1
|
Tripathy NS, Sahoo L, Paikray S, Dilnawaz F. Emerging nanoplatforms towards microenvironment-responsive glioma therapy. Med Oncol 2025; 42:46. [PMID: 39812745 DOI: 10.1007/s12032-024-02596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Gliomas are aggressive intracranial tumors of the central nervous system with a poor prognosis, high risk of recurrence, and low survival rates. Radiation, surgery, and chemotherapy are traditional cancer therapies. It is very challenging to accurately image and differentiate the malignancy grade of gliomas due to their heterogeneous and infiltrating nature and the obstruction of the blood-brain barrier. Imaging plays a crucial role in gliomas which significantly plays an important role in the accuracy of the diagnosis followed by any subsequent surgery or therapy. Other diagnostic methods (such as biopsies or surgery) are often very invasive. Preoperative imaging and intraoperative image-guided surgery perform the most significant safe resection. In recent years, the rapid growth of nanotechnology has opened up new avenues for glioma diagnosis and treatment. For better therapeutic efficacy, developing microenvironment-responsive nanoplatforms, including novel nanotherapeutic platforms of sonodynamic therapy, photodynamic therapy, and photothermal treatments, are employed for improved patient survival and better clinical control outcome. In this review recent advancement of multifunctional nanoplatforms leading toward treatment of glioma is discussed.
Collapse
Affiliation(s)
- Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Safal Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
2
|
Chen Z, Xie H, Liu J, Zhao J, Huang R, Xiang Y, Wu H, Tian D, Bian E, Xiong Z. Roles of TRPM channels in glioma. Cancer Biol Ther 2024; 25:2338955. [PMID: 38680092 PMCID: PMC11062369 DOI: 10.1080/15384047.2024.2338955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Gliomas are the most common type of primary brain tumor. Despite advances in treatment, it remains one of the most aggressive and deadly tumor of the central nervous system (CNS). Gliomas are characterized by high malignancy, heterogeneity, invasiveness, and high resistance to radiotherapy and chemotherapy. It is urgent to find potential new molecular targets for glioma. The TRPM channels consist of TRPM1-TPRM8 and play a role in many cellular functions, including proliferation, migration, invasion, angiogenesis, etc. More and more studies have shown that TRPM channels can be used as new therapeutic targets for glioma. In this review, we first introduce the structure, activation patterns, and physiological functions of TRPM channels. Additionally, the pathological mechanism of glioma mediated by TRPM2, 3, 7, and 8 and the related signaling pathways are described. Finally, we discuss the therapeutic potential of targeting TRPM for glioma.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - JiaJia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Ruixiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yufei Xiang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Haoyuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhang Xiong
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
| |
Collapse
|
3
|
do Nascimento THO, Pereira-Figueiredo D, Veroneze L, Nascimento AA, De Logu F, Nassini R, Campello-Costa P, Faria-Melibeu ADC, Souza Monteiro de Araújo D, Calaza KC. Functions of TRPs in retinal tissue in physiological and pathological conditions. Front Mol Neurosci 2024; 17:1459083. [PMID: 39386050 PMCID: PMC11461470 DOI: 10.3389/fnmol.2024.1459083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca2+, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types. TRPs depolarize excitable cells by increasing the influx of Ca2+, Na+, and other cations. Most TRP families are activated by temperature variations, membrane stretching, or chemical agents and, therefore, are defined as polymodal channels. All TPRs are expressed, at some level, in the central nervous system (CNS) and ocular-related structures, such as the retina and optic nerve (ON), except the TRPP in the ON. TRPC, TRPM, TRPV, and TRPML are found in the retinal pigmented cells, whereas only TRPA1 and TRPM are detected in the uvea. Accordingly, several studies have focused on the search to unravel the role of TRPs in physiological and pathological conditions related to the eyes. Thus, this review aims to shed light on endogenous and exogenous modulators, triggered cell signaling pathways, and localization and roles of each subfamily of TRP channels in physiological and pathological conditions in the retina, optic nerve, and retinal pigmented epithelium of vertebrates.
Collapse
Affiliation(s)
- Thaianne Hanah Oliveira do Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Louise Veroneze
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Amanda Alves Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | | | - Karin Costa Calaza
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Gandini MA, Zamponi GW. Navigating the Controversies: Role of TRPM Channels in Pain States. Int J Mol Sci 2024; 25:10284. [PMID: 39408620 PMCID: PMC11476983 DOI: 10.3390/ijms251910284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic pain is a debilitating condition that affects up to 1.5 billion people worldwide and bears a tremendous socioeconomic burden. The success of pain medicine relies on our understanding of the type of pain experienced by patients and the mechanisms that give rise to it. Ion channels are among the key targets for pharmacological intervention in chronic pain conditions. Therefore, it is important to understand how changes in channel properties, trafficking, and molecular interactions contribute to pain sensation. In this review, we discuss studies that have demonstrated the involvement of transient receptor potential M2, M3, and M8 channels in pain generation and transduction, as well as the controversies surrounding these findings.
Collapse
Affiliation(s)
- Maria A. Gandini
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gerald W. Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Hou YJ, Yang XX, He L, Meng HX. Pathological mechanisms of cold and mechanical stress in modulating cancer progression. Hum Cell 2024; 37:593-606. [PMID: 38538930 DOI: 10.1007/s13577-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 04/15/2024]
Abstract
Environmental temperature and cellular mechanical force are the inherent factors that participate in various biological processes and regulate cancer progress, which have been hot topics worldwide. They occupy a dominant part in the cancer tissues through different approaches. However, extensive investigation regarding pathological mechanisms in the carcinogenic field. After research, we found cold stress via two means to manipulate tumors: neuroscience and mechanically sensitive ion channels (MICHs) such as TRP families to regulate the physiological and pathological activities. Excessive cold stimulation mediated neuroscience acting on every cancer stage through the hypothalamus-pituitary-adrenocorticoid (HPA) to reach the target organs. Comparatively speaking, mechanical force via Piezo of MICHs controls cancer development. The progression of cancer depends on the internal activation of proto-oncogenes and the external tumorigenic factors; the above two means eventually lead to genetic disorders at the molecular level. This review summarizes the interaction of bidirectional communication between them and the tumor. It covers the main processes from cytoplasm to nucleus related to metastasis cascade and tumor immune escape.
Collapse
Affiliation(s)
- Yun-Jing Hou
- Harbin Medical University, Harbin, China
- Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin-Xin Yang
- Harbin Medical University, Harbin, China
- Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin He
- Department of Stomatology, Heilongjiang Provincial Hospital, Harbin, China
| | - Hong-Xue Meng
- Harbin Medical University, Harbin, China.
- Department of Pathology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, China.
| |
Collapse
|
6
|
Köles L, Ribiczey P, Szebeni A, Kádár K, Zelles T, Zsembery Á. The Role of TRPM7 in Oncogenesis. Int J Mol Sci 2024; 25:719. [PMID: 38255793 PMCID: PMC10815510 DOI: 10.3390/ijms25020719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This review summarizes the current understanding of the role of transient receptor potential melastatin-subfamily member 7 (TRPM7) channels in the pathophysiology of neoplastic diseases. The TRPM family represents the largest and most diverse group in the TRP superfamily. Its subtypes are expressed in virtually all human organs playing a central role in (patho)physiological events. The TRPM7 protein (along with TRPM2 and TRPM6) is unique in that it has kinase activity in addition to the channel function. Numerous studies demonstrate the role of TRPM7 chanzyme in tumorigenesis and in other tumor hallmarks such as proliferation, migration, invasion and metastasis. Here we provide an up-to-date overview about the possible role of TRMP7 in a broad range of malignancies such as tumors of the nervous system, head and neck cancers, malignant neoplasms of the upper gastrointestinal tract, colorectal carcinoma, lung cancer, neoplasms of the urinary system, breast cancer, malignant tumors of the female reproductive organs, prostate cancer and other neoplastic pathologies. Experimental data show that the increased expression and/or function of TRPM7 are observed in most malignant tumor types. Thus, TRPM7 chanzyme may be a promising target in tumor therapy.
Collapse
Affiliation(s)
- László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Polett Ribiczey
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Andrea Szebeni
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Kristóf Kádár
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| |
Collapse
|
7
|
Okada Y, Numata T, Sabirov RZ, Kashio M, Merzlyak PG, Sato-Numata K. Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: the roles and properties of TRPM2 and TRPM7. Front Cell Dev Biol 2023; 11:1246955. [PMID: 37842082 PMCID: PMC10576435 DOI: 10.3389/fcell.2023.1246955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell volume regulation (CVR) is a prerequisite for animal cells to survive and fulfill their functions. CVR dysfunction is essentially involved in the induction of cell death. In fact, sustained normotonic cell swelling and shrinkage are associated with necrosis and apoptosis, and thus called the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. Since a number of ubiquitously expressed ion channels are involved in the CVR processes, these volume-regulatory ion channels are also implicated in the NVI and AVD events. In Part 1 and Part 2 of this series of review articles, we described the roles of swelling-activated anion channels called VSOR or VRAC and acid-activated anion channels called ASOR or PAC in CVR and cell death processes. Here, Part 3 focuses on therein roles of Ca2+-permeable non-selective TRPM2 and TRPM7 cation channels activated by stress. First, we summarize their phenotypic properties and molecular structure. Second, we describe their roles in CVR. Since cell death induction is tightly coupled to dysfunction of CVR, third, we focus on their participation in the induction of or protection against cell death under oxidative, acidotoxic, excitotoxic, and ischemic conditions. In this regard, we pay attention to the sensitivity of TRPM2 and TRPM7 to a variety of stress as well as to their capability to physicall and functionally interact with other volume-related channels and membrane enzymes. Also, we summarize a large number of reports hitherto published in which TRPM2 and TRPM7 channels are shown to be involved in cell death associated with a variety of diseases or disorders, in some cases as double-edged swords. Lastly, we attempt to describe how TRPM2 and TRPM7 are organized in the ionic mechanisms leading to cell death induction and protection.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| | - Ravshan Z. Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Makiko Kashio
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
| | - Peter G. Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| |
Collapse
|
8
|
Szallasi A. "ThermoTRP" Channel Expression in Cancers: Implications for Diagnosis and Prognosis (Practical Approach by a Pathologist). Int J Mol Sci 2023; 24:9098. [PMID: 37240443 PMCID: PMC10219044 DOI: 10.3390/ijms24109098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Temperature-sensitive transient receptor potential (TRP) channels (so-called "thermoTRPs") are multifunctional signaling molecules with important roles in cell growth and differentiation. Several "thermoTRP" channels show altered expression in cancers, though it is unclear if this is a cause or consequence of the disease. Regardless of the underlying pathology, this altered expression may potentially be used for cancer diagnosis and prognostication. "ThermoTRP" expression may distinguish between benign and malignant lesions. For example, TRPV1 is expressed in benign gastric mucosa, but is absent in gastric adenocarcinoma. TRPV1 is also expressed both in normal urothelia and non-invasive papillary urothelial carcinoma, but no TRPV1 expression has been seen in invasive urothelial carcinoma. "ThermoTRP" expression can also be used to predict clinical outcomes. For instance, in prostate cancer, TRPM8 expression predicts aggressive behavior with early metastatic disease. Furthermore, TRPV1 expression can dissect a subset of pulmonary adenocarcinoma patients with bad prognosis and resistance to a number of commonly used chemotherapeutic agents. This review will explore the current state of this rapidly evolving field with special emphasis on immunostains that can already be added to the armoire of diagnostic pathologists.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
9
|
Zong GF, Deng R, Yu SY, Wang AY, Wei ZH, Zhao Y, Lu Y. Thermo-Transient Receptor Potential Channels: Therapeutic Potential in Gastric Cancer. Int J Mol Sci 2022; 23:ijms232315289. [PMID: 36499622 PMCID: PMC9740781 DOI: 10.3390/ijms232315289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/08/2022] Open
Abstract
Over the last decade, researchers have found abnormal expression of transient receptor potential (TRP) channels. In particular, members of the thermally sensitive subclass (thermo-TRPs) are involved in many disease processes. Moreover, they have a vital role in the occurrence and development of gastric cancer (GC). Accordingly, thermo-TRPs constitute a major pharmacological target, and the elucidation of the mechanisms underlying their response to physiological stimuli or drugs is key for notable advances in GC treatment. Therefore, this paper summarizes the existing literature about thermo-TRP protein expression changes that are linked to the incidence and progression of GC. The review also discusses the implication of such association to pathology and cell physiology and identifies potential thermo-TRP protein targets for diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Gang-Fan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Deng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Su-Yun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Nanjing 210023, China
| | - Ai-Yun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Hong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Nanjing 210023, China
- Correspondence: (Y.Z.); (Y.L.); Tel.: +86-025-13382098417 (Y.Z.); +86-02515605190001 (Y.L.)
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Correspondence: (Y.Z.); (Y.L.); Tel.: +86-025-13382098417 (Y.Z.); +86-02515605190001 (Y.L.)
| |
Collapse
|
10
|
Kuvaeva EE, Mertsalov IB, Simonova OB. Transient Receptor Potential (TRP) Family of Channel Proteins. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Fallah HP, Ahuja E, Lin H, Qi J, He Q, Gao S, An H, Zhang J, Xie Y, Liang D. A Review on the Role of TRP Channels and Their Potential as Drug Targets_An Insight Into the TRP Channel Drug Discovery Methodologies. Front Pharmacol 2022; 13:914499. [PMID: 35685622 PMCID: PMC9170958 DOI: 10.3389/fphar.2022.914499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 01/13/2023] Open
Abstract
Transient receptor potential (TRP) proteins are a large group of ion channels that control many physiological functions in our body. These channels are considered potential therapeutic drug targets for various diseases such as neurological disorders, cancers, cardiovascular disease, and many more. The Nobel Prize in Physiology/Medicine in the year 2021 was awarded to two scientists for the discovery of TRP and PIEZO ion channels. Improving our knowledge of technologies for their study is essential. In the present study, we reviewed the role of TRP channel types in the control of normal physiological functions as well as disease conditions. Also, we discussed the current and novel technologies that can be used to study these channels successfully. As such, Flux assays for detecting ionic flux through ion channels are among the core and widely used tools for screening drug compounds. Technologies based on these assays are available in fully automated high throughput set-ups and help detect changes in radiolabeled or non-radiolabeled ionic flux. Aurora's Ion Channel Reader (ICR), which works based on label-free technology of flux assay, offers sensitive, accurate, and reproducible measurements to perform drug ranking matching with patch-clamp (gold standard) data. The non-radiolabeled trace-based flux assay coupled with the ICR detects changes in various ion types, including potassium, calcium, sodium, and chloride channels, by using appropriate tracer ions. This technology is now considered one of the very successful approaches for analyzing ion channel activity in modern drug discovery. It could be a successful approach for studying various ion channels and transporters, including the different members of the TRP family of ion channels.
Collapse
Affiliation(s)
| | - Ekta Ahuja
- Aurora Biomed Inc., Vancouver, BC, Canada
| | | | - Jinlong Qi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Qian He
- Aurora Discovery Inc., Foshan, China
| | - Shan Gao
- Aurora Discovery Inc., Foshan, China
| | | | | | | | - Dong Liang
- Aurora Biomed Inc., Vancouver, BC, Canada
- Aurora Discovery Inc., Foshan, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
12
|
Chen J, Zhang M, Ma Z, Yuan D, Zhu J, Tuo B, Li T, Liu X. Alteration and dysfunction of ion channels/transporters in a hypoxic microenvironment results in the development and progression of gastric cancer. Cell Oncol (Dordr) 2021; 44:739-749. [PMID: 33856653 PMCID: PMC8338819 DOI: 10.1007/s13402-021-00604-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant cancers in the world and has only few treatment options and, concomitantly, a poor prognosis. It is generally accepted now that the tumor microenvironment, particularly that under hypoxia, plays an important role in cancer development. Hypoxia can regulate the energy metabolism and malignancy of tumor cells by inducing or altering various important factors, such as oxidative stress, reactive oxygen species (ROS), hypoxia-inducible factors (HIFs), autophagy and acidosis. In addition, altered expression and/or dysfunction of ion channels/transporters (ICTs) have been encountered in a variety of human tumors, including GC, and to play an important role in the processes of tumor cell proliferation, migration, invasion and apoptosis. Increasing evidence indicates that ICTs are at least partly involved in interactions between cancer cells and their hypoxic microenvironment. Here, we provide an overview of the different ICTs that regulate or are regulated by hypoxia in GC. CONCLUSIONS AND PERSPECTIVES Hypoxia is one of the major obstacles to cancer therapy. Regulating cellular responses and factors under hypoxia can inhibit GC. Similarly, altering the expression or activity of ICTs, such as the application of ion channel inhibitors, can slow down the growth and/or migration of GC cells. Since targeting the hypoxic microenvironment and/or ICTs may be a promising strategy for the treatment of GC, more attention should be paid to the interplay between ICTs and the development and progression of GC in such a microenvironment.
Collapse
Affiliation(s)
- Junling Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Dumin Yuan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China.
| |
Collapse
|
13
|
Rizopoulos T, Assimakopoulou M. Transient receptor potential (TRP) channels in human colorectal cancer: evidence and perspectives. Histol Histopathol 2021; 36:515-526. [PMID: 33528023 DOI: 10.14670/hh-18-308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of death in the civilized world. Transient receptor potential channels (TRPs) are a heterogeneous family of cation channels that play an important role in gastrointestinal physiology. TRPs have been linked with carcinogenesis in the colon and their role as potential therapeutic targets and prognostic biomarkers is under investigation.
Collapse
Affiliation(s)
- Theodoros Rizopoulos
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Patras, Greece.
| |
Collapse
|
14
|
TRPM8 facilitates proliferation and immune evasion of esophageal cancer cells. Biosci Rep 2020; 39:BSR20191878. [PMID: 31519770 PMCID: PMC6822499 DOI: 10.1042/bsr20191878] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer is seen with increasing incidence, but the underlying mechanism of esophageal cancer is still unknown. Transient receptor potential melastatin (TRPM) is non-selective cation channels. It has been verified that TRPM channels play crucial roles in development and progression of multiple tumors. Increasing studies have shown that TRPM8, a member of TRPM channels, promotes growth of tumors. However, it is still unclear whether TRPM8 has biological effect on esophageal cancer. In the current work, we found that TRPM8 was overexpressed in esophageal cancer samples and cell lines. Further investigation revealed that TRPM8 promoted proliferation of esophageal cancer cells. Next, the co-incubation assay including EC109 cells and CD8+ T cells revealed that TRPM8 overexpression and TRPM8 agonist reduced the cytotoxic effect of CD8+ T cell on esophageal cancer cells. Finally, we explored the mechanism and found that calcineurin-nuclear factor of activated T cells 3 (NFATc3) pathway contributed to the expression of programmed death ligand 1 (PD-L1) induced by TRPM8 overexpression and TRPM8 agonist, which might lead to immune evasion of esophageal cancer cells. These findings uncovered the crucial role of TRPM8 in the pathogenesis of esophageal cancer.
Collapse
|
15
|
Bonache MÁ, Martín-Escura C, de la Torre Martínez R, Medina A, González-Rodríguez S, Francesch A, Cuevas C, Roa AM, Fernández-Ballester G, Ferrer-Montiel A, Fernández-Carvajal A, González-Muñiz R. Highly functionalized β-lactams and 2-ketopiperazines as TRPM8 antagonists with antiallodynic activity. Sci Rep 2020; 10:14154. [PMID: 32843690 PMCID: PMC7447632 DOI: 10.1038/s41598-020-70691-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
The cool sensor transient receptor potential melastatin channel 8 (TRPM8) is highly expressed in trigeminal and dorsal root ganglia, playing a key role in cold hypersensitivity associated to different peripheral neuropathies. Moreover, these channels are aberrantly expressed in different cancers, and seem to participate in tumor progression, survival and invasion. Accordingly, the search for potent and selective TRPM8 modulators attracted great interest in recent years. We describe new heterocyclic TRPM8 antagonist chemotypes derived from N-cloroalkyl phenylalaninol-Phe conjugates. The cyclization of these conjugates afforded highly substituted β-lactams and/or 2-ketopiperazine (KP) derivatives, with regioselectivity depending on the N-chloroalkyl group and the configuration. These derivatives behave as TRPM8 antagonists in the Ca2+ microfluorometry assay, and confirmed electrophysiologically for the best enantiopure β-lactams 24a and 29a (IC50, 1.4 and 0.8 µM). Two putative binding sites by the pore zone, different from those found for typical agonists and antagonists, were identified by in silico studies for both β-lactams and KPs. β-Lactams 24a and 29a display antitumor activity in different human tumor cell lines (micromolar potencies, A549, HT29, PSN1), but correlation with TRPM8 expression could not be established. Additionally, compound 24a significantly reduced cold allodynia in a mice model of oxaliplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- M Ángeles Bonache
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Cristina Martín-Escura
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
- Alodia Farmacéutica SL, Santiago Grisolia 2, Tres Cantos, 28760, Madrid, Spain
| | | | - Alicia Medina
- IDiBE, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202, Elche, Spain
| | | | - Andrés Francesch
- PharmaMar S.A, Avda. de los Reyes 1, 28770, Colmenar Viejo, Spain
| | - Carmen Cuevas
- PharmaMar S.A, Avda. de los Reyes 1, 28770, Colmenar Viejo, Spain
| | - Ana María Roa
- Alodia Farmacéutica SL, Santiago Grisolia 2, Tres Cantos, 28760, Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Bais S, Greenberg RM. Schistosome TRP channels: An appraisal. Int J Parasitol Drugs Drug Resist 2020; 13:1-7. [PMID: 32250774 PMCID: PMC7138929 DOI: 10.1016/j.ijpddr.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023]
Abstract
Ion channels underlie electrical excitability in cells and are essential for a variety of functions, most notably neuromuscular and sensory activity. They are also validated targets for a preponderance of approved anthelmintic compounds. Transient receptor potential (TRP) channels constitute an ion channel superfamily whose members play important roles in sensory signaling, regulation of ion homeostasis, organellar trafficking, and other key cellular and organismal activities. Unlike most other ion channels, TRP channels are often polymodal, gated by a variety of mechanisms. Furthermore, TRP channels fall into several classes or subtypes based on sequence and structure. Until recently, there had been very little investigation of the properties and functions of TRP channels from parasitic helminths, including schistosomes, but that situation has changed in the past few years. Indeed, it is now clear that at least some schistosome TRP channels exhibit unusual pharmacological properties, and, intriguingly, both a mammalian and a schistosome TRP channel are activated by praziquantel, the current antischistosomal drug of choice. With the latest release of the Schistosoma mansoni genome database, several changes in predicted TRP channel sequences appeared, some of which were significant. This review updates and reassesses the TRP channel repertoire in S. mansoni, examines recent findings regarding these potential therapeutic targets, and provides guideposts for some of the physiological functions that may be mediated by these channels in schistosomes.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Wong KK, Hussain FA. TRPM4 is overexpressed in breast cancer associated with estrogen response and epithelial-mesenchymal transition gene sets. PLoS One 2020; 15:e0233884. [PMID: 32484822 PMCID: PMC7266295 DOI: 10.1371/journal.pone.0233884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Ion channels form an important class of drug targets in malignancies. Transient receptor potential cation channel subfamily M member 4 (TRPM4) plays oncological roles in various solid tumors. Herein, we examined TRPM4 protein expression profile by immunohistochemistry (IHC) in breast cancer cases compared with normal breast ducts, its association with clinico-demographical parameters, and its potential function in breast cancers by Gene Set Enrichment Analysis (GSEA). Data-mining demonstrated that TRPM4 transcript levels were significantly higher in The Cancer Genome Atlas series of breast cancer cases (n = 1,085) compared with normal breast tissues (n = 112) (p = 1.03 x 10−11). Our IHC findings in tissue microarrays showed that TRPM4 protein was overexpressed in breast cancers (n = 83/99 TRPM4+; 83.8%) compared with normal breast ducts (n = 5/10 TRPM4+; 50%) (p = 0.022). Higher TRPM4 expression (median frequency cut-off) was significantly associated with higher lymph node status (N1-N2 vs N0; p = 0.024) and higher stage (IIb-IIIb vs I-IIa; p = 0.005). GSEA evaluation in three independent gene expression profiling (GEP) datasets of breast cancer cases (GSE54002, n = 417; GSE20685, n = 327; GSE23720, n = 197) demonstrated significant association of TRPM4 transcript expression with estrogen response and epithelial-mesenchymal transition (EMT) gene sets (p<0.01 and false discovery rate<0.05). These gene sets were not enriched in GEP datasets of normal breast epithelium cases (GSE10797, n = 5; GSE9574, n = 15; GSE20437, n = 18). In conclusion, TRPM4 protein expression is upregulated in breast cancers associated with worse clinico-demographical parameters, and TRPM4 potentially regulates estrogen receptor signaling and EMT progression in breast cancer.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- * E-mail:
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
18
|
Stokłosa P, Borgström A, Kappel S, Peinelt C. TRP Channels in Digestive Tract Cancers. Int J Mol Sci 2020; 21:E1877. [PMID: 32182937 PMCID: PMC7084354 DOI: 10.3390/ijms21051877] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Cancers of the digestive tract are among the most prevalent types of cancer. These types of cancers are often diagnosed at a late stage, which results in a poor prognosis. Currently, many biomedical studies focus on the role of ion channels, in particular transient receptor potential (TRP) channels, in cancer pathophysiology. TRP channels show mostly non-selective permeability to monovalent and divalent cations. TRP channels are often dysregulated in digestive tract cancers, which can result in alterations of cancer hallmark functions, such as enhanced proliferation, migration, invasion and the inability to induce apoptosis. Therefore, TRP channels could serve as potential diagnostic biomarkers. Moreover, TRP channels are mostly expressed on the cell surface and ion channel targeting drugs do not need to enter the cell, making them attractive candidate drug targets. In this review, we summarize the current knowledge about TRP channels in connection to digestive tract cancers (oral cancer, esophageal cancer, liver cancer, pancreatic cancer, gastric cancer and colorectal cancer) and give an outlook on the potential of TRP channels as cancer biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, 3012 Bern, Switzerland; (A.B.); (S.K.); (C.P.)
| | | | | | | |
Collapse
|
19
|
Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019; 25:5732-5772. [PMID: 31636470 PMCID: PMC6801186 DOI: 10.3748/wjg.v25.i38.5732] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell. The functions of ion channels in the gastrointestinal (GI) tract influence a variety of cellular processes, many of which overlap with these hallmarks of cancer. In this review we focus on the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle, apoptosis, and migration. Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6 and TRPM2, have been implicated in GI cancers, especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer. Voltage-gated sodium channels (VGSCs) are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples. Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression. Zn2+ transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer (PC). More than 70 K+ channel genes, clustered in four families, are found expressed in the GI tract, where they regulate a range of cellular processes, including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract. Several distinct types of K+ channels are found dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are critical for a range of cellular and tissue processes in the GI tract, especially fluid balance in the colon. Most notable is CFTR, whose deficiency leads to mucus blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant risk for CRC and low levels of CFTR expression are associated with poor overall disease-free survival in sporadic CRC. Two other classes of chloride channels that are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 & 4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins have been reported to be down-regulated in CRC. In summary, it is clear, from the diverse influences of ion channels, that their aberrant expression and/or activity can contribute to malignant transformation and tumor progression. Further, because ion channels are often localized to the plasma membrane and subject to multiple layers of regulation, they represent promising clinical targets for therapeutic intervention including the repurposing of current drugs.
Collapse
Affiliation(s)
- Kyle J Anderson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Robert T Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| |
Collapse
|