1
|
Mo Y, Feng X, Su J, Chen G, Xian L. BZW2 is a potential regulator of non-small cell lung cancer progression. Gene 2025; 935:149055. [PMID: 39490647 DOI: 10.1016/j.gene.2024.149055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Personalized targeted therapy has become an important strategy for cancer treatment owing to its remarkable therapeutic efficacy and safety. However, drug resistance remains the primary cause of treatment failure. Basic leucine zipper and W2 domain 2 (BZW2), which is aberrantly expressed in cancer, has been implicated in tumor progression and may serve as a new therapeutic target. Therefore, the role of BZW2 in non-small cell lung cancer (NSCLC) requires further investigation. METHODS The expression and genetic alterations of BZW2 in pan-cancers were explored using The Cancer Genome Atlas (TCGA) PanCancer databases. The mRNA and protein levels of BZW2 in patients with NSCLC were verified in our cohort. Functional experiments including CCK8, colony formation, and transwell assays were performed to evaluate the impact of BZW2 on the proliferative, migratory, and invasive capacities of SK-MES-1 cells. Gene Set Enrichment Analysis was used to identify underlying biological processes and pathways. Single-cell RNA (scRNA) sequencing data were employed to investigate the tumor microenvironment of NSCLC and the co-expression of BZW2 and stemness-related genes. RESULTS Dysregulated BZW2 expression was observed in various malignant tumors. BZW2 expression was found to be significantly elevated in NSCLC. BZW2 depletion inhibited the growth, mobility, and invasive abilities of lung squamous cell carcinoma SK-MES-1 cells. BZW2 may be related to signaling pathways such as nucleotide excision repair, ubiquitin-mediated proteolysis, and the P53 signaling pathway. Biological processes, including translational initiation, tRNA processing, and RNA methylation, were observed to be enriched in the high-BZW2 group. Furthermore, there was a positive correlation between BZW2 and the m6A- and m5C-related genes. scRNA analysis revealed a co-expression relationship between BZW2 and stemness-related genes such as CD44, SOX9, and CD133. CONCLUSIONS Elevated BZW2 expression is associated with the proliferation, migration, and invasion of NSCLC, and BZW2 may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yan Mo
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xueyong Feng
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jincheng Su
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guoyong Chen
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lei Xian
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
2
|
Jin K, Li Y, Wei R, Liu Y, Wang S, Tian H. BZW2 promotes malignant progression in lung adenocarcinoma through enhancing the ubiquitination and degradation of GSK3β. Cell Death Discov 2024; 10:105. [PMID: 38424042 PMCID: PMC10904796 DOI: 10.1038/s41420-024-01879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
The role of Basic leucine zipper and W2 domains 2 (BZW2) in the advancement of different types of tumors is noteworthy, but its involvement and molecular mechanisms in lung adenocarcinoma (LUAD) remain uncertain. Through this investigation, it was found that the upregulation of BZW2 was observed in LUAD tissues, which was associated with an unfavorable prognosis for individuals diagnosed with LUAD, as indicated by data from Gene Expression Omnibus and The Cancer Genome Atlas databases. Based on the clinicopathologic characteristics of LUAD patients from the tissue microarray, both univariate and multivariate analyses indicated that BZW2 functioned as an independent prognostic factor for LUAD. In terms of mechanism, BZW2 interacted with glycogen synthase kinase-3 beta (GSK3β) and enhanced the ubiquitination-mediated degradation of GSK3β through slowing down of the dissociation of the ubiquitin ligase complex, which consists of GSK3β and TNF receptor-associated factor 6. Moreover, BZW2 stimulated Wnt/β-catenin signaling pathway through GSK3β, thereby facilitating the advancement of LUAD. In conclusion, BZW2 was a significant promoter of LUAD. The research we conducted identified a promising diagnostic and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Kai Jin
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yongmeng Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ruyuan Wei
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanfei Liu
- Department of Anesthesiology, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Shuai Wang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Maio G, Smith M, Bhawal R, Zhang S, Baskin JM, Li J, Lin H. Interactome Analysis Identifies the Role of BZW2 in Promoting Endoplasmic Reticulum-Mitochondria Contact and Mitochondrial Metabolism. Mol Cell Proteomics 2024; 23:100709. [PMID: 38154691 PMCID: PMC10835002 DOI: 10.1016/j.mcpro.2023.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023] Open
Abstract
Understanding the molecular functions of less-studied proteins is an important task of life science research. Despite reports of basic leucine zipper and W2 domain-containing protein 2 (BZW2) promoting cancer progression first emerging in 2017, little is known about its molecular function. Using a quantitative proteomic approach to identify its interacting proteins, we found that BZW2 interacts with both endoplasmic reticulum (ER) and mitochondrial proteins. We thus hypothesized that BZW2 localizes to and promotes the formation of ER-mitochondria contact sites and that such localization would promote calcium transport from ER to the mitochondria and promote ATP production. Indeed, we found that BZW2 localized to ER-mitochondria contact sites and that BZW2 knockdown decreased ER-mitochondria contact, mitochondrial calcium levels, and ATP production. These findings provide key insights into molecular functions of BZW2, the potential role of BZW2 in cancer progression, and highlight the utility of interactome data in understanding the function of less-studied proteins.
Collapse
Affiliation(s)
- George Maio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Mike Smith
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Jenny Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Howard Hughes Medical Institute, Cornell University, Ithaca, New York, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
4
|
Long X, Wen F, Li J, Huang X. LncRNA FEZF1-AS1 accelerates multiple myeloma progression by regulating IGF2BP1/BZW2 signaling. Hematol Oncol 2023; 41:694-703. [PMID: 37125488 DOI: 10.1002/hon.3157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 05/02/2023]
Abstract
Multiple myeloma (MM) is the second largest hematological tumor with clonal proliferation of malignant plasma cells. Growing reports have revealed that the dysregulation of long non-coding RNA (lncRNA) is involved in the MM progression. Nevertheless, lncRNA FEZF1 antisense RNA 1 (FEZF1-AS1) remain not deeply explored. The RNA transcripts and protein level of MM-associated molecule were measured by quantitative real-time polymerase chain reaction or western blot assays, respectively. The clinical correlation was analyzed by Pearson analysis. Molecular interactions among lncRNA FEZF1-AS1, basic leucine zipper and W2 domain 2 (BZW2) and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) were verified by RNA immunoprecipitation and RNA pull-down assays. The survival of MM cells was detected by cell counting kit-8 and flow cytometry assays. Xenograft tumor in vivo was performed to assess tumor growth. The RNA transcripts of lncRNA FEZF1-AS1, BZW2 and IGF2BP1 were upregulated in MM samples compared to those in healthy donors. Knockdown of lncRNA FEZF1-AS1 could inhibit the proliferation and induce cell apoptosis in vitro and in vivo. Besides, lncRNA FEZF1-AS1 could maintain the stability of BZW2 mRNA by interacting IGF2BP1. Moreover, BZW2 silence also downregulated the proliferation but enhanced apoptosis of MM cells, while BZW2 overexpression had an opposite role, which dramatically reversed the regulatory roles of lncRNA FEZF1-AS1. Altogether, lncRNA FEZF1-AS1 facilitated MM development by regulating IGF2BP1/BZW2 signaling, suggesting that lncRNA FEZF1-AS1 might be a candidate for MM treatment.
Collapse
Affiliation(s)
- Xingxing Long
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Feng Wen
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Junjun Li
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Xiaoqing Huang
- Department of Blood Transfusion, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
5
|
Agarwal S, Afaq F, Bajpai P, Behring M, Kim HG, Varambally A, Chandrashekar DS, Peter S, Al Diffalha S, Khushman M, Seeber A, Varambally S, Manne U. BZW2 Inhibition Reduces Colorectal Cancer Growth and Metastasis. Mol Cancer Res 2023; 21:698-712. [PMID: 37067340 PMCID: PMC10329991 DOI: 10.1158/1541-7786.mcr-23-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/06/2023] [Accepted: 03/17/2023] [Indexed: 04/18/2023]
Abstract
Because survival of patients with metastatic colorectal cancer remain poor, there is an urgent need to identify potential novel druggable targets that are associated with colorectal cancer progression. One such target, basic leucine zipper and W2 domains 2 (BZW2), is involved in regulation of protein translation, and its overexpression is associated with human malignancy. Thus, we investigated the expression and regulation of BZW2, assessed its role in activation of WNT/β-catenin signaling, identified its downstream molecules, and demonstrated its involvement in metastasis of colorectal cancer. In human colorectal cancers, high mRNA and protein expression levels of BZW2 were associated with tumor progression. BZW2-knockdown reduced malignant phenotypes, including cell proliferation, invasion, and spheroid and colony formation. BZW2-knockdown also reduced tumor growth and metastasis; conversely, transfection of BZW2 into BZW2 low-expressing colorectal cancer cells promoted malignant features, including tumor growth and metastasis. BZW2 expression was coordinately regulated by microRNA-98, c-Myc, and histone methyltransferase enhancer of zeste homolog 2 (EZH2). RNA sequencing analyses of colorectal cancer cells modulated for BZW2 identified P4HA1 and the long noncoding RNAs, MALAT1 and NEAT1, as its downstream targets. Further, BZW2 activated the Wnt/β-catenin signaling pathway in colorectal cancers expressing wild-type β-catenin. In sum, our study suggests the possibility of targeting BZW2 expression by inhibiting EZH2 and/or c-Myc. IMPLICATIONS FDA-approved small-molecule inhibitors of EZH2 can indirectly target BZW2 and because BZW2 functions as an oncogene, these inhibitors could serve as therapeutic agents for colorectal cancer.
Collapse
Affiliation(s)
- Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Michael Behring
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | | | - Shajan Peter
- Department of Medicine, Division of Gastroenterology, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Moh’d Khushman
- Department of Medicine, Division of Hematology and Oncology, Washington University, St. Louis, MO
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
6
|
Huang X, Yang Z, Li Y, Long X. m6A methyltransferase METTL3 facilitates multiple myeloma cell growth through the m6A modification of BZW2. Ann Hematol 2023:10.1007/s00277-023-05283-6. [PMID: 37222774 DOI: 10.1007/s00277-023-05283-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
N6-methyladenosine (m6A) methyltransferase-like 3 (METTL3) has been confirmed to be involved in multiple myeloma (MM) progression, and basic leucine zipper and W2 domains 2 (BZW2) is considered to be a regulator for MM development. However, whether METTL3 mediates MM progression by regulating BZW2 remains unclear. The messenger RNA (mRNA) and protein levels of METTL3 and BZW2 in MM specimens and cells were determined using quantitative real-time PCR and western blot analysis. Cell proliferation and apoptosis were assessed by cell counting kit 8 assay, 5-ethynyl-2'-deoxyuridine assay, colony formation assay, and flow cytometry. Methylated RNA immunoprecipitation-qPCR was used to detect the m6A modification level of BZW2. Xenograft tumor models were constructed to confirm the effect of METTL3 knockdown on MM tumor growth in vivo. Our results showed that BZW2 was upregulated in MM bone marrow specimens and cells. BZW2 downregulation reduced MM cell proliferation and promoted apoptosis, while its overexpression enhanced MM cell proliferation and inhibited apoptosis. METTL3 was highly expressed in MM bone marrow specimens, and its expression was positively correlated with BZW2 expression. BZW2 expression was positively regulated by METTL3. Mechanistically, METTL3 could upregulate BZW2 expression by modulating its m6A modification. Additionally, METTL3 accelerated MM cell proliferation and restrained apoptosis via increasing BZW2 expression. In vivo experiments showed that METTL3 knockdown reduced MM tumor growth by decreasing BZW2 expression. In conclusion, these data indicated that METTL3-mediated the m6A methylation of BZW2 to promote MM progression, suggesting a novel therapeutic target for MM.
Collapse
Affiliation(s)
- Xiaoqing Huang
- The First Affiliated Hospital, Department of Blood Transfusion, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Zhiyong Yang
- The First Affiliated Hospital, Department of Blood Transfusion, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yanwen Li
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Xingxing Long
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
7
|
Long X, Li J, Wen F, Cao Y, Luo Z, Luo C. miR-140-3p attenuated the tumorigenesis of multiple myeloma via attenuating BZW2. Hematology 2022; 27:173-180. [PMID: 35068373 DOI: 10.1080/16078454.2021.2009644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Among B-cell lymphoma, multiple myeloma (MM) is an incurable malignancy. miR-140-3p was known to be an inhibitor in malignant tumors. However, the function of miR-140-3p in MM remains unclear. METHODS qRT-PCR was performed to determine the expressions of miR-140-3p and BZW2 mRNA. The protein level of BZW2 was determined by the western blot. Cell viability or cell apoptosis was detected by the MTT assay or flow cytometry, respectively. Binding between miR-140-3p and BZW2 was validated using the dual luciferase assay. Xenograft model was applied to verify the results of in vitro study. RESULTS The level of miR-140-3p was significantly downregulated in MM. Overpexression of miR-140-3p impaired the proliferation of MM cell lines and induced apoptosis in MM cells. miR-140-3p was validated to target BZW2 and inhibit the expression of BZW2. BZW2 was involved in the regulation of miR-140-3p on MM cell vitality and apoptosis. In vivo study revealed that miR-140-3p impeded tumorigenesis of MM cell line in nude mice. CONCLUSION Our present study revealed that miR-140-3p served as a suppressor in MM by negatively regulating BZW2. Thus, miR-140-3p could act as a new target for treating MM.
Collapse
Affiliation(s)
- Xingxing Long
- Department of Hematology, The 1st Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People's Republic of China
| | - Junjun Li
- Department of Hematology, The 1st Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People's Republic of China
| | - Feng Wen
- Department of Hematology, The 1st Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People's Republic of China
| | - Yixiong Cao
- Department of Hematology, The 1st Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People's Republic of China
| | - Zeyu Luo
- Department of Hematology, The 1st Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People's Republic of China
| | - Cong Luo
- Department of Hematology, The 1st Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
8
|
Ge J, Mu S, Xiao E, Tian G, Tao L, Li D. Expression, oncological and immunological characterizations of BZW1/2 in pancreatic adenocarcinoma. Front Genet 2022; 13:1002673. [PMID: 36267402 PMCID: PMC9576853 DOI: 10.3389/fgene.2022.1002673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Despite the progress in early diagnosis and treatment, prognosis of pancreatic adenocarcinoma (PAAD) is still poor. Basic leucine zipper and W2 domain-containing protein 1 (BZW1) and protein 2 (BZW2) are attached to the basic leucine zipper (bZIP) superfamily. Recently, BZW1 was identified as an important role in glycolysis of PAAD. However, the comprehensive reports about BZW1/2 in PAAD are not sufficient. Methods: RNA-seq data in the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were retrospectively analyzed. We explored the expression of BZW1/2 in PAAD tissues and the associations between BZW1/2 and prognosis. In addition, the potential roles of BZW1/2 in tumor microenvironment (TME) of PAAD were analyzed. Finally, clinicopathological data of 49 patients with PAAD in our institution were collected. Immunohistochemistry was used to determine the expression of BZW1/2 in PAAD samples. Results: BZW1 and BZW2 were upregulated in PAAD tissues compared to normal tissues (p < 0.05). The expression of BZW1/2 were not significantly correlated with gender, grade and stage of PAAD (p > 0.05). High expression of BZW2 was an independent predictor for poor prognosis of PAAD (HR 1.834, 95%CI 1.303–2.581, p = 0.001). And a nomogram to predict overall survival (OS) of PAAD was established with a C-index of 0.685. BZW1 and BZW2 expression were positively associated with T cell mediated immune response to tumor cell and Th2 cells in xCell database. Tumor Immune Single-Cell Hub (TISCH) analyses indicated that BZW1 and BZW2 were mainly expressed in B cells and malignant cells. External cohort furtherly validated that high expression of BZW1 and BZW2 were predictors for poor prognosis of PAAD. Conclusion: We found that BZW1 and BZW2 are highly expressed in malignant cells and B cells in the TME of PAAD. BZW2 is an independent predictor for OS of PAAD. BZW1 and BZW2 expression are positively associated with T cell mediated immune response to tumor cell and Th2 cells in PAAD.
Collapse
Affiliation(s)
| | | | | | | | | | - Deyu Li
- *Correspondence: Lianyuan Tao, ; Deyu Li,
| |
Collapse
|
9
|
Chen L, Jin C, Liu H, Feng R, Li Z, Zhang J. Analysis of the role of Ly-1 antibody reactive in different cancer types. Bioengineered 2021; 12:9452-9462. [PMID: 34696677 PMCID: PMC8809990 DOI: 10.1080/21655979.2021.1995100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
LYAR (Ly-1 antibody reactive) is a transcription factor with a specific DNA-binding domain, which plays a key role in the regulation of embryonic stem cell self-renewal and differentiation. However, the role of LYAR in human cancers remains unclear. This study aimed to analyze the prognostic value of LYAR in cancer. In this study, we evaluated the prognostic value of LYAR in various tumors. We research found that, compared with normal tissues, LYAR levels werehigher in a variety of tumors. LYAR expression level was associated with poor overall survival, progression-free interval, and disease-specific survival. LYAR expression was also related to tumor grade, stage, age, and tumor status. Cell counting kit-8, Transwell, and wound healing assay showed that knocking out LYAR significantly inhibited the proliferation, migration, and invasion of hepatocellular carcinoma cells. In addition, this study found that LYARexpression was significantly positively correlated with MKI67IP, BZW2, and CCT2. Gene set enrichment analysis results showed that samples with high LYAR expression levels were rich in spliceosomes, RNA degradation, pyrimidine metabolism, cell cycle, nucleotide excision repair, and base excision repair.
Collapse
Affiliation(s)
- Linlin Chen
- General Surgery, Affiliated Hospital of West Anhui Health Vocational College, Luan,237000, China.,West Anhui Health Vocational College, Luan, 237000, China
| | - Congwen Jin
- General Surgery, Affiliated Hospital of West Anhui Health Vocational College, Luan,237000, China.,West Anhui Health Vocational College, Luan, 237000, China
| | - Hao Liu
- General Surgery, Affiliated Hospital of West Anhui Health Vocational College, Luan,237000, China.,West Anhui Health Vocational College, Luan, 237000, China
| | - Rongmei Feng
- Critical Care Medicine, The Lu'an Hospital Affiliated to Anhui Medical University, Luan,237000, China.,Critical Care Medicine, The Lu'an People's Hospital, Luan,237000, China
| | - Zhengdong Li
- General Surgery, Affiliated Hospital of West Anhui Health Vocational College, Luan,237000, China.,West Anhui Health Vocational College, Luan, 237000, China
| | - Jiasheng Zhang
- Emergency surgery, The Lu'an Hospital Affiliated to Anhui Medical University, Luan,237000, China.,Emergency surgery, The Lu'an People's Hospital, Luan,237000, China
| |
Collapse
|
10
|
Kaitoh K, Yamanishi Y. TRIOMPHE: Transcriptome-Based Inference and Generation of Molecules with Desired Phenotypes by Machine Learning. J Chem Inf Model 2021; 61:4303-4320. [PMID: 34528432 DOI: 10.1021/acs.jcim.1c00967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the most challenging tasks in the drug-discovery process is the efficient identification of small molecules with desired phenotypes. In this study, we propose a novel computational method for omics-based de novo drug design, which we call TRIOMPHE (transcriptome-based inference and generation of molecules with desired phenotypes). We investigated the correlation between chemically induced transcriptome profiles (reflecting cellular responses to compound treatment) and genetically perturbed transcriptome profiles (reflecting cellular responses to gene knock-down or gene overexpression of target proteins) in terms of ligand-target interactions. Subsequently, we developed novel machine learning methods to generate the chemical structures of new molecules with desired transcriptome profiles in the framework of a variational autoencoder. The use of desired transcriptome profiles enables the automatic design of molecules that are likely to have bioactivities for target proteins of interest. We showed that our methods can generate chemically valid molecules that are likely to have biological activities on 10 target proteins; moreover, they can outperform previous methods that had the same objective. Our omics-based structure generator is expected to be useful for the de novo design of drugs for a variety of target proteins.
Collapse
Affiliation(s)
- Kazuma Kaitoh
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
11
|
Fu J, Pan J, Yang X, Zhang Y, Shao F, Chen J, Huang K, Wang Y. Mechanistic study of lncRNA UCA1 promoting growth and cisplatin resistance in lung adenocarcinoma. Cancer Cell Int 2021; 21:505. [PMID: 34544452 PMCID: PMC8454127 DOI: 10.1186/s12935-021-02207-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Aim This study aimed to explore the mechanism of LncRNA urothelial carcinoma-associated 1 (UCA1) promoting cisplatin resistance in lung adenocarcinoma (LUAD). Method The UCA1 expression level in LUAD cell lines was detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). We overexpressed UCA1 in A549 cells and downregulated UCA1 in A549/DDP cells by the lentivirus‑mediated technique. Subsequently, in vitro, and in vivo functional experiments were performed to investigate the functional roles of UCA1 in the growth and metastasis of LUAD cell lines. Furthermore, RNA pulldown, mass spectrometry, and RNA immunoprecipitation technique were performed to analyze various downstream target factors regulated by UCA1. Results The results revealed a higher UCA1 expression level in A549/DDP cells and LUAD tissues than in A549 cells and adjacent cancer tissues. UCA1 expression was significantly associated with distant metastasis, clinical stage, and survival time of patients with LUAD. UCA1 overexpression significantly increased the proliferation, invasion, clone formation, and cisplatin resistance ability and enhanced the expression levels of proliferating cell nuclear antigen and excision repair cross-complementing gene 1 in A549 cells. However, these trends were mostly reversed after the knockdown of UCA1 in A549/DDP cells. Tumorigenic assays in nude mice showed that UCA1 knockdown significantly inhibited tumor growth and reduced cisplatin resistance. Enolase 1 was the RNA-binding protein (RBP) of UCA1. Conclusion Based on the results, we concluded that UCA1 promoted LUAD progression and cisplatin resistance and hence could be a potential diagnostic marker and therapeutic target in patients with LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02207-0.
Collapse
Affiliation(s)
- Jiali Fu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiang Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Fanggui Shao
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jie Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
12
|
Li G, Lu A, Chen A, Geng S, Xu Y, Chen X, Yang J. BZW2/5MP1 acts as a promising target in hepatocellular carcinoma. J Cancer 2021; 12:5125-5135. [PMID: 34335929 PMCID: PMC8317536 DOI: 10.7150/jca.53282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Basic leucine zipper and W2 domain 2 (BZW2), also known as 5MP1, is a protein related to translation regulation. Evidence from previous studies indicates that BZW2 is involved in tumorigenesis in several cancers. However, little is known about the role of BZW2 in hepatocellular carcinoma (HCC). In this study, we first analyzed the gene expression profile of BZW2 in multiple HCC datasets. Next, we explored the biological effects of BZW2 in HCC cell lines. BZW2 was overexpressed in different HCC cohorts. Multivariate analysis confirmed that increased BZW2 expression is an independent prognostic indicator of shorter overall survival. BZW2 coexpressed genes were mainly enriched in the biological processes of ribonucleoprotein complex biogenesis, rRNA metabolism, translational initiation, and negative regulation of metabolic processes. BZW2 depletion reduced proliferation, clonality, and invasion and increased apoptosis in MHCC97-H cells. Furthermore, BZW2 overexpression or knockdown enhanced or impaired c-Myc expression, respectively. Overall, these findings identified BZW2 as a biomarker of HCC and provided novel insight that the effect of BZW2 on the translatome is a potential mechanism that promotes HCC progression via the c-Myc pathway.
Collapse
Affiliation(s)
- Guoxiong Li
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Anqian Lu
- Department of Translational Medicine Center, Affiliated Hospital of Hangzhou Normal University, Institute of Hepatology and Metabolic Diseases of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Anna Chen
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China.,Department of Translational Medicine Center, Affiliated Hospital of Hangzhou Normal University, Institute of Hepatology and Metabolic Diseases of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Shuang Geng
- Department of Translational Medicine Center, Affiliated Hospital of Hangzhou Normal University, Institute of Hepatology and Metabolic Diseases of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yu Xu
- Department of Translational Medicine Center, Affiliated Hospital of Hangzhou Normal University, Institute of Hepatology and Metabolic Diseases of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Xin Chen
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Jin Yang
- Department of Translational Medicine Center, Affiliated Hospital of Hangzhou Normal University, Institute of Hepatology and Metabolic Diseases of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
13
|
Liu L, Zhao J, Peng Y, Yang M, Zhang L, Jin X. miR-let-7a-5p Inhibits Invasion and Migration of Hepatoma Cells by Regulating BZW2 Expression. Onco Targets Ther 2020; 13:12269-12279. [PMID: 33273832 PMCID: PMC7708316 DOI: 10.2147/ott.s278954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose This study was performed to investigate the effect of miRNA let-7a-5p on the proliferation, invasion, and migration of human hepatoma cells as well as to determine BZW2 expression in these cells. Methods Western blotting and real-time quantitative polymerase chain reaction were used to detect changes in the expression of miRNA let-7a-5p and BZW2 protein and gene, respectively. A luciferase reporter gene assay was used to examine whether BZW2 is the target gene of miR-let-7a-5p. The effect of miR-let-7a-5p on the invasion, migration, and proliferation of human hepatoma Bel-7404 and HepG2 cells was determined using the transwell invasion assay, scratch test, and CCK-8 assay, respectively. Flow cytometry was used to assess the effect of miR-let-7a-5p and BZW2 expression on apoptosis of hepatoma cells. Results The luciferase reporter gene assay identified BZW2 as the target gene of miR-let-7a-5p. Moreover, increased expression of miR-let-7a-5p was found to significantly decrease BZW2 expression; inhibit proliferation, invasion, and migration; and promote apoptosis of hepatoma cells. Conclusion miR-let-7a-5p can inhibit proliferation, invasion, and migration as well as promote apoptosis of hepatoma cells by decreasing BZW2 expression.
Collapse
Affiliation(s)
- Ling Liu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jinfeng Zhao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Ying Peng
- Department of International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and Standards, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Manyi Yang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Lihua Zhang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xin Jin
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
14
|
Liu J, Yang T, Zhang Y, Wang S. Promotion of BZW2 by LINC00174 through miR-4500 inhibition enhances proliferation and apoptosis evasion in laryngeal papilloma. Cancer Cell Int 2020; 20:471. [PMID: 33005104 PMCID: PMC7525952 DOI: 10.1186/s12935-020-01559-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background We aimed to explore the roles of basic leucine zipper and W2 domains (BZW) 2 in the human papillomavirus-infected laryngeal papillomatosis. Methods In the present study, BZW 2 knockdown and overexpressed cell lines were constructed. CCK-8 and colony formation assays were used to determine cell proliferation. Caspase-3 activity and nucleosomes fragmentation assays were used to determine cell apoptosis. qRT-PCR and Western blot were employed to evaluate the mRNA and protein levels of target genes, respectively. Luciferase and biotin-coupled miRNA pulldown assays were used to examine the interactions between mRNA and mRNA. Results We observed the levels of BZW2 were up-regulated in the laryngeal papilloma (LP) tissues as compared with adjacent tissues. The knockdown of BZW2 significantly inhibited cell proliferation and promoted cell apoptosis in the LP cells. Additionally, we identified the expressions of BZW2 negatively regulated by miR-4500. Luciferase and biotin-coupled miRNA pulldown assays demonstrated that LINC00174 competed with the BZW2 for binding with miR-4500. Moreover, the results showed that LINC00174/miR-4500/BZW2 axis regulated cell proliferation and apoptosis. Conclusion Our results demonstrated that the regulation of LINC00174/miR-4500/BZW2 axis might be used as an effective strategy for treatment of human papillomavirus-infected laryngeal papillomatosis.
Collapse
Affiliation(s)
- Jiajia Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Ying Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Shuhui Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| |
Collapse
|
15
|
Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang WW, Reva B, Krek A, Ji J, Song X, Liu W, Hong R, Yao L, Blumenberg L, Savage SR, Wendl MC, Wen B, Li K, Tang LC, MacMullan MA, Avanessian SC, Kane MH, Newton CJ, Cornwell M, Kothadia RB, Ma W, Yoo S, Mannan R, Vats P, Kumar-Sinha C, Kawaler EA, Omelchenko T, Colaprico A, Geffen Y, Maruvka YE, da Veiga Leprevost F, Wiznerowicz M, Gümüş ZH, Veluswamy RR, Hostetter G, Heiman DI, Wyczalkowski MA, Hiltke T, Mesri M, Kinsinger CR, Boja ES, Omenn GS, Chinnaiyan AM, Rodriguez H, Li QK, Jewell SD, Thiagarajan M, Getz G, Zhang B, Fenyö D, Ruggles KV, Cieslik MP, Robles AI, Clauser KR, Govindan R, Wang P, Nesvizhskii AI, Ding L, Mani DR, Carr SA. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 2020; 182:200-225.e35. [PMID: 32649874 PMCID: PMC7373300 DOI: 10.1016/j.cell.2020.06.013] [Citation(s) in RCA: 430] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.
Collapse
Affiliation(s)
- Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02115, USA.
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wen-Wei Liang
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Runyu Hong
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lijun Yao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lili Blumenberg
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael C Wendl
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lauren C Tang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramani B Kothadia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Emily A Kawaler
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tatiana Omelchenko
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Yosef E Maruvka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, Poznań, 61-701, Poland; International Institute for Molecular Oncology, Poznań, 60-203, Poland
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajwanth R Veluswamy
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, 21224, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Ramaswamy Govindan
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
16
|
Chandrashekar DS, Golonka RM, Yeoh BS, Gonzalez DJ, Heikenwälder M, Gerwirtz AT, Varambally S, Vijay-Kumar M. Fermentable fiber-induced hepatocellular carcinoma in mice recapitulates gene signatures found in human liver cancer. PLoS One 2020; 15:e0234726. [PMID: 32559205 PMCID: PMC7304627 DOI: 10.1371/journal.pone.0234726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most malignant form of primary liver cancer, is the fourth most prevalent cause of cancer mortality globally. It was recently discovered that the dietary fermentable fiber, inulin, can reprogram the murine liver to favor HCC development in a gut microbiota-dependent manner. Determining the molecular pathways that are either over expressed or repressed during inulin-induced HCC would provide a platform of potential therapeutic targets. In the present study, we have combined analysis of the novel inulin-induced HCC murine model and human HCC samples to identify differentially expressed genes (DEGs) in hepatocarcinogenesis. Hepatic transcriptome profiling revealed that there were 674 DEGs in HCC mice compared to mice safeguarded from HCC. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis uncovered enrichment in ECM-receptor interaction, steroid hormone biosynthesis, PPAR signaling pathway, focal adhesion and protein digestion and absorption during inulin-induced HCC. Tandem mass tag based quantitative, multiplexed proteomic analysis delineated 57 differentially expressed proteins, where the over-expressed proteins were associated with cell adhesion molecules, valine, leucine and isoleucine degradation and ECM-receptor interaction. After obtaining the human orthologs of the mouse genes, we did a comparison analysis to level 3 RNA-seq data found in the Cancer Genome Atlas (TCGA) database, corresponding to human HCC (n = 361) and healthy liver (n = 50) samples. Out of the 549 up-regulated and 68 down-regulated human orthologs identified, 142 genes (137 significantly over-expressed and 5 significantly under-expressed) were associated with human HCC. Using univariate survival analysis, we found 27 over-expressed genes involved in cell-cell adhesion and cell division that were associated with poor HCC patient survival. Overall, the genetic and proteomics signatures highlight potential underlying mechanisms in inulin-induced HCC and support that this murine HCC model is human relevant.
Collapse
Affiliation(s)
| | - Rachel M. Golonka
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Beng San Yeoh
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - David J. Gonzalez
- Department of Pharmacology, School of Medicine, and The School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew T. Gerwirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
- * E-mail: (MVK); (SV)
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- * E-mail: (MVK); (SV)
| |
Collapse
|
17
|
Huang L, Chen S, Fan H, Ai F, Sheng W. BZW2 promotes the malignant progression of colorectal cancer via activating the ERK/MAPK pathway. J Cell Physiol 2019; 235:4834-4842. [PMID: 31643092 DOI: 10.1002/jcp.29361] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/07/2019] [Indexed: 01/21/2023]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant solid cancers worldwide involving the dysregulation of multiple signaling molecules. However, the role and corresponding mechanism of basic leucine zipper and W2 domains 2 (BZW2) in CRC development, to our knowledge, has not been reported. We found BZW2 was overexpressed in human CRC tissues compared with that in paired adjacent colorectal samples. BZW2 overexpression was closely associated with tumor T stage (p = .030), metastatic lymph nodes (p = .037), TNM stage (p = .018) and the worse prognosis of CRC patients (p = .009). Moreover, BZW2 was an independent disadvantage prognostic factor (p = .031). BZW2 also showed an increased expression in different invasive CRC cell lines. Its silencing and overexpression diminished and increased cell proliferation, invasion, and migration in Colo205 and HCT116 cells via specifically activating of extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling. Moreover, ERK/MAPK inhibitor PD98059 reverse the enhancement of cell proliferation, invasion, and migration in BZW2 overexpressing HCT116 cells. BZW2 silencing also inhibited subcutaneous tumors growth and p-ERK expression in vivo. BZW2 promotes the malignant progression of CRC via activating ERK/MAPK signaling, which provided a promising gene target therapy for CRC.
Collapse
Affiliation(s)
- Longping Huang
- Department of General and Hepatobiliary Surgery, The Fourth People's Hospital of Shenyang city, Shenyang, China
| | - Si Chen
- Department of Anesthesiology, The Fourth People's Hospital of Shenyang city, Shenyang, China
| | - Haijun Fan
- Department of General and Hepatobiliary Surgery, The Fourth People's Hospital of Shenyang city, Shenyang, China
| | - Fan Ai
- Department of General and Hepatobiliary Surgery, The Fourth People's Hospital of Shenyang city, Shenyang, China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, China
| |
Collapse
|