1
|
Caracausi M, Ramacieri G, Catapano F, Cicilloni M, Lajin B, Pelleri MC, Piovesan A, Vitale L, Locatelli C, Pirazzoli GL, Strippoli P, Antonaros F, Vione B. The functional roles of S-adenosyl-methionine and S-adenosyl-homocysteine and their involvement in trisomy 21. Biofactors 2024; 50:709-724. [PMID: 38353465 DOI: 10.1002/biof.2044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 08/09/2024]
Abstract
The one-carbon metabolism pathway is involved in critical human cellular functions such as cell proliferation, mitochondrial respiration, and epigenetic regulation. In the homocysteine-methionine cycle S-adenosyl-methionine (SAM) and S-adenosyl-homocysteine (SAH) are synthetized, and their levels are finely regulated to ensure proper functioning of key enzymes which control cellular growth and differentiation. Here we review the main biological mechanisms involving SAM and SAH and the known related human diseases. It was recently demonstrated that SAM and SAH levels are altered in plasma of subjects with trisomy 21 (T21) but how this metabolic dysregulation influences the clinical manifestation of T21 phenotype has not been previously described. This review aims at providing an overview of the biological mechanisms which are altered in response to changes in the levels of SAM and SAH observed in DS.
Collapse
Affiliation(s)
- Maria Caracausi
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Speciality School of Child Neuropsychiatry-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesca Catapano
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Michela Cicilloni
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Bassam Lajin
- Institute of Chemistry, ChromICP, University of Graz, Graz, Austria
| | - Maria Chiara Pelleri
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Bologna, Italy
| | | | - Pierluigi Strippoli
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Beatrice Vione
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Vione B, Ramacieri G, Zavaroni G, Piano A, La Rocca G, Caracausi M, Vitale L, Piovesan A, Gori C, Pirazzoli GL, Strippoli P, Cocchi G, Corvaglia L, Locatelli C, Pelleri MC, Antonaros F. One-carbon pathway metabolites are altered in the plasma of subjects with Down syndrome: Relation to chromosomal dosage. Front Med (Lausanne) 2022; 9:1006891. [PMID: 36530924 PMCID: PMC9751312 DOI: 10.3389/fmed.2022.1006891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 09/19/2023] Open
Abstract
Introduction Down syndrome (DS) is the most common chromosomal disorder and it is caused by trisomy of chromosome 21 (Hsa21). Subjects with DS show a large heterogeneity of phenotypes and the most constant clinical features present are typical facies and intellectual disability (ID). Several studies demonstrated that trisomy 21 causes an alteration in the metabolic profile, involving among all the one-carbon cycle. Methods We performed enzyme-linked immunosorbent assays (ELISAs) to identify the concentration of 5 different intermediates of the one-carbon cycle in plasma samples obtained from a total of 164 subjects with DS compared to 54 euploid subjects. We investigated: tetrahydrofolate (THF; DS n = 108, control n = 41), 5-methyltetrahydrofolate (5-methyl-THF; DS n = 140, control n = 34), 5-formyltetrahydrofolate (5-formyl-THF; DS n = 80, control n = 21), S-adenosyl-homocysteine (SAH; DS n = 94, control n = 20) and S-adenosyl-methionine (SAM; DS n = 24, control n = 15). Results Results highlight specific alterations of THF with a median concentration ratio DS/control of 2:3, a decrease of a necessary molecule perfectly consistent with a chromosomal dosage effect. Moreover, SAM and SAH show a ratio DS/control of 1.82:1 and 3.6:1, respectively. Discussion The relevance of these results for the biology of intelligence and its impairment in trisomy 21 is discussed, leading to the final proposal of 5-methyl-THF as the best candidate for a clinical trial aimed at restoring the dysregulation of one-carbon cycle in trisomy 21, possibly improving cognitive skills of subjects with DS.
Collapse
Affiliation(s)
- Beatrice Vione
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Giacomo Zavaroni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Angela Piano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Giorgia La Rocca
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Caterina Gori
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | | | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Guido Cocchi
- Neonatology Unit, IRCCS Sant’Orsola-Malpighi University Hospital, Bologna, Italy
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Neonatology Unit, IRCCS Sant’Orsola-Malpighi University Hospital, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, IRCCS Sant’Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Boato E, Melo G, Filho M, Moresi E, Lourenço C, Tristão R. The Use of Virtual and Computational Technologies in the Psychomotor and Cognitive Development of Children with Down Syndrome: A Systematic Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2955. [PMID: 35270648 PMCID: PMC8910279 DOI: 10.3390/ijerph19052955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Individuals with Down syndrome (DS) have numerous comorbidities due to trisomy 21. However, virtual reality-based therapy (VRT) has been used nowadays as a learning and visual motor tool in order to facilitate the development and learning process of this group. The aim of this article was to carry out an integrative review of the literature on the use of virtual and computational technologies in the stimulation of children with DS. A search was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) through single key words or their combinations using AND or OR operators: "Down syndrome" AND ("development" OR "cognition" OR "visomotor" OR "digital game" OR "virtual reality"). Eventually, 18 articles were included in our review. The games used in the research were able to stimulate, through the visual field, global motor skills, balance, body scheme and spatial organization, in addition to the learning of mathematical concepts, in order to directly influence the autonomous life activities, language skills, social skills and educational aspects of people with DS. Electronic games contribute to the teaching-learning relationship and stimulate neuropsychomotor and cognitive functions and development in children with DS.
Collapse
Affiliation(s)
- Elvio Boato
- Department of Physical Education, Catholic University of Brasília, Brasilia 71966-700, Brazil; (E.B.); (G.M.)
| | - Geiziane Melo
- Department of Physical Education, Catholic University of Brasília, Brasilia 71966-700, Brazil; (E.B.); (G.M.)
| | - Mário Filho
- Center for Science and Technology-CogniAction Lab, Catholic University of Brasilia, Brasilia 71966-700, Brazil; (M.F.); (E.M.)
| | - Eduardo Moresi
- Center for Science and Technology-CogniAction Lab, Catholic University of Brasilia, Brasilia 71966-700, Brazil; (M.F.); (E.M.)
| | - Carla Lourenço
- Department of Sport of Science, Universidade da Beira Interior, 3510-774 Covilhan, Portugal
| | - Rosana Tristão
- Faculty of Medicine, University Hospital of University of Brasilia, Brasilia 70297-400, Brazil;
| |
Collapse
|
4
|
Rababa'H AM, Alzoubi KH, Khabour OF, Ababneh M. Ameliorative effect of metformin on methotrexate-induced genotoxicity: An in vitro study in human cultured lymphocytes. Biomed Rep 2021; 15:59. [PMID: 34094535 PMCID: PMC8165753 DOI: 10.3892/br.2021.1435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 11/05/2022] Open
Abstract
Methotrexate is a folic acid antagonist that has been shown to be genotoxic to normal healthy cells. Metformin is an insulin-sensitizing agent, with multiple potential pharmacodynamic profiles. The aim of the present study was to evaluate the genotoxic effect of methotrexate on DNA and the potential ameliorative effect of metformin on chromosomal damage induced by methotrexate. The present study was performed in vitro, and the frequency of chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs) in human cultured lymphocytes were measured. Blood samples from five non-smoking healthy men aged 20-35 years were donated and used in the present study. Treatment of cultured blood cells with methotrexate significantly increased the number of cells with CAs (P<0.0001) and the frequency of SCEs (P<0.0001). The chromosomal injury induced by methotrexate was significantly reduced by pretreatment of the samples with metformin (P<0.0001). Importantly, the treatment of the cells with metformin alone did not affect the frequency of SCEs compared with the control group (P>0.05). Additionally, methotrexate and metformin alone, and combined, induced significant decreases in the proliferative index compared with the control group (P<0.05). In conclusion, metformin ameliorated the genotoxicity induced by methotrexate in cultured human lymphocytes.
Collapse
Affiliation(s)
- Abeer M Rababa'H
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mera Ababneh
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
5
|
Rababa'h AM, Hussein SA, Khabour OF, Alzoubi KH. The Protective Effect of Cilostazol in Genotoxicity Induced by Methotrexate in Human Cultured Lymphocytes. Curr Mol Pharmacol 2021; 13:137-143. [PMID: 31702497 DOI: 10.2174/1874467212666191023120118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Methotrexate is an antagonist of folic acid that has been shown to be genotoxic to healthy body cells via induction of oxidative stress. Cilostazol is a phosphodiesterase III inhibitor and a potent antioxidant drug. OBJECTIVE To evaluate the potential protective effect of cilostazol on methotrexate genotoxicity. METHODS The genotoxic effect of methotrexate by measuring the frequency of chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs) in human cultured lymphocytes was studied. RESULTS Methotrexate significantly increased the frequency of CAs and SCEs (p < 0.0001) as compared to control cultures. This chromosomal damage induced by methotrexate was considerably decreased by pretreatment of the cells with cilostazol (P < 0.01). Moreover, the results showed that methotrexate resulted in a notable reduction (P < 0.01) in cells kinetic parameters, the mitotic index (MI) and the proliferative index (PI). Similarly, cilostazol significantly reduced the mitotic index, which could be related to the anti-proliferative effect (P < 0.01). CONCLUSION Methotrexate is genotoxic, and cilostazol could prevent the methotrexate-induced chromosomal damage with no modulation of methotrexate-induced cytotoxicity.
Collapse
Affiliation(s)
- Abeer M Rababa'h
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Samah A Hussein
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
6
|
Antonaros F, Zenatelli R, Guerri G, Bertelli M, Locatelli C, Vione B, Catapano F, Gori A, Vitale L, Pelleri MC, Ramacieri G, Cocchi G, Strippoli P, Caracausi M, Piovesan A. The transcriptome profile of human trisomy 21 blood cells. Hum Genomics 2021; 15:25. [PMID: 33933170 PMCID: PMC8088681 DOI: 10.1186/s40246-021-00325-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Trisomy 21 (T21) is a genetic alteration characterised by the presence of an extra full or partial human chromosome 21 (Hsa21) leading to Down syndrome (DS), the most common form of intellectual disability (ID). It is broadly agreed that the presence of extra genetic material in T21 gives origin to an altered expression of genes located on Hsa21 leading to DS phenotype. The aim of this study was to analyse T21 and normal control blood cell gene expression profiles obtained by total RNA sequencing (RNA-Seq). RESULTS The results were elaborated by the TRAM (Transcriptome Mapper) software which generated a differential transcriptome map between human T21 and normal control blood cells providing the gene expression ratios for 17,867 loci. The obtained gene expression profiles were validated through real-time reverse transcription polymerase chain reaction (RT-PCR) assay and compared with previously published data. A post-analysis through transcriptome mapping allowed the identification of the segmental (regional) variation of the expression level across the whole genome (segment-based analysis of expression). Interestingly, the most over-expressed genes encode for interferon-induced proteins, two of them (MX1 and MX2 genes) mapping on Hsa21 (21q22.3). The altered expression of genes involved in mitochondrial translation and energy production also emerged, followed by the altered expression of genes encoding for the folate cycle enzyme, GART, and the folate transporter, SLC19A1. CONCLUSIONS The alteration of these pathways might be linked and involved in the manifestation of ID in DS.
Collapse
Affiliation(s)
- Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Rossella Zenatelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy.,Current Address: Department of Molecular and Translational Medicine (DMMT), University of Brescia, Viale Europa 11, 24123, Brescia, BS, Italy
| | - Giulia Guerri
- MAGI'S Lab, Via delle Maioliche 57/D, 38068, Rovereto, TN, Italy
| | - Matteo Bertelli
- MAGI'S Lab, Via delle Maioliche 57/D, 38068, Rovereto, TN, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Beatrice Vione
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Francesca Catapano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy.,Current Address: Department of Medical Biotechnologies, University of Siena, Strada delle Scotte, 4, 53100, Siena, SI, Italy
| | - Alice Gori
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Giuseppe Ramacieri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Guido Cocchi
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy.
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| |
Collapse
|
7
|
Antonaros F, Lanfranchi S, Locatelli C, Martelli A, Olivucci G, Cicchini E, Carosi Diatricch L, Mannini E, Vione B, Feliciello A, Ramacieri G, Onnivello S, Vianello R, Vitale L, Pelleri MC, Strippoli P, Cocchi G, Pulina F, Piovesan A, Caracausi M. One-carbon pathway and cognitive skills in children with Down syndrome. Sci Rep 2021; 11:4225. [PMID: 33608632 PMCID: PMC7895965 DOI: 10.1038/s41598-021-83379-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
This work investigates the role of metabolite levels in the intellectual impairment of subjects with Down syndrome (DS). Homocysteine, folate, vitamin B12, uric acid (UA), creatinine levels and MTHFR C677T genotype were analyzed in 147 subjects with DS. For 77 subjects, metabolite levels were correlated with cognitive tests. Griffiths-III test was administered to 28 subjects (3.08–6.16 years) and WPPSI-III test was administered to 49 subjects (7.08–16.08 years). Significant correlations were found among some metabolite levels and between homocysteine levels and MTHFR C677T genotype. Moreover, homocysteine, UA and creatinine levels resulted increased with age. We did not find any correlation between metabolites and cognitive test score in the younger group. Homocysteine showed statistically significant correlation with WPPSI-III subtest scores when its level is ≥ 7.35 µmol/L, remaining correlated in higher thresholds only for non-verbal area scores. Vitamin B12 showed correlations with all WPPSI-III subtest scores when its level is < 442 pg/mL. The relevance of the present findings is the detection of a specific metabolite threshold related with a better or worse cognitive score, suggesting that vitamin B12 and homocysteine may have a role in cognitive development in children with DS.
Collapse
Affiliation(s)
- Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Silvia Lanfranchi
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, 35131, Padua, PD, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Anna Martelli
- Neonatology Unit, Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Polyclinic, University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Giulia Olivucci
- Medical Genetics Unit, Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Polyclinic, University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Elena Cicchini
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Ludovica Carosi Diatricch
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Elisa Mannini
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Beatrice Vione
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Agnese Feliciello
- Neonatology Unit, Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Polyclinic, University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Giuseppe Ramacieri
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Sara Onnivello
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, 35131, Padua, PD, Italy
| | - Renzo Vianello
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, 35131, Padua, PD, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Guido Cocchi
- Neonatology Unit, Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Polyclinic, University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Francesca Pulina
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, 35131, Padua, PD, Italy.
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy.
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| |
Collapse
|
8
|
Altered Folate Homeostasis in Children with Down Syndrome: A Potential Basis for Enhanced Methotrexate Toxicity. J Pediatr 2020; 221:235-239. [PMID: 32111377 PMCID: PMC7247922 DOI: 10.1016/j.jpeds.2020.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 11/21/2022]
Abstract
Methotrexate is used to treat autoimmune and oncologic diseases in children with Down syndrome. However, increased methotrexate-related toxicity is reported in this population. We evaluated differences in the concentrations and distribution of erythrocyte folates in children with Down syndrome as a potential basis for this enhanced toxicity.
Collapse
|