progression of several cancers. Based on previous studies, this study focused on the role and mechanism of lncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) in lung cancer. At first, MCM3AP-AS1 expression was found to be elevated in lung cancer cells. Depletion of MCM3AP-AS1 repressed cell proliferation, migration, and angiogenesis in lung cancer cells. YY1 was confirmed to mediate MCM3AP-AS1 transcription in lung cancer cells. Moreover, the molecular mechanism investigation revealed that MCM3AP-AS1 could sponge miR-340-5p and elevate KPNA4 expression. On the basis of rescue assays, we identified that the overexpression of KPNA4 partly counteracted the suppressed effect of MCM3AP-AS1 knockdown on angiogenesis and progression in lung cancer cells. Conclusively, the YY1-mediated overexpression of MCM3AP-AS1 accelerated angiogenesis and progression in lung cancer by targeting miR-340-5p/KPNA4 axis, which highlighted the possibility of MCM3AP-AS1 as a promising therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Infectious Diseases, Ankang Central Hospital, Ankang, China
| | - Mei Yu
- Department of Infectious Diseases, Ankang Central Hospital, Ankang, China
| | - Caiyong Yang
- Department of Infectious Diseases, Ankang Central Hospital, Ankang, China
| |
Collapse
|
44
|
Cai C, Yang L, Tang Y, Wang H, He Y, Jiang H, Zhou K. Prediction of Overall Survival in Gastric Cancer Using a Nine-lncRNA. DNA Cell Biol 2019; 38:1005-1012. [PMID: 31335180 DOI: 10.1089/dna.2019.4832] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Congbo Cai
- Emergency Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Lei Yang
- Emergency Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Yeli Tang
- Emergency Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Houxing Wang
- Emergency Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Yi He
- Gastroenterology Department, Ningbo No. 9 Hospital, Ningbo, China
| | - Honggang Jiang
- Gastroenterology Department, Ningbo No. 9 Hospital, Ningbo, China
| | - Kena Zhou
- Gastroenterology Department, Ningbo No. 9 Hospital, Ningbo, China
| |
Collapse
|
45
|
Liu J, Hou K, Ji H, Mi S, Yu G, Hu S, Wang J. Overexpression of circular RNA circ‐CDC45 facilitates glioma cell progression by sponging miR‐516b and miR‐527 and predicts an adverse prognosis. J Cell Biochem 2019; 121:690-697. [PMID: 31407396 DOI: 10.1002/jcb.29315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/15/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Jie Liu
- Department of Neurosurgery The Second Affiliated Hospital of Harbin Medical University Harbin China
| | - Kuiyuan Hou
- Department of Neurosurgery The Second Affiliated Hospital of Harbin Medical University Harbin China
| | - Hang Ji
- Department of Neurosurgery The Second Affiliated Hospital of Harbin Medical University Harbin China
| | - Shan Mi
- Department of Neurosurgery The Second Affiliated Hospital of Harbin Medical University Harbin China
| | - Guangna Yu
- Department of Neurosurgery The Second Affiliated Hospital of Harbin Medical University Harbin China
| | - Shaoshan Hu
- Department of Neurosurgery The Second Affiliated Hospital of Harbin Medical University Harbin China
| | - Jianjiao Wang
- Department of Neurosurgery The Second Affiliated Hospital of Harbin Medical University Harbin China
| |
Collapse
|
46
|
Zhang K, Yang W, Yu H, Fu C, Liu X, Liu J. Double mutation of BRF1 and BRF2 leads to sterility in Arabidopsis thaliana. Biochem Biophys Res Commun 2019; 516:969-975. [PMID: 31277948 DOI: 10.1016/j.bbrc.2019.06.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 01/22/2023]
Abstract
The TFIIB-related factor (BRF) family plays vital roles in RNA polymerase (Pol) III transcription initiation. However, little is known about the role of BRF in plants. Here, we report BRF1 and BRF2 are involved in Arabidopsis reproduction. In this study, we generated BRF1 and BRF2 double mutant plants. We found that no homozygous double mutants of brf1brf2 were obtained when brf1 and brf2 were crossed, although brf1 and brf2 mutants individually developed and reproduced normally. Further experiments revealed that heterozygous brf1/ + brf2/ + produced abnormal pollen and had no seeds in some placentas of siliques. Genetic data derived from reciprocal crosses showed that BRF2 plays a dominant role in Arabidopsis reproduction. Taken together, a double mutation of BRF1 and BRF2 results in a high degree of aborted macrogametes and microgametes and complete failure in zygote generation, ultimately leading to sterility.
Collapse
Affiliation(s)
- Kaiyue Zhang
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Wenwen Yang
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Hongbin Yu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Can Fu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xiaxia Liu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Jian Liu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
47
|
Chen F, Liu M, Yu Y, Sun Y, Li J, Hu W, Wang X, Tong D. LINC00958 regulated miR-627-5p/YBX2 axis to facilitate cell proliferation and migration in oral squamous cell carcinoma. Cancer Biol Ther 2019; 20:1270-1280. [PMID: 31161900 DOI: 10.1080/15384047.2019.1617571] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC), the subtype of head and neck cancers, is notorious for its high incidence and death rate. The role of long non-coding RNAs (lncRNAs) is discovered to be significant for the canceration and cancer progression. Long intergenic non-protein coding RNA 958 (LINC00958) is discovered as a carcinogene in multiple cancers, such as gastric cancer, pancreatic cancer, and glioma, but there has been no report about how LINC00958 functions in OSCC. The objective of our study is to unfold function and mechanism investigation on LINC00958 in OSCC. First, TCGA database showed the upregulation and prognostic significance of LINC00958 in head and neck squamous carcinoma. Then, we discovered in OSCC clinical samples that LINC00958 presented high expression and predicted poor prognosis. Also, LINC00958 was elevated in OSCC cells. In vitro gain- and loss-function experiments proved that LINC00958 facilitated cell growth, retarded apoptosis, accelerated migration, and epithelial-to-mesenchymal transition (EMT) in OSCC. Mechanistically, we confirmed the cytoplasmic expression of LINC00958 in OSCC cells, and revealed that LINC00958 sequestered miR-627-5p to upregulate YBX2 expression. Rescue assays indicated that LINC00958 regulated OSCC cell proliferation, motility and EMT through YBX2. Together, we showed that LINC00958 promoted OSCC progression through miR-627-5p/YBX2 axis, indicating LINC00958 as a new prognostic marker, and provided new perspectives for molecular targeted treatment for OSCC.
Collapse
Affiliation(s)
- Fuyang Chen
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Mingyue Liu
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Yixiu Yu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Yanyan Sun
- Department of Prosthodontics, Xuzhou Stomatological Hospital , Xuzhou , China
| | - Jihe Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Weiping Hu
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Xiaofeng Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Dongxia Tong
- Department of Hematology, First Hospital of Harbin Medical University , Harbin , China
| |
Collapse
|
48
|
Chu J, Li H, Xing Y, Jia J, Sheng J, Yang L, Sun K, Qu Y, Zhang Y, Yin H, Wan J, He F. LncRNA MNX1-AS1 promotes progression of esophageal squamous cell carcinoma by regulating miR-34a/SIRT1 axis. Biomed Pharmacother 2019; 116:109029. [PMID: 31170665 DOI: 10.1016/j.biopha.2019.109029] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are powerful factors influencing the tumorigenesis and metastasis of multiple carcinomas. LncRNA MNX1-AS1 plays critical roles in the progression of tumor formation according to recent research, while its roles in esophageal squamous cell carcinoma (ESCC) remains unknown. METHODS The expression levels of lncRNA MNX1-AS1 were examined in ESCC tissues by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The role of lncRNA MNX1-AS1 was performed by WST-1 proliferation assays, migration and invasion assays. Besides, the molecular mechanism of lncRNA MNX1-AS1 was verified by online bioinformatics, qRT-PCR and rescue assays. RESULTS MNX1-AS1 was signifcantly upregulated in ESCC tissues. It was conformed that high MNX1-AS1 expression was associated with ESCC lymph node metastasis. Moreover, we found that knockdown of MNX1-AS1 apparently suppressed the cell proliferation, migration, and invasion capacity. Flow cytometry analysis showed MNX1-AS1 regulated ESCC cell cycle and apoptosis progression. Mechanism analysis revealed that miR-34a inhibitor could rescue the influence of inhibiting MNX1-AS1 on ESCC cells migration by serving as competing endogenous RNA (ceRNAs). Furthermore, we found that miR-34a specifically targeted SIRTI. CONCLUSIONS Taken together, we demonstrated that lncRNA MNX1-AS1/miR-34a/SIRT1 regulatory axis could play an important role in ESCC progression, and MNX1-AS1 may act as a novel potential biomarker for esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Jie Chu
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Hongle Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Yurong Xing
- Department of Physical Examination, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Jinlin Jia
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Jinxiu Sheng
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Lijun Yang
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Kaiyan Sun
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Yunhui Qu
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Yan Zhang
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Huiqing Yin
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Junhu Wan
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|