1
|
Fouad BM, Abdel-Ghany AA, Kandeil MA, Ibrahim IT. Protective effects of Silibinin and cinnamic acid against paraquat-induced lung toxicity in rats: impact on oxidative stress, PI3K/AKT pathway, and miR-193a signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03511-y. [PMID: 39453500 DOI: 10.1007/s00210-024-03511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Levels of reactive oxygen species (ROS) are the primary determinants of pulmonary fibrosis. It was discovered that antioxidants can ameliorate pulmonary fibrosis caused by prolonged paraquat (PQ) exposure. However, research on the precise mechanisms by which antioxidants influence the signaling pathways implicated in pulmonary fibrosis induced by paraquat is still insufficient. This research utilized a rat model of pulmonary fibrosis induced by PQ to examine the impacts of Silibinin (Sil) and cinnamic acid (CA) on pulmonary fibrosis, with a specific focus on pro-fibrotic signaling pathways and ROS-related autophagy. Lung injury induced by paraquat was demonstrated to be associated with oxidative stress and inflammation of the lungs, downregulated (miR-193a), and upregulated PI3K/AKT/mTOR signaling lung tissues. Expression levels of miR-193a were determined with quantitative real-time PCR, protein level of protein kinase B (Akt), and phosphoinositide 3-Kinase (PI3K) which were determined by western blot analysis. Hydroxyproline levels (HYP) and transforming growth factor-β1 (TGF-β1) were measured by ELISA, malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione peroxidase (GSH), and catalase and were measured in lung tissue homogenates colorimetrically using spectrophotometer. Long-term exposure to paraquat resulted in decreased PI3K/AKT signaling, decreased cell autophagy, increased oxidative stress, and increased pulmonary fibrosis formation. Silibinin and cinnamic acid also decreased oxidative stress by increasing autophagy and miR-193a expression, which in turn decreased pulmonary fibrosis. These effects were associated by low TGF-β1. Silibinin and cinnamic acid inhibited PQ-induced PI3K/AKT by stimulating miR-193-a expression, thus attenuating PQ-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Basma M Fouad
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt.
| | - A A Abdel-Ghany
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
- Biochemistry Department, Faculty of Pharmacy, Al-Azher University, Assiut, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ibrahim T Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
2
|
Mohammadloo A, Asgari Y, Esmaeili-Bandboni A, Mazloomi MA, Ghasemi SF, Ameri S, Miri SR, Hamzelou S, Mahmoudi HR, Veisi-Malekshahi Z. The Potential of Circulating miR-193b, miR-146b-3p and miR-483-3p as Noninvasive Biomarkers in Cutaneous Melanoma Patients. Mol Biotechnol 2024; 66:2830-2840. [PMID: 37934389 DOI: 10.1007/s12033-023-00893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/04/2023] [Indexed: 11/08/2023]
Abstract
Melanoma is a destructive skin disease with few therapeutic options in the developed stage and therefore there is a critical need for reliable biomarkers for early diagnosis. In this context, microRNAs could play an important role as diagnostic biomarkers. Three datasets with accession numbers GSE31568, GSE61741 and GSE20994 were downloaded from the Gene Expression Omnibus (GEO) database. MATLAB software was used to analyze differentially expressed miRNAs between cutaneous melanoma plasma samples and normal plasma samples (control). Plasma levels of miR-193b, miR-146b-3p and miR-483-3p were evaluated by the RT-PCR method. Furthermore, linear regression followed by receiver operating characteristic analyses was performed to estimate whether selected plasma miRNAs were able to distinguish between cases and controls. Finally, the data were analyzed by unpaired Mann-Whitney U test using Graph pad prism 8 computer software. Specifically, miR-193b and miR-146b-3p were downregulated in the plasma of melanoma patients compared with control groups which were decreased 5 × 10 6 -fold in miR-193b and 58-fold in miR-146b-3p, while miR-483-3p was upregulated 3.5-fold. After receiver operating characteristic (ROC) curve analysis, miR-193b with the most area under the curve (AUC: 1.00, 95% confidence interval 1.00-1.00, p < 0.0001) had the best discriminatory power, and miR-146b-3p had the large area under the curve (AUC: 0.96, 95% confidence interval 0.96-1.00, p < 0.0001) and consequently the high discriminatory power. Between these three miRNAs, miR-193b and miR-146b-3p had a high capacity to distinguish between melanoma patients and control groups that are appropriate to be applied in melanoma diagnosis as an early and noninvasive method.
Collapse
Affiliation(s)
- Atefeh Mohammadloo
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aghil Esmaeili-Bandboni
- Department of Medical Biotechnology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Ali Mazloomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Fatemeh Ghasemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Ameri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Shahin Hamzelou
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mahmoudi
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi-Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Liu B, Liu L, Liu Y. Targeting cell death mechanisms: the potential of autophagy and ferroptosis in hepatocellular carcinoma therapy. Front Immunol 2024; 15:1450487. [PMID: 39315094 PMCID: PMC11416969 DOI: 10.3389/fimmu.2024.1450487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a type of cell death that plays a remarkable role in the growth and advancement of malignancies including hepatocellular carcinoma (HCC). Non-coding RNAs (ncRNAs) have a considerable impact on HCC by functioning as either oncogenes or suppressors. Recent research has demonstrated that non-coding RNAs (ncRNAs) have the ability to control ferroptosis in HCC cells, hence impacting the advancement of tumors and the resistance of these cells to drugs. Autophagy is a mechanism that is conserved throughout evolution and plays a role in maintaining balance in the body under normal settings. Nevertheless, the occurrence of dysregulation of autophagy is evident in the progression of various human disorders, specifically cancer. Autophagy plays dual roles in cancer, potentially influencing both cell survival and cell death. HCC is a prevalent kind of liver cancer, and genetic mutations and changes in molecular pathways might worsen its advancement. The role of autophagy in HCC is a subject of debate, as it has the capacity to both repress and promote tumor growth. Autophagy activation can impact apoptosis, control proliferation and glucose metabolism, and facilitate tumor spread through EMT. Inhibiting autophagy can hinder the growth and spread of HCC and enhance the ability of tumor cells to respond to treatment. Autophagy in HCC is regulated by several signaling pathways, such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs. Utilizing anticancer drugs to target autophagy may have advantageous implications for the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Gharibi S, Moghimi B, Mahmoudi MB, Shahvazian E, Yazd EF, Yadegari M, Tahoori MT, Yazdanpanah E, Haghmorad D, Oksenych V. Dysregulation of miR-223, miR-146a, and miR-193a Expression Profile in Acute and Chronic Phases of Experimental Autoimmune Encephalomyelitis in C57BL/6 Mice. Cells 2024; 13:1499. [PMID: 39273069 PMCID: PMC11393975 DOI: 10.3390/cells13171499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease with an unknown etiology. The purpose of this research was to assess miR-223, miR-146a, and miR-193a in acute and chronic phases of experimental autoimmune encephalomyelitis (EAE) mice to consider the possible role of these genes in the pathogenesis of MS. EAE induction was given by myelin oligodendrocyte glycoprotein peptide on female C57BL/6 mice. Clinical scores and other criteria were followed daily until day 21 for the acute group and day 77 for the chronic group. At the end of the course, inflammation and demyelination of the central nervous system (CNS) were assessed by histological analysis. MicroRNA expression levels were assessed by real-time PCR. EAE development attenuated in the chronic group, and histological analysis showed less infiltration and demyelination in the chronic group compared to the acute group. The upper expression of miR-223 is demonstrated in the acute phase of EAE. Moreover, the expression levels of miR-146a and miR-193a decreased in the chronic phase of EAE. MiR-223 showed a highly coordinated elevation in the acute phase both in vivo and in vitro. MiR-146a shares a pathway with miR-223 through effecting IL-6 expression. Further studies are needed to reveal their impact on EAE and possible applications as drug targets and biomarkers.
Collapse
Affiliation(s)
- Saba Gharibi
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University 1 Gheringhap Street, Geelong, VIC 3220, Australia
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bahram Moghimi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ehsan Farashahi Yazd
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Yadegari
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Taher Tahoori
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Esmaeil Yazdanpanah
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
5
|
Almatrafi TA, Lakshmaiya N, Almohaimeed HM, Chakravarthi S, Amin AH, Jafer A, Almars AI, Basabrain AA, Alghamdi YS, Saadh MJ, Akhavan-Sigari R. Reducing metastasis ability of gastric cancer cell line by targeting MMP16 using miR-193a-5p and 5-FU. Adv Med Sci 2024; 69:463-473. [PMID: 39341599 DOI: 10.1016/j.advms.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/21/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE Co-administration of microRNAs and chemotherapy drugs effectively treats several cancers. The current study sought to investigate the function of matrix metalloproteinase 16 (MMP16) and miR-193a-5p in the pathogenesis of gastric cancer (GC). MATERIALS/METHODS Sixty-five surgical patients, 15 receiving 5-fluorouracil (5-FU), provided GC and adjacent non-cancerous tissue. Following that, qPCR was used to assess the expression levels of MMP16 and miR-193a-5p in GC cells. The impact of miR-193a-5p and 5-FU administration on MMP16 mRNA expression was evaluated using qRT-PCR and Western blotting. MTT and Scratch tests were also conducted to assess their effects on cell viability and migration. Moreover, a rescue experiment using an MTT assay was performed. Using flow cytometry, the apoptotic rate was calculated. Finally, it was evaluated how MMP16 and miR-193a-5p related to the clinicopathological characteristics of the patients. RESULTS The current study found that while MMP16 expression increased in GC patients (P < 0.0001), miR-193a-5p expression significantly decreased (P < 0.001). MMP16 down-regulation was another effect of miR-193a-5p replacement, particularly when 5-FU was added (P < 0.01). In addition, this study found that miR-193a-5p, by concentrating on MMP16, decreased the migration of GC cells brought on by MMP16. In GC cell lines, miR-193 and 5-FU induce apoptosis, with the 5-FU being more pronounced when combined with mir-193, according to flow cytometry results. A strong correlation was also found between clinicopathological traits associated with MMP16 and miR-193a-5p. CONCLUSIONS These findings suggest that miR-193a-5p, in conjunction with 5-FU, down-regulates MMP16 in GC, where it suppresses tumor growth.
Collapse
Affiliation(s)
| | - Natrayan Lakshmaiya
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Srikumar Chakravarthi
- SEGi University, No.9, Jalan Teknologi, Taman Sains Selangor, Petaling Jaya, Selangor, Malaysia
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ayman Jafer
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany I Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ammar A Basabrain
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Youssef S Alghamdi
- Department of Biology, Turabah University College, Taif University, Saudi Arabia
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan.
| | - Reza Akhavan-Sigari
- Dreifaltigkeits-Hospital Lippstadt, Teaching Hospital of the University of Münster, Münster, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum, Warsaw Management University, Warsaw, Poland
| |
Collapse
|
6
|
Parashar D, Mukherjee T, Gupta S, Kumar U, Das K. MicroRNAs in extracellular vesicles: A potential role in cancer progression. Cell Signal 2024; 121:111263. [PMID: 38897529 DOI: 10.1016/j.cellsig.2024.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Intercellular communication, an essential biological process in multicellular organisms, is mediated by direct cell-to-cell contact and cell secretary molecules. Emerging evidence identifies a third mechanism of intercellular communication- the release of extracellular vesicles (EVs). EVs are membrane-enclosed nanosized bodies, released from cells into the extracellular environment, often found in all biofluids. The growing body of research indicates that EVs carry bioactive molecules in the form of proteins, DNA, RNAs, microRNAs (miRNAs), lipids, metabolites, etc., and upon transferring them, alter the phenotypes of the target recipient cells. Interestingly, the abundance of EVs is found to be significantly higher in different diseased conditions, most importantly cancer. In the past few decades, numerous studies have identified EV miRNAs as an important contributor in the pathogenesis of different types of cancer. However, the underlying mechanism behind EV miRNA-associated cancer progression and how it could be used as a targeted therapy remain ill-defined. The present review highlights how EV miRNAs influence essential processes in cancer, such as growth, proliferation, metastasis, angiogenesis, apoptosis, stemness, immune evasion, resistance to therapy, etc. A special emphasis has been given to the potential role of EV miRNAs as cancer biomarkers. The final section of the review delineates the ongoing clinical trials on the role of miRNAs in the progression of different types of cancer. Targeting EV miRNAs could be a potential therapeutic means in the treatment of different forms of cancer alongside conventional therapeutic approaches.
Collapse
Affiliation(s)
- Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad 201015, Uttar Pradesh, India.
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India.
| |
Collapse
|
7
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
8
|
Li M, Chen L, Yu F, Mei H, Ma X, Ding K, Yang Y, Rong Z. CTDSPL2 promotes the progression of non-small lung cancer through PI3K/AKT signaling via JAK1. Cell Death Discov 2024; 10:389. [PMID: 39209829 PMCID: PMC11362329 DOI: 10.1038/s41420-024-02162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Carboxy-terminal domain small phosphatase like 2 (CTDSPL2), one of the haloacid dehalogenase phosphatases, is associated with several diseases including cancer. However, the role of CTDSPL2 and its regulatory mechanism in lung cancer remain unclear. Here, we aimed to explore the clinical implications, biological functions, and molecular mechanisms of CTDSPL2 in non-small cell lung cancer (NSCLC). CTDSPL2 was identified as a novel target of the tumor suppressor miR-193a-3p. CTDSPL2 expression was significantly elevated in NSCLC tissues. Database analysis showed that CTDSPL2 expression was negatively correlated with patient survival. Depletion of CTDSPL2 inhibited the proliferation, migration, and invasion of NSCLC cells, as well as tumor growth and metastasis in mouse models. Additionally, silencing of CTDSPL2 enhanced CD4+ T cell infiltration into tumors. Moreover, CTDSPL2 interacted with JAK1 and positively regulated JAK1 expression. Subsequent experiments indicated that CTDSPL2 activated the PI3K/AKT signaling pathway through the upregulation of JAK1, thereby promoting the progression of NSCLC. In conclusion, CTDSPL2 may play an oncogenic role in NSCLC progression by activating PI3K/AKT signaling via JAK1. These findings may provide a potential target for the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Muzi Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - La Chen
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Fangfang Yu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Huijuan Mei
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xingxing Ma
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanan Yang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Ziye Rong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
9
|
Mehrtabar E, Khalaji A, Pandeh M, Farhoudian A, Shafiee N, Shafiee A, Ojaghlou F, Mahdavi P, Soleymani-Goloujeh M. Impact of microRNA variants on PI3K/AKT signaling in triple-negative breast cancer: comprehensive review. Med Oncol 2024; 41:222. [PMID: 39120634 DOI: 10.1007/s12032-024-02469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Breast cancer (BC) is a significant cause of cancer-related mortality, and triple-negative breast cancer (TNBC) is a particularly aggressive subtype associated with high mortality rates, especially among younger females. TNBC poses a considerable clinical challenge due to its aggressive tumor behavior and limited therapeutic options. Aberrations within the PI3K/AKT pathway are prevalent in TNBC and correlate with increased therapeutic intervention resistance and poor outcomes. MicroRNAs (miRs) have emerged as crucial PI3K/AKT pathway regulators influencing various cellular processes involved in TNBC pathogenesis. The levels of miRs, including miR-193, miR-4649-5p, and miR-449a, undergo notable changes in TNBC tumor tissues, emphasizing their significance in cancer biology. This review explored the intricate interplay between miR variants and PI3K/AKT signaling in TNBC. The review focused on the molecular mechanisms underlying miR-mediated dysregulation of this pathway and highlighted specific miRs and their targets. In addition, we explore the clinical implications of miR dysregulation in TNBC, particularly its correlation with TNBC prognosis and therapeutic resistance. Elucidating the roles of miRs in modulating the PI3K/AKT signaling pathway will enhance our understanding of TNBC biology and unveil potential therapeutic targets. This comprehensive review aims to discuss current knowledge and open promising avenues for future research, ultimately facilitating the development of precise and effective treatments for patients with TNBC.
Collapse
Affiliation(s)
- Ehsan Mehrtabar
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Pandeh
- School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Aram Farhoudian
- School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nadia Shafiee
- Children's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefe Shafiee
- Board-Certified Cardiologist, Rajaie Cardiovascular Medical and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ojaghlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Mahdavi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Soleymani-Goloujeh
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
10
|
Skryabin GO, Komelkov AV, Zhordania KI, Bagrov DV, Enikeev AD, Galetsky SA, Beliaeva AA, Kopnin PB, Moiseenko AV, Senkovenko AM, Tchevkina EM. Integrated miRNA Profiling of Extracellular Vesicles from Uterine Aspirates, Malignant Ascites and Primary-Cultured Ascites Cells for Ovarian Cancer Screening. Pharmaceutics 2024; 16:902. [PMID: 39065600 PMCID: PMC11280431 DOI: 10.3390/pharmaceutics16070902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Extracellular vesicles (EVs) are of growing interest in the context of screening for highly informative cancer markers. We have previously shown that uterine aspirate EVs (UA EVs) are a promising source of ovarian cancer (OC) diagnostic markers. In this study, we first conducted an integrative analysis of EV-miRNA profiles from UA, malignant ascitic fluid (AF), and a conditioned medium of cultured ascites cells (ACs). Using three software packages, we identified 79 differentially expressed miRNAs (DE-miRNAs) in UA EVs from OC patients and healthy individuals. To narrow down this panel and select miRNAs most involved in OC pathogenesis, we aligned these molecules with the DE-miRNA sets obtained by comparing the EV-miRNA profiles from OC-related biofluids with the same control. We found that 76% of the DE-miRNAs from the identified panel are similarly altered (differentially co-expressed) in AF EVs, as are 58% in AC EVs. Interestingly, the set of miRNAs differentially co-expressed in AF and AC EVs strongly overlaps (40 out of 44 miRNAs). Finally, the application of more rigorous criteria for DE assessment, combined with the selection of miRNAs that are differentially co-expressed in all biofluids, resulted in the identification of a panel of 29 miRNAs for ovarian cancer screening.
Collapse
Affiliation(s)
- Gleb O. Skryabin
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Andrei V. Komelkov
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Kirill I. Zhordania
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Dmitry V. Bagrov
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.V.B.); (A.V.M.); (A.M.S.)
| | - Adel D. Enikeev
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Sergey A. Galetsky
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Anastasiia A. Beliaeva
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.V.B.); (A.V.M.); (A.M.S.)
| | - Pavel B. Kopnin
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Andey V. Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.V.B.); (A.V.M.); (A.M.S.)
| | - Alexey M. Senkovenko
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.V.B.); (A.V.M.); (A.M.S.)
| | - Elena M. Tchevkina
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| |
Collapse
|
11
|
Pereira JD, Teixeira LCR, Mamede I, Alves MT, Caramelli P, Luizon MR, Veloso AA, Gomes KB. miRNAs in cerebrospinal fluid associated with Alzheimer's disease: A systematic review and pathway analysis using a data mining and machine learning approach. J Neurochem 2024; 168:977-994. [PMID: 38390627 DOI: 10.1111/jnc.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 02/24/2024]
Abstract
Alzheimer's disease (AD) is the most common type and accounts for 60%-70% of the reported cases of dementia. MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in gene expression regulation. Although the diagnosis of AD is primarily clinical, several miRNAs have been associated with AD and considered as potential markers for diagnosis and progression of AD. We sought to match AD-related miRNAs in cerebrospinal fluid (CSF) found in the GeoDataSets, evaluated by machine learning, with miRNAs listed in a systematic review, and a pathway analysis. Using machine learning approaches, we identified most differentially expressed miRNAs in Gene Expression Omnibus (GEO), which were validated by the systematic review, using the acronym PECO-Population (P): Patients with AD, Exposure (E): expression of miRNAs, Comparison (C): Healthy individuals, and Objective (O): miRNAs differentially expressed in CSF. Additionally, pathway enrichment analysis was performed to identify the main pathways involving at least four miRNAs selected. Four miRNAs were identified for differentiating between patients with and without AD in machine learning combined to systematic review, and followed the pathways analysis: miRNA-30a-3p, miRNA-193a-5p, miRNA-143-3p, miRNA-145-5p. The pathways epidermal growth factor, MAPK, TGF-beta and ATM-dependent DNA damage response, were regulated by these miRNAs, but only the MAPK pathway presented higher relevance after a randomic pathway analysis. These findings have the potential to assist in the development of diagnostic tests for AD using miRNAs as biomarkers, as well as provide understanding of the relationship between different pathophysiological mechanisms of AD.
Collapse
Affiliation(s)
- Jessica Diniz Pereira
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Izabela Mamede
- Intituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Paulo Caramelli
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Intituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriano Alonso Veloso
- Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Yu H, Chen Z, Yu Q, Shen Y, Gui L, Xu X, Li J. miR-193b-5p promotes GCRV replication by inhibiting autophagy via targeting deptor in grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109453. [PMID: 38365163 DOI: 10.1016/j.fsi.2024.109453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
miRNAs are increasingly recognized for their crucial role in autophagy processes. Recent research has highlighted the significant function of autophagy in modulating immune responses. Within this context, specific miRNAs have been identified as indirect mediators of immune functions through their modulation of autophagy. In this study, we verified that miR-193b-5p simultaneously targeted the grass carp autophagy-related gene deptor, thereby reducing autophagy levels in CIK cells. Moreover, we found the expression levels of miR-193b-5p and deptor responding to pathogen infections in the GCRV-infected CIK cells. Notably, the overexpression of miR-193b-5p was found to induce the GCRV replication and reduce the irf3, irf7 and IFN1 expression. These findings also demonstrated that grass carp miR-193b-5p impacted the proliferation, migration, and antiapoptotic abilities of CIK cells. All the above results indicated that miR-193b-5p was linked to grass carp autophagy and played a vital role in antiviral immunity by targeting deptor. Our study may provide important insights into autophagy-related miRNAs and their roles in defense and immune mechanisms against pathogens in teleost.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Zheyan Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Qiaozhen Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
13
|
Shi X, Pang S, Zhou J, Yan G, Gao R, Wu H, Wang Z, Wei Y, Liu X, Tan W. Bladder-cancer-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating fatty acid transporter protein 2 and down-regulating receptor-interacting protein kinase 3 in PMN-MDSCs. Mol Cancer 2024; 23:52. [PMID: 38461272 PMCID: PMC10924381 DOI: 10.1186/s12943-024-01968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is one of the causes of tumor immune tolerance and failure of cancer immunotherapy. Here, we found that bladder cancer (BCa)-derived exosomal circRNA_0013936 could enhance the immunosuppressive activity of PMN-MDSCs by regulating the expression of fatty acid transporter protein 2 (FATP2) and receptor-interacting protein kinase 3 (RIPK3). However, the underlying mechanism remains largely unknown. METHODS BCa-derived exosomes was isolated and used for a series of experiments. RNA sequencing was used to identify the differentially expressed circRNAs. Western blotting, immunohistochemistry, immunofluorescence, qRT-PCR, ELISA and Flow cytometry were performed to reveal the potential mechanism of circRNA_0013936 promoting the immunosuppressive activity of PMN-MDSC. RESULTS CircRNA_0013936 enriched in BCa-derived exosomes could promote the expression of FATP2 and inhibit the expression of RIPK3 in PMN-MDSCs. Mechanistically, circRNA_0013936 promoted the expression of FATP2 and inhibited the expression of RIPK3 expression via sponging miR-320a and miR-301b, which directly targeted JAK2 and CREB1 respectively. Ultimately, circRNA_0013936 significantly inhibited the functions of CD8+ T cells by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway, and down-regulating RIPK3 through the circRNA_0013936/miR-301b/CREB1 pathway in PMN-MDSCs. CONCLUSIONS BCa-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway and down-regulating RIPK3 through the circRNA_0013936/miR-301b-3p/CREB1 pathway in PMN-MDSCs. These findings help to find new targets for clinical treatment of human bladder cancer.
Collapse
Affiliation(s)
- Xiaojun Shi
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shiyu Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiawei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guang Yan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ruxi Gao
- Southern Medical University, Guangzhou, China
| | - Haowei Wu
- Southern Medical University, Guangzhou, China
| | - Zhou Wang
- Southern Medical University, Guangzhou, China
| | - Yuqing Wei
- Southern Medical University, Guangzhou, China
| | - Xinyu Liu
- Southern Medical University, Guangzhou, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Behroozizad N, Mahmoodpoor A, Shadvar K, Ardebil RA, Pahnvar AJ, Sohrabifar N, Kazeminasab S. Evaluation of circulating levels of miR-135a and miR-193 in patients with sepsis. Mol Biol Rep 2024; 51:282. [PMID: 38324210 DOI: 10.1007/s11033-024-09225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Sepsis is a life-threatening condition where early diagnosis and prognostic awareness provide guidance for selecting the appropriate treatment strategies. A wide variety of biomarker-based studies in clinical medicine provide new insights into personalized medicine for sepsis patients. MiRNAs are endogenous non-coding RNA molecules that have been acting as great potential diagnostic, prognostic and therapeutic biomarkers in various diseases. METHODS AND RESULTS In the present study, the expression levels of two selected miRNAs, including miR-135a and miR-193, were evaluated for their prognostic potential in patients with sepsis. The circulating levels of miRNAs were quantified by quantitative PCR (qPCR) in patients with sepsis (n = 100) and age- and sex-matched healthy controls (n = 100). Statistical findings confirmed the valuable prognostic potential of miR-135a in patients with sepsis, while no significant difference was found between the miR-193 expression level in the patients with sepsis and the controls. CONCLUSIONS Circulating levels of miRNA-135a can serve a the prognostic biomarker for patients with sepsis. These findings highlight the importance of miRNAs as signatures in the personalized managements of sepsis.
Collapse
Affiliation(s)
- Nazila Behroozizad
- Department of Anesthesiology and Intensive care, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive care, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Kamran Shadvar
- Department of Anesthesiology and Intensive care, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Roghayeh Asghari Ardebil
- Department of Anesthesiology and Intensive care, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Aynour Jalali Pahnvar
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab- Rashid, Tabriz, Iran
| | - Nasim Sohrabifar
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Kazeminasab
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Sadr Laboratories Group, Medical Genetics Laboratory, Tabriz, Iran.
| |
Collapse
|
15
|
Corlett R, Button C, Scheel S, Agrawal S, Rai V, Nandipati KC. miRNA profiling of esophageal adenocarcinoma using transcriptome analysis. Cancer Biomark 2024; 39:245-264. [PMID: 38250763 DOI: 10.3233/cbm-230170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Esophageal adenocarcinoma (EAC) occurs following a series of histological changes through epithelial-mesenchymal transition (EMT). A variable expression of normal and aberrant genes in the tissue can contribute to the development of EAC through the activation or inhibition of critical molecular signaling pathways. Gene expression is regulated by various regulatory factors, including transcription factors and microRNAs (miRs). The exact profile of miRs associated with the pathogenesis of EAC is largely unknown, though some candidate miRNAs have been reported in the literature. To identify the unique miR profile associated with EAC, we compared normal esophageal tissue to EAC tissue using bulk RNA sequencing. RNA sequence data was verified using qPCR of 18 selected genes. Fourteen were confirmed as being upregulated, which include CDH11, PCOLCE, SULF1, GJA4, LUM, CDH6, GNA12, F2RL2, CTSZ, TYROBP, and KDELR3 as well as the downregulation of UGT1A1. We then conducted Ingenuity Pathway Analysis (IPA) to analyze for novel miR-gene relationships through Causal Network Analysis and Upstream Regulator Analysis. We identified 46 miRs that were aberrantly expressed in EAC compared to control tissues. In EAC tissues, seven miRs were associated with activated networks, while 39 miRs were associated with inhibited networks. The miR-gene relationships identified provide novel insights into potentially oncogenic molecular pathways and genes associated with carcinogenesis in esophageal tissue. Our results revealed a distinct miR profile associated with dysregulated genes. The miRs and genes identified in this study may be used in the future as biomarkers and serve as potential therapeutic targets in EAC.
Collapse
Affiliation(s)
- Ryan Corlett
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Charles Button
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Sydney Scheel
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Swati Agrawal
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Kalyana C Nandipati
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
16
|
Wierzbicka A, Pawlina-Tyszko K, Świątkiewicz M, Szmatoła T, Oczkowicz M. Changes in miRNA expression in the lungs of pigs supplemented with different levels and forms of vitamin D. Mol Biol Rep 2023; 51:8. [PMID: 38085380 PMCID: PMC10716066 DOI: 10.1007/s11033-023-08940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Vitamin D is an immunomodulator, and its effects have been linked to many diseases, including the pathogenesis of cancer. However, the effect of vitamin D supplementation on the regulation of gene expression of the lungs is not fully understood. This study aims to determine the effect of the increased dose of cholecalciferol and a combination of cholecalciferol + calcidiol, as well as the replacement of cholecalciferol with calcidiol, on the miRNA profile of healthy swine lungs. METHODS AND RESULTS The swine were long-term (88 days) supplemented with a standard dose (2000IU/kg) of cholecalciferol and calcidiol, the increased dose (3000 IU/kg) of cholecalciferol, and the cholecalciferol + calcidiol combination: grower: 3000 IU/Kg of vitamin D (67% of cholecalciferol and 33% of calcidiol), finisher 2500 IU/Kg of vitamin D (60% of cholecalciferol and 40% of calcidiol). Swine lung tissue was used for Next Generation Sequencing (NGS) of miRNA. Long-term supplementation with the cholecalciferol + calcidiol combination caused significant changes in the miRNA profile. They embraced altered levels of the expression of miR-150, miR-193, miR-145, miR-574, miR-340, miR-381, miR-148 and miR-96 (q-value < 0.05). In contrast, raising the dose of cholecalciferol only changed the expression of miR-215, and the total replacement of cholecalciferol with calcidiol did not significantly affect the miRNAome profile. CONCLUSIONS The functional analysis of differentially expressed miRNAs suggests that the use of the increased dose of the cholecalciferol + calcidiol combination may affect tumorigenesis processes through, inter alia, modulation of gene regulation of the TGF- β pathway and pathways related to metabolism and synthesis of glycan.
Collapse
Affiliation(s)
- Alicja Wierzbicka
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Kraków, Rędzina 1c, Kraków, 30 248, Poland
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland.
| |
Collapse
|
17
|
Aleshcheva G, Baumeier C, Harms D, Bock C, Escher F, Schultheiss H. MicroRNAs as novel biomarkers and potential therapeutic options for inflammatory cardiomyopathy. ESC Heart Fail 2023; 10:3410-3418. [PMID: 37679968 PMCID: PMC10682862 DOI: 10.1002/ehf2.14523] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
AIMS Inflammation of the heart is a complex biological and pathophysiological response of the immune system to a variety of injuries leading to tissue damage and heart failure. MicroRNAs (miRNAs) emerge as pivotal players in the development of numerous diseases, suggesting their potential utility as biomarkers for inflammation and as viable candidates for therapeutic interventions. The primary aim of this investigation was to pinpoint and assess particular miRNAs in individuals afflicted by virus-negative inflammatory dilated cardiomyopathy (DCMi). METHODS AND RESULTS The study involved the analysis of 152 serum samples sourced from patients diagnosed with unexplained heart failure through endomyocardial biopsy. Among these samples, 38 belonged to DCMi patients, 24 to DCM patients, 44 to patients displaying inflammation alongside diverse viral infections, and 46 to patients solely affected by viral infections without concurrent inflammation. Additionally, serum samples from 10 healthy donors were included. The expression levels of 754 distinct miRNAs were evaluated using TaqMan OpenArray. MiR-1, miR-23, miR-142-5p, miR-155, miR-193, and miR-195 exhibited exclusive down-regulation solely in DCMi patients (P < 0.005). These miRNAs enabled effective differentiation between individuals with inflammation unlinked to viruses (DCMi) and all other participant groups (P < 0.005), boasting a specificity surpassing 86%. CONCLUSIONS The identification of specific miRNAs offers a novel diagnostic perspective for recognizing intramyocardial inflammation within virus-negative DCMi patients. Furthermore, these miRNAs hold promise as potential candidates for tailored therapeutic strategies in the context of virus-negative DCMi.
Collapse
Affiliation(s)
- Ganna Aleshcheva
- Institute for Cardiac Diagnostics and Therapy (IKDT)Moltkestr. 31BerlinGermany
| | - Christian Baumeier
- Institute for Cardiac Diagnostics and Therapy (IKDT)Moltkestr. 31BerlinGermany
| | - Dominik Harms
- Institute for Cardiac Diagnostics and Therapy (IKDT)Moltkestr. 31BerlinGermany
| | - C.‐Thomas Bock
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious DiseasesRobert Koch InstituteBerlinGermany
| | - Felicitas Escher
- Institute for Cardiac Diagnostics and Therapy (IKDT)Moltkestr. 31BerlinGermany
- Department of Cardiology, Campus VirchowCharité – University Hospital BerlinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner site BerlinBerlinGermany
| | | |
Collapse
|
18
|
Salman A, Abdel Mageed SS, Fathi D, Elrebehy MA, Abulsoud AI, Elshaer SS, Khidr EG, Al-Noshokaty TM, Khaled R, Rizk NI, Elballal MS, Sayed GA, Abd-Elmawla MA, El Tabaa MM, Mohammed OA, Ashraf A, El-Husseiny AA, Midan HM, El-Dakroury WA, Abdel-Reheim MA, Doghish AS. Deciphering signaling pathway interplay via miRNAs in malignant pleural mesothelioma. Pathol Res Pract 2023; 252:154947. [PMID: 37977032 DOI: 10.1016/j.prp.2023.154947] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly invasive form of lung cancer that adversely affects the pleural and other linings of the lungs. MPM is a very aggressive tumor that often has an advanced stage at diagnosis and a bad prognosis (between 7 and 12 months). When people who have been exposed to asbestos experience pleural effusion and pain that is not explained, MPM should be suspected. After being diagnosed, most MPM patients have a one- to four-year life expectancy. The life expectancy is approximately six months without treatment. Despite the plethora of current molecular investigations, a definitive universal molecular signature has yet to be discovered as the causative factor for the pathogenesis of MPM. MicroRNAs (miRNAs) are known to play a crucial role in the regulation of gene expression at the posttranscriptional level. The association between the expression of these short, non-coding RNAs and several neoplasms, including MPM, has been observed. Although the incidence of MPM is very low, there has been a significant increase in research focused on miRNAs in the past few years. In addition, miRNAs have been found to have a role in various regulatory signaling pathways associated with MPM, such as the Notch signaling network, Wnt/β-catenin, mutation of KRAS, JAK/STAT signaling circuit, protein kinase B (AKT), and Hedgehog signaling pathway. This study provides a comprehensive overview of the existing understanding of the roles of miRNAs in the underlying mechanisms of pathogenic symptoms in MPM, highlighting their potential as viable targets for therapeutic interventions.
Collapse
Affiliation(s)
- Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
19
|
Xiao F, Zhang H, Ding H, An C, Gu C. Change in expressional level and clinicopathological significance of miR-193b-3p in non-small cell lung cancer. Medicine (Baltimore) 2023; 102:e35918. [PMID: 37960820 PMCID: PMC10637511 DOI: 10.1097/md.0000000000035918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
To investigate and analyze changes in the expression level and clinicopathological significance of miR-193b-3p in non-small cell lung cancer (NSCLC). In the present study, Gene Expression Omnibus (GEO), Targetscan, starBase, and Metastases databases were retrieved for bioinformatics analysis. qRT-PCR was conducted to determine the expression level of miR-193b-3p in the serum or tissues of NSCLC patients. The correlation between the expression level of serum miR-193b-3p and the clinical characteristics of NSCLC patients was analyzed, and receiver operating characteristic (ROC) curves were analyzed to assess the diagnostic significance of serum expression of miR-193b-3p in NSCLC. The GEO2R tool was used to analyze the GSE102286 dataset in the GEO database, indicating that miR-193b-3p is one of the overexpressed miRNAs in NSCLC. Databases, such as TargetScan and starBase, were used to predict miR-193b-3p target genes. Finally, 153 target genes were retrieved, and gene ontology (GO) and KEGG analyses were conducted based on the Metascape database, which indicated that all 153 target genes participated in multiple biological processes and signaling pathways closely correlated with the genesis and progression of NSCLC. miR-193b-3p is highly expressed in the serum and cancer tissues of patients with NSCLC. The high miR-193b-3p expression group had a lower degree of cancer differentiation, a higher proportion of late TNM stage, and a greater incidence of lymph node metastasis. ROC curve analysis reported that the area under the curve was 0.89 (95% CI: 0.85-0.92). High miR-193b-3p expression levels were detected in NSCLC patients and were closely correlated with the degree of malignancy in NSCLC. miR-193b-3p expression levels have a diagnostic effect on NSCLC.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University (Nantong Third People’s Hospital), Nantong, Jiangsu, China
| | - Haiyan Zhang
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University (Nantong Third People’s Hospital), Nantong, Jiangsu, China
| | - Haiping Ding
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University (Nantong Third People’s Hospital), Nantong, Jiangsu, China
| | - Chaolun An
- Cardiothoracic Surgery, Affiliated Nantong Hospital 3 of Nantong University (Nantong Third People’s Hospital), Nantong, Jiangsu, China
| | - Chunyan Gu
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University (Nantong Third People’s Hospital), Nantong, Jiangsu, China
| |
Collapse
|
20
|
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J, Huang C. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci 2023; 15:44. [PMID: 37736748 PMCID: PMC10517027 DOI: 10.1038/s41368-023-00249-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.
Collapse
Affiliation(s)
- Yunhan Tan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengtong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
21
|
Kober P, Mossakowska BJ, Rusetska N, Baluszek S, Grecka E, Konopiński R, Matyja E, Oziębło A, Mandat T, Bujko M. Epigenetic Downregulation of Hsa-miR-193b-3p Increases Cyclin D1 Expression Level and Cell Proliferation in Human Meningiomas. Int J Mol Sci 2023; 24:13483. [PMID: 37686289 PMCID: PMC10487813 DOI: 10.3390/ijms241713483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Meningiomas are common intracranial tumors in adults. Abnormal microRNA (miRNA) expression plays a role in their pathogenesis. Change in miRNA expression level can be caused by impaired epigenetic regulation of miRNA-encoding genes. We found the genomic region covering the MIR193B gene to be DNA hypermethylated in meningiomas based on analysis of genome-wide methylation (HumanMethylation450K Illumina arrays). Hypermethylation of MIR193B was also confirmed via bisulfite pyrosequencing. Both hsa-miR-193b-3p and hsa-miR-193b-5p are downregulated in meningiomas. Lower expression of hsa-miR-193b-3p and higher MIR193B methylation was observed in World Health Organization (WHO) grade (G) II/III tumors as compared to GI meningiomas. CCND1 mRNA was identified as a target of hsa-miR-193b-3p as further validated using luciferase reporter assay in IOMM-Lee meningioma cells. IOMM-Lee cells transfected with hsa-miR-193b-3p mimic showed a decreased cyclin D1 level and lower cell viability and proliferation, confirming the suppressive nature of this miRNA. Cyclin D1 protein expression (immunoreactivity) was higher in atypical than in benign meningiomas, accordingly to observations of lower hsa-miR-193b-3p levels in GII tumors. The commonly observed hypermethylation of MIR193B in meningiomas apparently contributes to the downregulation of hsa-miR-193b-3p. Since hsa-miR-193b-3p regulates proliferation of meningioma cells through negative regulation of cyclin D1 expression, it seems to be an important tumor suppressor in meningiomas.
Collapse
Affiliation(s)
- Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Beata Joanna Mossakowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Natalia Rusetska
- Department of Experimental Immunology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (R.K.)
| | - Szymon Baluszek
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Emilia Grecka
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Ryszard Konopiński
- Department of Experimental Immunology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (R.K.)
| | - Ewa Matyja
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Artur Oziębło
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
22
|
Kim T, Croce CM. MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med 2023; 55:1314-1321. [PMID: 37430087 PMCID: PMC10394030 DOI: 10.1038/s12276-023-01050-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
As a type of short noncoding RNAs, microRNA (miRNA) undoubtedly plays a crucial role in cancer development. Since the discovery of the identity and clinical functions of miRNAs, over the past few decades, the roles of miRNAs in cancer have been actively investigated. Numerous pieces of evidence indicate that miRNAs are pivotal factors in most types of cancer. Recent cancer research focused on miRNAs has identified and characterized a large cohort of miRNAs commonly dysregulated in cancer or exclusively dysregulated in specific types of cancer. These studies have suggested the potential of miRNAs as biomarkers in the diagnosis and prognostication of cancer. Moreover, many of these miRNAs have oncogenic or tumor-suppressive functions. MiRNAs have been the focus of research given their potential clinical applications as therapeutic targets. Currently, various oncology clinical trials using miRNAs in screening, diagnosis, and drug testing are underway. Although clinical trials studying miRNAs in various diseases have been reviewed before, there have been fewer clinical trials related to miRNAs in cancer. Furthermore, updated results of recent preclinical studies and clinical trials of miRNA biomarkers and drugs in cancer are needed. Therefore, this review aims to provide up-to-date information on miRNAs as biomarkers and cancer drugs in clinical trials.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, China.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
23
|
Zhao J, Zhao B, Song X, Lyu C, Chen W, Xiong Y, Wei DQ. Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data. Brief Bioinform 2023; 24:7005165. [PMID: 36702755 DOI: 10.1093/bib/bbad025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/28/2023] Open
Abstract
Due to the high heterogeneity and complexity of cancers, patients with different cancer subtypes often have distinct groups of genomic and clinical characteristics. Therefore, the discovery and identification of cancer subtypes are crucial to cancer diagnosis, prognosis and treatment. Recent technological advances have accelerated the increasing availability of multi-omics data for cancer subtyping. To take advantage of the complementary information from multi-omics data, it is necessary to develop computational models that can represent and integrate different layers of data into a single framework. Here, we propose a decoupled contrastive clustering method (Subtype-DCC) based on multi-omics data integration for clustering to identify cancer subtypes. The idea of contrastive learning is introduced into deep clustering based on deep neural networks to learn clustering-friendly representations. Experimental results demonstrate the superior performance of the proposed Subtype-DCC model in identifying cancer subtypes over the currently available state-of-the-art clustering methods. The strength of Subtype-DCC is also supported by the survival and clinical analysis.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaotong Song
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chujun Lyu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weizhi Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, China
| |
Collapse
|
24
|
He F, Liu Q, Liu H, Pei Q, Zhu H. Circular RNA ACACA negatively regulated p53-modulated mevalonate pathway to promote colorectal tumorigenesis via regulating miR-193a/b-3p/HDAC3 axis. Mol Carcinog 2023; 62:754-770. [PMID: 36920044 DOI: 10.1002/mc.23522] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
This study aimed to explore the biological functions and underlying mechanism of circRNA acetyl-CoA carboxylase alpha (circACACA) in colorectal cancer (CRC). The RNA and protein levels were detected by qRT-PCR and western blot assays. The malignant capacities of CRC cells were analyzed by cell counting kit-8 (CCK-8), colony formation, flow cytometry, and transwell assays. The target relationship between miR-193a/b-3p and circACACA/histone deacetylase 3 (HDAC3) was determined by luciferase reporter assay and RNA immunoprecipitation. The binding of HDAC3 to the p53 promoter was validated by chromatin immunoprecipitation (ChIP). CRC cell growth and lung metastasis were evaluated in nude mice in vivo. High expression of circACACA was found in CRC tissues and cells, which was closely associated with the advanced tumor, lymph node, metastasis (TNM) stage, metastasis, and low overall survival rate. circACACA downregulation effectively delayed CRC cell proliferation and metastasis, but triggered apoptosis via inactivating the mevalonic acid (MVA) pathway. However, circACACA overexpression resulted in the opposite effects. Mechanistically, circACACA enhanced HDAC3 expression through sponging miR-193a/b-3p, which activated the MVA pathway via inhibiting the acetylation and transcription of p53. Moreover, rescue experiments confirmed that miR-193a/b-3p inhibition reversed the inhibitory effect of circACACA deficiency on CRC growth and metastasis. Moreover, circACACA overexpression-mediated malignant phenotypes of CRC cells were abrogated by HDAC3 knockdown. circACACA promoted CRC progression via regulating the miR-193a/b-3p/HDAC3/p53 axis to activate the MVA pathway, providing evidence for circACACA as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Fengjiao He
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China.,Department of Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, Hunan Province, P.R. China
| | - Qiong Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Huan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Qian Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| |
Collapse
|
25
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Elrebehy MA, Shahin RK, Midan HM, Sallam AAM. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathol Res Pract 2023; 243:154375. [PMID: 36801506 DOI: 10.1016/j.prp.2023.154375] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
26
|
Tarighati E, Keivan H, Mahani H. A review of prognostic and predictive biomarkers in breast cancer. Clin Exp Med 2023; 23:1-16. [PMID: 35031885 DOI: 10.1007/s10238-021-00781-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is a common cancer all over the world that affects women. BC is one of the leading causes of cancer mortality in women, which today has decreased with the advancement of technology and new diagnostic and therapeutic methods. BCs are histologically divided into in situ and invasive carcinoma, and both of them can be divided into ductal and lobular. The main function after the diagnosis of invasive breast cancer is which patient should use chemotherapy, which patient should receive adjuvant therapy, and which should not. If the decision is for adjuvant therapy, the next challenge is to identify the most appropriate treatment or combination of treatments for a particular patient. Addressing the first challenge can be helped by prognostic biomarkers, while addressing the second challenge can be done by predictive biomarkers. Among the molecular markers related to BC, ER, PR, HER2, and the Mib1/Ki-67 proliferation index are the most significant ones and are tightly confirmed in the standard care of all primary, recurrent, and metastatic BC patients. CEA and CA-15-3 antigens are the most valuable markers of serum tumors in BC patients. Determining the series of these markers helps monitor response to the treatment and early detection of recurrence or metastasis. miRNAs have been demonstrated to be intricate in mammary gland growth, proliferation, and formation of BC known to be incriminated in BC biology. By combining established prognostic factors with valid prognostic/predicted biomarkers, we can start the journey to personalized treatment for every recently diagnosed BC patient.
Collapse
Affiliation(s)
- Elaheh Tarighati
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Keivan
- School of Paramedicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hojjat Mahani
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, P.O. Box: 14395-836, Tehran, Iran.
| |
Collapse
|
27
|
Azzarito G, Henry M, Rotshteyn T, Leeners B, Dubey RK. Transcriptomic and Functional Evidence That miRNA193a-3p Inhibits Lymphatic Endothelial Cell (LEC) and LEC + MCF-7 Spheroid Growth Directly and by Altering MCF-7 Secretome. Cells 2023; 12:cells12030389. [PMID: 36766731 PMCID: PMC9913637 DOI: 10.3390/cells12030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
MicroRNA 193a-3p (miR193a-3p) is a short non-coding RNA with tumor suppressor properties. Breast cancer (BC) progression is governed by active interaction between breast cancer cells, vascular (V)/lymphatic (L) endothelial cells (ECs), and BC secretome. We have recently shown that miR193a-3p, a tumor suppressor miRNA, inhibits MCF-7 BC cell-driven growth of VECs via direct antimitogenic actions and alters MCF-7 secretome. Since LEC-BC cross-talk plays a key role in BC progression, we investigated the effects of miR193a-3p on MCF-7 secretome and estradiol-mediated growth effects in LECs and LEC + MCF-7 spheroids, and delineated the underlying mechanisms. Transfection of LECs with miR193a-3p, as well as secretome from MCF-7 transfected cells, inhibited LEC growth, and these effects were mimicked in LEC + MCF-7 spheroids. Moreover, miR193a-3p inhibited ERK1/2 and Akt phosphorylation in LECs and LEC + MCF-7 spheroids, which are importantly involved in promoting cancer development and metastasis. Treatment of LECs and LEC + MCF-7 spheroids with estradiol (E2)-induced growth, as well as ERK1/2 and Akt phosphorylation, and was abrogated by miR193a-3p and secretome from MCF-7 transfected cells. Gene expression analysis (GEA) in LEC + MCF-7 spheroids transfected with miR193a-3p showed significant upregulation of 54 genes and downregulation of 73 genes. Pathway enrichment analysis of regulated genes showed significant modulation of several pathways, including interferon, interleukin/cytokine-mediated signaling, innate immune system, ERK1/2 cascade, apoptosis, and estrogen receptor signaling. Transcriptomic analysis showed downregulation in interferon and anti-apoptotic and pro-growth molecules, such as IFI6, IFIT1, OSA1/2, IFITM1, HLA-A/B, PSMB8/9, and PARP9, which are known to regulate BC progression. The cytokine proteome array of miR193a-3p transfected MCF secretome and confirmed the upregulation of several growth inhibitory cytokines, including IFNγ, Il-1a, IL-1ra, IL-32, IL-33, IL-24, IL-27, cystatin, C-reactive protein, Fas ligand, MIG, and sTIM3. Moreover, miR193a-3p alters factors in MCF-7 secretome, which represses ERK1/2 and Akt phosphorylation, induces pro-apoptotic protein and apoptosis in LECs, and downregulates interferon-associated proteins known to promote cancer growth and metastasis. In conclusion, miR193a-3p can potentially modify the tumor microenvironment by altering pro-growth BC secretome and inhibiting LEC growth, and may represent a therapeutic molecule to target breast tumors/cancer.
Collapse
Affiliation(s)
- Giovanna Azzarito
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Margit Henry
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Tamara Rotshteyn
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
28
|
Saeidi N, Goudarzvand H, Mohammadi H, Mardi A, Ghoreishizadeh S, Shomali N, Goudarzvand M. Dysregulation of miR-193a serves as a potential contributor to MS pathogenesis via affecting RhoA and Rock1. Mult Scler Relat Disord 2023; 69:104468. [PMID: 36529069 DOI: 10.1016/j.msard.2022.104468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is one of the most common neurological diseases that cause chronic inflammation of the central nervous system and demyelination of the myelin sheath. At present, microRNAs (miRNAs) are considered not only a diagnostic and prognostic indicator of diseases but also a new goal in gene therapy. This study aims to find a simple, non-invasive, valuable biomarker for early detection and potential treatment of MS. METHODS In the present study, 30 patients with MS were included. The qRT-PCR method was performed to evaluate the expression level of miR-193a, RhoA, and ROCK1. Besides, western blotting was performed to determine the expression level of RhoA and ROCK1 at protein levels. Moreover, we aimed to clarify the possible correlation between miR-193a-5p and its-regulated target genes so that miR-193a-5p mimic was transfected into MS-derived cultured PBMSs, and the expression level of RhoA and ROCK1 were then evaluated by qRT-PCR and Western blotting. In the final step, the correlation between miR-193a-5p and clinicopathological features of patients was investigated. RESULTS Results showed that miR-193a was decreased while RhoA and ROCK1 were up-regulated in PBMCs obtained from patients with MS compared to the control group. It was also revealed that miR-193a transfection reduced RhoA and ROCK1 expression at mRNA and protein levels. The results from the Chi-square analysis showed that down-regulation of miR-193a was associated with increased CRP level, CSF IgG positivity, and MSSS (Multiple Sclerosis Severity Score), suggesting miR-193a is a potential diagnostic and prognostic indicator. CONCLUSION We implied that miR-193a could modulate RhoA and ROCK 1 expression in MS patients, in which its down-regulation leads to increased expression of RhoA and ROCK1 and poor prognosis of patients with MS. Therefore, miR-193a and its associated targets could serve potential prognostic, diagnostic, and therapeutic efficacy in MS patients.
Collapse
Affiliation(s)
- Nasim Saeidi
- DNA Laboratory, Analytical Laboratories, Hamilton, New Zealand
| | | | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Shadi Ghoreishizadeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Goudarzvand
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
29
|
Azzarito G, Kurmann L, Leeners B, Dubey RK. Micro-RNA193a-3p Inhibits Breast Cancer Cell Driven Growth of Vascular Endothelial Cells by Altering Secretome and Inhibiting Mitogenesis: Transcriptomic and Functional Evidence. Cells 2022; 11:cells11192967. [PMID: 36230929 PMCID: PMC9562882 DOI: 10.3390/cells11192967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer (BC) cell secretome in the tumor microenvironment (TME) facilitates neo-angiogenesis by promoting vascular endothelial cell (VEC) growth. Drugs that block BC cell growth or angiogenesis can restrict tumor growth and are of clinical relevance. Molecules that can target both BC cell and VEC growth as well as BC secretome may be more effective in treating BC. Since small non-coding microRNAs (miRs) regulate cell growth and miR193a-3p has onco-suppressor activity, we investigated whether miR193a-3p inhibits MCF-7-driven growth (proliferation, migration, capillary formation, signal transduction) of VECs. Using BC cells and VECs grown in monolayers or 3D spheroids and gene microarrays, we demonstrate that: pro-growth effects of MCF-7 and MDA-MB231 conditioned medium (CM) are lost in CM collected from MCF-7/MDA-MB231 cells pre-transfected with miR193a-3p (miR193a-CM). Moreover, miR193a-CM inhibited MAPK and Akt phosphorylation in VECs. In microarray gene expression studies, miR193a-CM upregulated 553 genes and downregulated 543 genes in VECs. Transcriptomic and pathway enrichment analysis of differentially regulated genes revealed downregulation of interferon-associated genes and pathways that induce angiogenesis and BC/tumor growth. An angiogenesis proteome array confirmed the downregulation of 20 pro-angiogenesis proteins by miR193a-CM in VECs. Additionally, in MCF-7 cells and VECs, estradiol (E2) downregulated miR193a-3p expression and induced growth. Ectopic expression of miR193a-3p abrogated the growth stimulatory effects of estradiol E2 and serum in MCF-7 cells and VECs, as well as in MCF-7 and MCF-7+VEC 3D spheroids. Immunostaining of MCF-7+VEC spheroid sections with ki67 showed miR193a-3p inhibits cell proliferation. Taken together, our findings provide first evidence that miR193a-3p abrogates MCF-7-driven growth of VECs by altering MCF-7 secretome and downregulating pro-growth interferon signals and proangiogenic proteins. Additionally, miR193a-3p inhibits serum and E2-induced growth of MCF-7, VECs, and MCF-7+VEC spheroids. In conclusion, miRNA193a-3p can potentially target/inhibit BC tumor angiogenesis via a dual mechanism: (1) altering proangiogenic BC secretome/TME and (2) inhibiting VEC growth. It may represent a therapeutic molecule to target breast tumor growth.
Collapse
Affiliation(s)
- Giovanna Azzarito
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Lisa Kurmann
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
30
|
Zheng Q, Reid G, Eccles MR, Stayner C. Non-coding RNAs as potential biomarkers and therapeutic targets in polycystic kidney disease. Front Physiol 2022; 13:1006427. [PMID: 36203940 PMCID: PMC9531119 DOI: 10.3389/fphys.2022.1006427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Polycystic kidney disease (PKD) is a significant cause of end-stage kidney failure and there are few effective drugs for treating this inherited condition. Numerous aberrantly expressed non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), may contribute to PKD pathogenesis by participating in multiple intracellular and intercellular functions through post-transcriptional regulation of protein-encoding genes. Insights into the mechanisms of miRNAs and other ncRNAs in the development of PKD may provide novel therapeutic strategies. In this review, we discuss the current knowledge about the roles of dysregulated miRNAs and other ncRNAs in PKD. These roles involve multiple aspects of cellular function including mitochondrial metabolism, proliferation, cell death, fibrosis and cell-to-cell communication. We also summarize the potential application of miRNAs as biomarkers or therapeutic targets in PKD, and briefly describe strategies to overcome the challenges of delivering RNA to the kidney, providing a better understanding of the fundamental advances in utilizing miRNAs and other non-coding RNAs to treat PKD.
Collapse
Affiliation(s)
| | | | | | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
31
|
Khan S, Zhang DY, Zhang JY, Hayat MK, Ren J, Nasir S, Fawad M, Bai Q. The Key Role of microRNAs in Initiation and Progression of Hepatocellular Carcinoma. Front Oncol 2022; 12:950374. [PMID: 35924150 PMCID: PMC9341471 DOI: 10.3389/fonc.2022.950374] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the main type of primary liver malignancy and the fourth leading cause of cancer-related death worldwide. MicroRNAs (miRNAs), a type of non-coding RNA that regulates gene expression mainly on post-transcriptional level has a confirmed and important role in numerous biological process. By regulating specific target genes, miRNA can act as oncogene or tumor suppressor. Recent evidence has indicated that the deregulation of miR-NAs is closely associated with the clinical pathological features of HCC. However, the precise regulatory mechanism of each miRNA and its targets in HCC has yet to be illuminated. This study demonstrates that both oncogenic and tumor suppressive miRNAs are crucial in the formation and development of HCC. miRNAs influence biological behavior including proliferation, invasion, metastasis and apoptosis by targeting critical genes. Here, we summarize current knowledge about the expression profile and function of miRNAs in HCC and discuss the potential for miRNA-based therapy for HCC.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - De-Yu Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ji-Yu Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mian Khizar Hayat
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adopations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jingli Ren
- Zhengzhou Key Laboratory of Big Data Analysis and Application, Henan Academy of Big Data, Zhengzhou University, Zhengzhou, China
| | - Safyan Nasir
- Allied District Headquarter Hospital, Faisalabad, Pakistan
| | - Muhammad Fawad
- Zhengzhou Key Laboratory of Big Data Analysis and Application, Henan Academy of Big Data, Zhengzhou University, Zhengzhou, China
- School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, China
- *Correspondence: Muhammad Fawad, ; Qian Bai,
| | - Qian Bai
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Muhammad Fawad, ; Qian Bai,
| |
Collapse
|
32
|
Jałbrzykowska K, Chrzanowska A, Roszkowski P, Struga M. The New Face of a Well-Known Antibiotic: A Review of the Anticancer Activity of Enoxacin and Its Derivatives. Cancers (Basel) 2022; 14:cancers14133056. [PMID: 35804828 PMCID: PMC9264829 DOI: 10.3390/cancers14133056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Enoxacin is a second-generation quinolone with promising anticancer activity. In contrast to other members of the quinolone group, it exhibits an extraordinary cytotoxic mechanism of action. Enoxacin enhances RNA interference and promotes microRNA processing, as well as the production of free radicals. Interestingly, apart from its proapoptotic, cell cycle arresting and cytostatic effects, enoxacin manifests a limitation of cancer invasiveness. The underlying mechanisms are the competitive inhibition of vacuolar H+-ATPase subunits and c-Jun N-terminal kinase signaling pathway suppression. The newly synthesized enoxacin derivatives have shown a magnified cytotoxic effect with an emphasis on prooxidative, proapoptotic and microRNA interference actions. The mentioned mechanisms seem to contribute to a safer, more selective and more effective anticancer therapy. Abstract Enoxacin as a second-generation synthetic quinolone is known for its antibacterial action; however, in recent years there have been studies focusing on its anticancer potential. Interestingly, it turns out that compared to other fluoroquinolones, enoxacin exhibits uncommon cytotoxic properties. Besides its influence on apoptosis, the cell cycle and cell growth, it exhibits a regulatory action on microRNA biogenesis. It was revealed that the molecular targets of the enoxacin-mediated inhibition of osteoclastogenesis are vacuolar H+-ATPase subunits and the c-Jun N-terminal kinase signaling pathway, causing a decrease in cell invasiveness. Interestingly, the prooxidative nature of the subjected fluoroquinolone enhanced the cytotoxic effect. Crucial for the anticancer activity were the carboxyl group at the third carbon atom, fluorine at the seventh carbon atom and nitrogen at the eighth position of naphyridine. Modifications of the parent drug improved the induction of oxidative stress, cell cycle arrest and the dysregulation of microRNA. The inhibition of V-ATPase–microfilament binding was also observed. Enoxacin strongly affected various cancer but not normal cells, excluding keratinocytes, which suffered from phototoxicity. It seems to be an underestimated anticancer drug with pleiotropic action. Furthermore, its usage as a safe antibiotic with well-known pharmacokinetics and selectivity will enhance the development of anticancer treatment strategies. This review covers articles published within the years 2000–2021, with a strong focus on the recent years (2016–2021). However, some canonical papers published in twentieth century are also mentioned.
Collapse
Affiliation(s)
- Karolina Jałbrzykowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland;
| | - Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland;
- Correspondence: (A.C.); (M.S.); Tel.: +48-22-5720693 (A.C. & M.S.)
| | - Piotr Roszkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland;
- Correspondence: (A.C.); (M.S.); Tel.: +48-22-5720693 (A.C. & M.S.)
| |
Collapse
|
33
|
Noncoding RNA actions through IGFs and IGF binding proteins in cancer. Oncogene 2022; 41:3385-3393. [PMID: 35597813 PMCID: PMC9203274 DOI: 10.1038/s41388-022-02353-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factors (IGFs) and their regulatory proteins—IGF receptors and binding proteins—are strongly implicated in cancer progression and modulate cell survival and proliferation, migration, angiogenesis and metastasis. By regulating the bioavailability of the type-1 IGF receptor (IGF1R) ligands, IGF-1 and IGF-2, the IGF binding proteins (IGFBP-1 to -6) play essential roles in cancer progression. IGFBPs also influence cell communications through pathways that are independent of IGF1R activation. Noncoding RNAs (ncRNAs), which encompass a variety of RNA types including microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs), have roles in multiple oncogenic pathways, but their many points of intersection with IGF axis functions remain to be fully explored. This review examines the functional interactions of miRNAs and lncRNAs with IGFs and their binding proteins in cancer, and reveals how the IGF axis may mediate ncRNA actions that promote or suppress cancer. A better understanding of the links between ncRNA and IGF pathways may suggest new avenues for prognosis and therapeutic intervention in cancer. Further, by exploring examples of intersecting ncRNA-IGF pathways in non-cancer conditions, it is proposed that new opportunities for future discovery in cancer control may be generated.
Collapse
|
34
|
Gabusi A, Gissi DB, Grillini S, Stefanini M, Tarsitano A, Marchetti C, Foschini MP, Montebugnoli L, Morandi L. Shared epigenetic alterations between oral cancer and periodontitis: a preliminary study. Oral Dis 2022. [PMID: 35567390 DOI: 10.1111/odi.14251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION We recently developed a non-invasive sampling procedure for oral squamous cell carcinoma (OSCC) detection based on DNA methylation analysis of a panel of 13 genes. Oral cancer, as well as acute and chronic inflammatory diseases, may influence the methylation level of several genes in the oral cavity. In the present study, we evaluated the presence of periodontal disease(PD) and the methylation status using our 13-gene panel. METHODS Oral brushing specimens were collected from three different patient groups: 23 gingival OSCC patients, 15 patients affected by PD, and 15 healthy volunteers lacking evidence of PD. DNA methylation analysis was performed and each sample was determined to be positive or negative based on a predefined cut-off value. RESULTS Positive results were found for 23/23 OSCC patients, 3/15 PD patients and 0/15 samples from healthy volunteers. The GP1BB and MIR193 genes in the PD group exhibited mean methylation levels similar to OSCC patients. ZAP70 showed different methylation levels among three groups. CONCLUSION Preliminary data identified shared epigenetic alterations between PD and OSCC patients in two inflammatory genes(GP1BB and MIR193). This study may help identify potential links between the two diseases and serve as a starting point for future research focused on pathogenesis.
Collapse
Affiliation(s)
- Andrea Gabusi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Davide B Gissi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Sara Grillini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Martina Stefanini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Achille Tarsitano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.,Oral and Maxillo-facial Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| | - Claudio Marchetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.,Oral and Maxillo-facial Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| | - Maria Pia Foschini
- Section of Anatomic Pathology at Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucio Montebugnoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Luca Morandi
- Functional MR Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
35
|
Dong C, Liu W, Zhang Y, Song Y, Du J, Huang Z, Wang T, Yu Z, Ma X. Identification of Common Hub Genes in Human Dermal Fibroblasts Stimulated by Mechanical Stretch at Both the Early and Late Stages. Front Surg 2022; 9:846161. [PMID: 35510126 PMCID: PMC9058084 DOI: 10.3389/fsurg.2022.846161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Mechanical stretch is vital for soft tissue regeneration and development and is utilized by plastic surgeons for tissue expansion. Identifying the common hub genes in human dermal fibroblasts (HDFs) stimulated by mechanical stretch at different stages will help elucidate the mechanisms involved and improve the efficiency of tissue expansion. Methods A gene expression dataset (GSE58389) was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) in HDFs between cyclic mechanical stretching and static samples were identified at 5 and 24 h. Common DEGs overlapped in both the 5 h and 24 h groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to determine the functions of the DEGs. Protein-protein interaction networks were constructed using the STRING database. The top 10 hub genes were selected using the plug-in Cytohubba within Cytoscape. The regulatory network of hub genes was predicted using NetworkAnalyst. Results A total of 669 and 249 DEGs were identified at the early (5 h) and late stages (24 h), respectively. Of these, 152 were present at both stages and were designated as common DEGs. The top enriched GO terms were “regulation of autophagy” at the early stage, and “sterol biosynthetic processes” at the late stage. The top KEGG terms were “pyrimidine metabolism” and “synaptic vesicle cycle” at the early and late stages, respectively. Seven common DEGs [DEAD-box helicase 17 (DDX17), exocyst complex component 7 (EXOC7), CASK interacting protein 1 (CASKIN1), ribonucleoprotein PTB-binding 1 (RAVER1), late cornified envelope 1D (LCE1D), LCE1C, and polycystin 1, transient receptor potential channel interacting (PKD1)] and three common DEGs [5′-3′ exoribonuclease 2 (XRN2), T-complex protein 1 (TCP1), and syntaxin 3 (STX3)] were shown to be upregulated and downregulated hub genes, respectively. The GO terms of the common hub genes were “skin development” and “mRNA processing.” After constructing the regulatory network, hsa-mir-92a-3p, hsa-mir-193b-3p, RNA polymerase II subunit A (POLR2A), SMAD family member 5 (SMAD5), and MYC-associated zinc finger protein (MAZ) were predicted as potential targets in both stages. Conclusion At the early stage, there were clear changes in gene expression related to DNA and chromatin alterations; at late stages, gene expression associated with cholesterol metabolism was suppressed. Common DEGs related to skin development, transcriptional regulation, and cytoskeleton rearrangement identified in both stages were found to be potential targets for promoting HDF growth and alignment under mechanical stretch.
Collapse
|
36
|
Robinson I, Bertsch A, Leithner K, Stiegler P, Olschewski H, Hrzenjak A. Circulating microRNAs as molecular biomarkers for lung adenocarcinoma. Cancer Biomark 2022; 34:591-606. [DOI: 10.3233/cbm-210205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND: The potential of microRNAs (miRNAs) as molecular tumor biomarkers for early diagnosis and prognosis in lung cancer is still unclear. OBJECTIVE: To analyze expression of miRNAs in A549 lung adenocarcinoma (LUAD) cells and in primary, non-malignant bronchial epithelial (BE) cells from healthy donors. To analyze the most prominently deregulated miRNAs in plasma samples of LUAD patients and healthy donors. MATERIALS AND METHODS: The expression of 752 miRNAs in LUAD and BE cells was assessed by RT-qPCR with mean-centering restricted normalization. The relative plasma levels of 18 miRNAs in LUAD patients and healthy donors were analyzed using RT-qPCR and normalized to miR-191-5p and miR-16-3p. Putative interactions between miRNAs and their target genes were investigated in silico. RESULTS: Out of 752 miRNAs, 37 miRNAs were significantly deregulated in A549 cells compared to BE cells. MiR-15b-3p, miR-148a-3p, miR-193b-3p, and miR-195-5p were significantly deregulated in plasma samples of LUAD patients compared to donors. The target genes of those four miRNAs are involved in essential mechanisms in cancer development and progression. CONCLUSIONS: There are substantial differences between cancer and control miRNA expression in vitro and in plasma samples of LUAD patients compared to healthy donors. Four deregulated miRNAs are promising as a diagnostic biomarker for adenocarcinoma of the lung.
Collapse
Affiliation(s)
- Irina Robinson
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Alexandra Bertsch
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Katharina Leithner
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Philipp Stiegler
- Division of Transplantation Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Andelko Hrzenjak
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
37
|
miR-193a-3p increases glycolysis under hypoxia by facilitating Akt phosphorylation and PFKFB3 activation in human macrophages. Cell Mol Life Sci 2022; 79:89. [PMID: 35072776 PMCID: PMC8786749 DOI: 10.1007/s00018-022-04146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/21/2022]
Abstract
Human macrophages infiltrating hypoxic regions alter their metabolism, because oxygen becomes limited. Increased glycolysis is one of the most common cellular adaptations to hypoxia and mostly is regulated via hypoxia-inducible factor (HIF) and RAC-alpha serine/threonine–protein kinase (Akt) signaling, which gets activated under reduced oxygen content. We noticed that micro RNA (miR)-193a-3p enhances Akt phosphorylation at threonine 308 under hypoxia. In detail, miR-193a-3p suppresses the protein abundance of phosphatase PTC7 homolog (PPTC7), which in turn increases Akt phosphorylation. Lowering PPTC7 expression by siRNA or overexpressing miR-193a-3p increases Akt phosphorylation. Vice versa, inhibition of miR-193a-3p attenuates Akt activation and prevents a subsequent increase of glycolysis under hypoxia. Excluding effects of miR-193a-3p and Akt on HIF expression, stabilization, and function, we noticed phosphorylation of 6 phosphofructo-2-kinase/fructose 2,6-bisphosphatase PFKFB3 in response to the PI3K/Akt/mTOR signaling cascade. Inhibition of PFKFB3 blocked an increased glycolytic flux under hypoxia. Apparently, miR-193a-3p balances Akt phosphorylation and dephosphorylation by affecting PPTC7 protein amount. Suppression of PPTC7 increases Akt activation and phosphorylation of PFKFB3, which culminates in higher rates of glycolysis under hypoxia.
Collapse
|
38
|
Bai Y, Wang M, Yang Y, Liu X, Chen Q, Guo Z. Inhibition of the miR-193b-3p protects against oxidized low-density lipoprotein-induced HUVECs injury by upregulating ALDH2. Cell Biol Int 2021; 46:192-202. [PMID: 34719090 DOI: 10.1002/cbin.11720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022]
Abstract
Atherosclerosis (AS) is the most dangerous factor for human death, which is a lipid-driven chronic inflammatory disorder of the arteries. Growing evidence has showed that microRNAs play an important role in AS. However, the role of mir-193b-3p in atherosclerosis has been poorly studied to date. Therefore, we focused on the potential role of miR-193b-3p in atherosclerosis. The expressions of miR-193b-3p in the serum of AS patients were detected. We also established an oxidized low density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) apoptosis model in vitro. The mRNA and protein levels of target molecules were detected by RT-qPCR and Western blotting. Apoptosis of HUVECs was determined by Annexin V/PI staining on a flow cytometry. The potential molecular targets of miR-193b-3p were investigated by applying such technologies as dual-luciferase reporter and RIP assay. Our study showed that miR-193b-3p expression level was significantly lower in AS patients than controls. ROC curve analysis showed that the areas under the curve (AUC) of plasma miR-193b-3p was 0.859. We also found that miR-193b-3p was decreased in ox-LDL-induced HUVECs and knockdown of miR-193b-3p suppressed ox-LDL-induced HUVECs injury. By using bioinformatics analysis, aldehyde dehydrogenase (ALDH2) was predicted as a downstream target of miR-193b-3p. The ALDH2 gene is also involved in the development of atherosclerosis. Meanwhile, inhibition of miR-193b-3p and ALDH2 protects ox-LDL-induced HUVECs against endoplasmic-reticulum (ER) stress. In conclusion, inhibition of miR-193b-3p was able to suppress ox-LDL-induced injury in AS through targeting ALDH2 and reducing ER stress.
Collapse
Affiliation(s)
- Yunpeng Bai
- Department of cardiovascular surgery, Chest Hospital, Tianjin University, Tianjin, China.,Department of cardiovascular surgery, Tianjin Chest Hospital, Tianjin Medical University, Tianjin, China
| | - Mei Wang
- Department of Dermatology, Tianjin First Central Hospital, Tianjin, China.,Graduate School of Tianjin Medical University, Tianjin, China
| | - Yin Yang
- Department of cardiovascular surgery, Tianjin Chest Hospital, Tianjin Medical University, Tianjin, China
| | - Xiankun Liu
- Department of cardiovascular surgery, Tianjin Chest Hospital, Tianjin Medical University, Tianjin, China.,Graduate School of Tianjin Medical University, Tianjin, China
| | - Qingliang Chen
- Department of cardiovascular surgery, Tianjin Chest Hospital, Tianjin Medical University, Tianjin, China
| | - Zhigang Guo
- Department of cardiovascular surgery, Tianjin Chest Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
39
|
Wen H, Fu Y, Zhu Y, Tao S, Shang X, Li Z, You T, Zhang W. Long non-coding RNA KRT8P41/miR-193a-3p/FUBP1 axis modulates the proliferation and invasion of chordoma cells. J Bone Oncol 2021; 31:100392. [PMID: 34712553 PMCID: PMC8529087 DOI: 10.1016/j.jbo.2021.100392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/12/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
lncRNA KRT8P41 potentially serves as an oncogenic lncRNA in chordoma. miR-193a binds to lncRNA KRT8P41 and FUBP1 3′UTR. LncRNA KRT8P41/miR-193a axis modulates chordoma cell aggressiveness through FUBP1.
Chordomas are low-grade malignancies accounting for 1–4% of primary bone malignancies. Moreover, local recurrences increase the rate of metastasis. Our previous study identified the far upstream element (FUSE)-binding protein 1 (FUBP1) as a biomarker and potential therapeutic target for chordoma. In this study, lncRNA KRT8P41 was identified as a lncRNA positively correlated with FUBP1. In chordoma patients, higher lncRNA KRT8P41 expression was correlated with a poorer prognosis. LncRNA KRT8P41 silencing significantly inhibited chordoma cell proliferation and invasion. miR-193a was negatively correlated with lncRNA KRT8P41 and FUBP1; lncRNA KRT8P41 inhibited miR-193a expression, and miR-193a inhibited FUBP1 expression. Furthermore, miR-193a directly bound to lncRNA KRT8P41 and FUBP1 and lncRNA KRT8P41 competed with FUBP1 for miR-193a binding and relieved miR-193a-mediated FUBP1 inhibition. LncRNA KRT8P41 silencing inhibited, whereas miR-193a inhibition promoted chordoma cell proliferation and invasion; the inhibition of miR-193a attenuated the roles of lncRNA KRT8P41. Within chordoma tissues, the expression of miR-193a was decreased, and the expression of FUBP1 increased compared to normal control tissues. LncRNA KRT8P41 exhibited a positive correlation with FUBP1 and a negative correlation with miR-193a in vivo. Therefore, it was concluded that lncRNA KRT8P41, miR-193a-3p, and FUBP1 form a lncRNA-miRNA-mRNA axis, modulating the proliferation and invasion of chordoma cells.
Collapse
Affiliation(s)
- Hai Wen
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Yang Fu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Yapeng Zhu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Siyue Tao
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Xifu Shang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, China
| | - Zhongqi Li
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Tao You
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Wenzhi Zhang
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| |
Collapse
|
40
|
Li D, Chen L, Zhang X, Wang Y, Huang C, Li J, He F, He W. miR‑125a‑5p reverses epithelial‑mesenchymal transition and restores drug sensitivity by negatively regulating TAFAZZIN signaling in breast cancer. Mol Med Rep 2021; 24:812. [PMID: 34549308 PMCID: PMC8477177 DOI: 10.3892/mmr.2021.12452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
MicroRNA (miR)‑125a‑5p represses tafazzin phospholipid‑lysophospholipid transacylases (TAFAZZIN) expression and inhibits the epithelial‑mesenchymal transition (EMT) of ovarian cancer cells. EMT was found to have a crucial role in the acquisition of chemoresistance. Thus, the present study aimed to determine whether miR‑125a‑5p reverses EMT and restores drug sensitivity by negatively regulating TAFAZZIN in breast cancer. The expression of miR‑125a‑5p/TAFAZZIN and its association with chemotherapy response were determined in tissue samples from patients with breast cancer. Furthermore, the effects of miR‑125a‑5p on breast cancer cells were elucidated using cell proliferation and cell apoptosis assays. Then, the regulatory mechanism of miR‑125a‑5p in breast cancer was investigated by reverse transcription‑quantitative PCR, western blotting, dual‑luciferase reporter and RNA immunoprecipitation assays. The results demonstrated that miR‑125a‑5p inhibited the EMT of MCF‑7/adriamycin (Adr) breast cancer cells, as well as decreased the proliferation and increased the apoptosis of breast cancer cells treated with Adr/docetaxel. In addition, miR‑125a‑5p downregulated the expression levels of TAFAZZIN, Transglutaminase 2, phosphorylated‑AKT, N‑cadherin, vimentin and proliferating cell nuclear antigen, and significantly increased those of E‑cadherin, cleaved caspase-3 and Bax in MCF7/Adr cells. Similar results were obtained with small interfering RNA‑TAFAZZIN. Moreover, TAFAZZIN was identified as a direct target of miR‑125a‑5p in MCF7/Adr breast cancer cells. In addition, increased miR‑125a‑5p expression was observed in breast tumors from patients exhibiting a chemotherapy response, and TAFAZZIN mRNA expression was elevated in patients with no chemotherapy response. Hence, miR‑125a‑5p expression was negatively correlated with TAFAZZIN mRNA expression in breast cancer tissues. All these data suggested that miR‑125a‑5p reverses EMT and restores drug sensitivity by negatively regulating TAFAZZIN in breast cancer and, therefore, has potential as a novel therapeutic target for this disease.
Collapse
Affiliation(s)
- Dongmei Li
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Limei Chen
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Xiaofang Zhang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Yanhua Wang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Chuansheng Huang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Jianglong Li
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Feilong He
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Wenxing He
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| |
Collapse
|
41
|
Gao HX, Li SJ, Wang MB, Yan SF, Cui WL, Ma ZP, Xue J, Sang W, Zhang W, Li XX. Screening and identification of differentially expressed microRNAs in diffuse large B-cell lymphoma based on microRNA microarray. Oncol Lett 2021; 22:753. [PMID: 34539857 PMCID: PMC8436336 DOI: 10.3892/ol.2021.13014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of B-cell non-Hodgkin lymphoma in adults and the pathogenesis of DLBCL is multifactorial and complex. Understanding the molecular mechanisms involved in DLBCL is important to identify new therapeutic targets. The present study aimed to screen and identify differentially expressed microRNAs (miRNAs/miRs) between diffuse large B-cell lymphoma (DLBCL) and control [lymph node reactive hyperplasia (LRH)] groups, and to investigate whether miRNAs associated with DLBCL could serve as potential therapeutic targets. In total, 5 DLBCL experimental samples and 5 control samples were obtained from fresh patient tissues. Firstly, the fresh samples were analyzed using miRNA microarray to identify differentially expressed miRNAs. Next, three databases (TargetScan, microRNA.org and PITA) were used to predict by intersection the potential target genes of the 204 differential miRNAs identified, and a Venn diagram of the results was performed. Subsequently, the target genes of differential miRNAs were analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Finally, to validate the miRNA microarray data, reverse transcription-quantitative PCR (RT-qPCR) was performed for 8 differentially expressed miRNAs (miR-193a-3p, miR-19a-3p, miR-19b-3p, miR-370-3p, miR-1275, miR-490-5p, miR-630 and miR-665) using DLBCL and LRH fresh samples. In total, 204 miRNAs exhibited differential expression, including 105 downregulated and 54 upregulated miRNAs. The cut-off criteria were set as P≤0.05 and fold-change ≥2. A total of 7,522 potential target genes for the 204 miRNAs were predicted. Potential target genes were enriched in the following pathways: ‘Cancer’, ‘MAPK signaling pathway’, ‘regulation of actin cytoskeleton’, ‘focal adhesion’, ‘endocytosis’, ‘Wnt signaling pathway’, ‘axon guidance’, ‘calcium signaling pathway’ and ‘PI3K/AKT signaling pathway’. A total of 8 miRNAs were validated by RT-qPCR, and 4 miRNAs (miR-19b-3p, miR-193a-3p, miR-370-3p and miR-490-5p) exhibited low expression levels in DLBCL (P<0.05), while miR-630 was highly expressed in DLBCL (P<0.05). Overall, the present study screened 204 differentially expressed miRNAs and analyzed the expression levels of 8 differentially expressed miRNAs in DLBCL. These differentially expressed miRNAs may serve as therapeutic targets for improvement of therapeutic efficacy in DLBCL in the future.
Collapse
Affiliation(s)
- Hai-Xia Gao
- Department of Pathology and NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region 832002, P.R. China.,Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Si-Jing Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Meng-Bo Wang
- Department of Ultrasound, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region 832002, P.R. China
| | - Shu-Fang Yan
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Wen-Li Cui
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Zhi-Ping Ma
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Jing Xue
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Wei Sang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Xin-Xia Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| |
Collapse
|
42
|
Feng L, Wang R, Wang Y, Shen X, Shi Q, Lian M, Ma H, Fang J. Silencing long non-coding RNA DLX6-AS1 or restoring microRNA-193b-3p enhances thyroid carcinoma cell autophagy and apoptosis via depressing HOXA1. J Cell Mol Med 2021; 25:9319-9330. [PMID: 34514705 PMCID: PMC8500975 DOI: 10.1111/jcmm.16868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/23/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022] Open
Abstract
Long non‐coding RNA DLX6 antisense RNA 1 (DLX6‐AS1) lists a critical position in thyroid carcinoma (TC) development. However, the overall comprehension about DLX6‐AS1, microRNA (miR)‐193b‐3p and homeobox A1 (HOXA1) in TC is not thoroughly enough. Concerning to this, this work is pivoted on DLX6‐AS1/miR‐193b‐3p/HOXA1 axis in TC cell growth and autophagy. TC tissues and adjacent normal thyroid tissues were collected, in which expression of DLX6‐AS1, miR‐193b‐3p and HOXA1 was tested, together with their interactions. TC cells were transfected with DLX6‐AS1/miR‐193b‐3p‐related oligonucleotides or plasmids to test cell growth and autophagy. Tumorigenesis in nude mice was observed. DLX6‐AS1 and HOXA1 were up‐regulated, and miR‐193b‐3p was down‐regulated in TC. Depleted DLX6‐AS1 or restored miR‐193b‐3p disturbed cell growth and promoted autophagy. DLX6‐AS1 targeted miR‐193b‐3p and positively regulated HOXA1. miR‐193b‐3p inhibition mitigated the impaired tumorigenesis induced by down‐regulated DLX6‐AS1. Tumorigenesis in nude mice was consistent with that in cells. It is clear that DLX6‐AS1 depletion hinders TC cell growth and promotes autophagy via up‐regulating miR‐193b‐3p and down‐regulating HOXA1.
Collapse
Affiliation(s)
- Ling Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Yifan Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Xixi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Qian Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Hongzhi Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| |
Collapse
|
43
|
Yin B, Umar T, Ma X, Chen Y, Chen N, Wu Z, Deng G. MiR-193a-3p targets LGR4 to promote the inflammatory response in endometritis. Int Immunopharmacol 2021; 98:107718. [PMID: 34139630 DOI: 10.1016/j.intimp.2021.107718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023]
Abstract
Solving the reproductive barriers of dairy cows has become one of the most critical factors determining the dairy industry's development. Clinically, inflammation disease like endometritis is the most crucial cause in reducing dairy production's financial viability. MiR-193 family can induce cell apoptosis and differentiation has been reported in various diseases. LGR4 plays a vital role in reproductive system development and immune system regulation, and it is closely related to animal reproductive function and cytokine regulation. In this study, we observed a negative relationship between miR-193a-3p and LGR4 expression level in both inflammatory tissues and cells. The expression level of miR-193a-3p and LGR4 in bovine endometrial epithelial cells (BENDs) is regulated by lipopolysaccharide (LPS) stimulation time and dose-dependent. Subsequently, miR-193a-3p mimics and inhibitors were used to explore its functions in the inflammation response process, finding that overexpression of miR-193a-3p markedly increases the expression level of pro-inflammatory cytokines induced by LPS, such as IL-1β, IL-6 and TNF-α, while the group in which transfected inhibitor is on the contrary. Of note, immunofluorescence and western blot results showed that miR-193a-3p enhanced LPS-induced NF-κB p65 phosphorylation through targeting LGR4, whereas inhibiting miR-193a-3p could suppress the activation of NF-κB pathway significantly. In conclusion, our study firstly reported the mechanism by which miR-193a-3p targets LGR4 to elevate the inflammatory response in bovine endometrium injury, thereby implying that knockdown miR-193a-3p may lay the theoretical and practical basis for drug development of alleviating endometritis in dairy cows.
Collapse
Affiliation(s)
- Baoyi Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Nuoer Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
44
|
Fodor A, Lazar AL, Buchman C, Tiperciuc B, Orasan OH, Cozma A. MicroRNAs: The Link between the Metabolic Syndrome and Oncogenesis. Int J Mol Sci 2021; 22:ijms22126337. [PMID: 34199293 PMCID: PMC8231835 DOI: 10.3390/ijms22126337] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) represents a cluster of disorders that increase the risk of a plethora of conditions, in particular type two diabetes, cardiovascular diseases, and certain types of cancers. MetS is a complex entity characterized by a chronic inflammatory state that implies dysregulations of adipokins and proinflammatory cytokins together with hormonal and growth factors imbalances. Of great interest is the implication of microRNA (miRNA, miR), non-coding RNA, in cancer genesis, progression, and metastasis. The adipose tissue serves as an important source of miRs, which represent a novel class of adipokines, that play a crucial role in carcinogenesis. Altered miRs secretion in the adipose tissue, in the context of MetS, might explain their implication in the oncogenesis. The interplay between miRs expressed in adipose tissue, their dysregulation and cancer pathogenesis are still intriguing, taking into consideration the fact that miRNAs show both carcinogenic and tumor suppressor effects. The aim of our review was to discuss the latest publications concerning the implication of miRs dysregulation in MetS and their significance in tumoral signaling pathways. Furthermore, we emphasized the role of miRNAs as potential target therapies and their implication in cancer progression and metastasis.
Collapse
Affiliation(s)
- Adriana Fodor
- Department of Diabetes and Nutrtion, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Andrada Luciana Lazar
- Department of Dermatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Cristina Buchman
- Department of Oncology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Brandusa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Olga Hilda Orasan
- Internal Medicine Department, 4th Medical Clinic “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.H.O.); (A.C.)
| | - Angela Cozma
- Internal Medicine Department, 4th Medical Clinic “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.H.O.); (A.C.)
| |
Collapse
|
45
|
Enhancement of myogenic differentiation and inhibition of rhabdomyosarcoma progression by miR-28-3p and miR-193a-5p regulated by SNAIL. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:888-904. [PMID: 34094709 PMCID: PMC8141673 DOI: 10.1016/j.omtn.2021.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue mesenchymal tumor that affects mostly children and adolescents. It originates from the impaired myogenic differentiation of stem cells or early progenitors. SNAIL, a transcription factor that regulates epithelial-to-mesenchymal transition in tumors of epithelial origin, is also a key regulator of RMS growth, progression, and myogenic differentiation. Here, we demonstrate that the SNAIL-dependent microRNAs (miRNAs) miR-28-3p and miR-193a-5p are crucial regulators of RMS growth, differentiation, and progression. miR-28-3p and miR-193a-5p diminished proliferation and arrested RMS cells in G0/G1 phase in vitro. They induced the myogenic differentiation of both RMS cells and human myoblasts by upregulating myogenic factors. Furthermore, miR-28-3p and miR-193a-5p inhibited migration in a scratch assay, adhesion to endothelial cells, chemotaxis, and invasion toward SDF-1 and HGF and regulated angiogenic capabilities of the cells. Overexpression of miR-28-3p and miR-193a-5p induced formation of fibrotic structures and abnormal blood vessels in RMS xenografts in immunodeficient mice in vivo. Simultaneous overexpression of both miRNAs diminished tumor growth after subcutaneous implantation and inhibited the engraftment of RMS cells into bone marrow after intravenous injection in vivo. To conclude, we discovered novel SNAIL-dependent miRNAs that may become new therapeutic targets in RMS in the future.
Collapse
|
46
|
van den Bosch MT, Yahyanejad S, Alemdehy MF, Telford BJ, de Gunst T, den Boer HC, Vos RM, Stegink M, van Pinxteren LA, Schaapveld RQ, Janicot M. Transcriptome-wide analysis reveals insight into tumor suppressor functions of 1B3, a novel synthetic miR-193a-3p mimic. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1161-1171. [PMID: 33664995 PMCID: PMC7896128 DOI: 10.1016/j.omtn.2021.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
Emerging data show that microRNA 193a-3p (miR-193a-3p) has a suppressive role in many cancers and is often downregulated in tumors, as compared to surrounding normal tissues. Therefore, mimics of miR-193a-3p could be used as an attractive therapeutic approach in oncology. To better understand and document the molecular mechanism of action of 1B3, a novel synthetic miRNA-193a-3p mimic, RNA sequencing was performed after transfection of 1B3 in six different human tumor cell lines. Genes differentially expressed (DE) in at least three cell lines were mapped by Ingenuity Pathway Analysis (IPA), and interestingly, these results strongly indicated upregulation of the tumor-suppressive phosphatase and tensin homolog (PTEN) pathway, as well as downregulation of many oncogenic growth factor signaling pathways. Importantly, although unsurprisingly, IPA identified miR-193a-3p as a strong upstream regulator of DE genes in an unbiased manner. Furthermore, biological function analysis pointed to an extensive link of 1B3 with cancer, via expected effects on tumor cell survival, proliferation, migration, and cell death. Our data strongly suggest that miR-193a-3p/1B3 is a potent tumor suppressor agent that targets various key oncogenic pathways across cancer types. Therefore, the introduction of 1B3 into tumor cells may represent a promising strategy for cancer treatment.
Collapse
Affiliation(s)
| | - Sanaz Yahyanejad
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | | | - Bryony J. Telford
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Thijs de Gunst
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Harm C. den Boer
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Rogier M. Vos
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Marieke Stegink
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | | | | | - Michel Janicot
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| |
Collapse
|
47
|
Evangelista AF, Oliveira RJ, O Silva VA, D C Vieira RA, Reis RM, C Marques MM. Integrated analysis of mRNA and miRNA profiles revealed the role of miR-193 and miR-210 as potential regulatory biomarkers in different molecular subtypes of breast cancer. BMC Cancer 2021; 21:76. [PMID: 33461524 PMCID: PMC7814437 DOI: 10.1186/s12885-020-07731-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed malignancy among women. However, the role of microRNA (miRNA) expression in breast cancer progression is not fully understood. In this study we examined predictive interactions between differentially expressed miRNAs and mRNAs in breast cancer cell lines representative of the common molecular subtypes. Integrative bioinformatics analysis identified miR-193 and miR-210 as potential regulatory biomarkers of mRNA in breast cancer. Several recent studies have investigated these miRNAs in a broad range of tumors, but the mechanism of their involvement in cancer progression has not previously been investigated. METHODS The miRNA-mRNA interactions in breast cancer cell lines were identified by parallel expression analysis and miRNA target prediction programs. The expression profiles of mRNA and miRNAs from luminal (MCF-7, MCF-7/AZ and T47D), HER2 (BT20 and SK-BR3) and triple negative subtypes (Hs578T e MDA-MB-231) could be clearly separated by unsupervised analysis using HB4A cell line as a control. Breast cancer miRNA data from TCGA patients were grouped according to molecular subtypes and then used to validate these findings. Expression of miR-193 and miR-210 was investigated by miRNA transient silencing assays using the MCF7, BT20 and MDA-MB-231 cell lines. Functional studies included, xCELLigence system, ApoTox-Glo triplex assay, flow cytometry and transwell inserts were performed to determine cell proliferation, cytotoxicity, apoptosis, migration and invasion, respectively. RESULTS The most evident effects were associated with cell proliferation after miR-210 silencing in triple negative subtype cell line MDA-MB-231. Using in silico prediction algorithms, TNFRSF10 was identified as one of the potential regulated downstream targets for both miRNAs. The TNFRSF10C and TNFRSF10D mRNA expression inversely correlated with the expression levels of miR-193 and miR210 in breast cell lines and breast cancer patients, respectively. Other potential regulated genes whose expression also inversely correlated with both miRNAs were CCND1, a known mediator on invasion and metastasis, and the tumor suppressor gene RUNX3. CONCLUSIONS In summary, our findings identify miR-193 and miR-210 as potential regulatory miRNA in different molecular subtypes of breast cancer and suggest that miR-210 may have a specific role in MDA-MB-231 proliferation. Our results highlight important new downstream regulated targets that may serve as promising therapeutic pathways for aggressive breast cancers.
Collapse
Affiliation(s)
- Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Renato J Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil.
| | - Viviane A O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Rene A D C Vieira
- Department of Mastology and Breast Reconstruction, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil.,Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4710-057, Portugal
| | - Marcia M C Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil.,Tumor Biobank, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil.,Barretos School of Health Sciences, FACISB, Barretos, São Paulo, 14784-400, Brazil
| |
Collapse
|
48
|
Hong Y, Wang J, Zhang L, Sun W, Xu X, Zhang K. Plasma miR-193a-3p can be a potential biomarker for the diagnosis of diabetic nephropathy. Ann Clin Biochem 2021; 58:141-148. [PMID: 33302703 DOI: 10.1177/0004563220983851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Diabetic nephropathy is one of the most common microvascular complications in patients with diabetes. MicroRNA (miRNA, miR) is closely related to the formation, development and pathophysiology of diabetic nephropathy. We aimed to investigate whether miR-193a-3p could be used as a potential biomarker for the diagnosis of diabetic nephropathy. METHODS Plasma samples were collected from all the participants. TaqMan Low Density Array analysis was employed to obtain the miRNA profiles of plasma samples, and qRT-PCR was used to confirm the result. Receiver operating characteristic curves were employed to evaluate the specificity and sensitivity of miR-193a-3p for predicting diabetic nephropathy. RESULTS The expression of miR-193a-3p and miR-320c was elevated and miR-27a-3p was decreased in diabetic nephropathy patients compared to patients with type 2 diabetes and healthy controls. We found that, in diabetic nephropathy patients, the elevated miR-193a-3p expression had a negative correlation with the level of evaluate glomerular filtration rate, while a positive correlation with the level of proteinuria. We further demonstrated that miR-193a-3p could be employed to distinguish patients with diabetic nephropathy. The Kaplan-Meier analysis showed that the high expression of miR-193a-3p significantly shortened the dialysis-free survival of diabetic nephropathy patients. CONCLUSION In conclusion, miR-193a-3p is involved in diabetic nephropathy pathogenesis and may serve as a potentially novel diagnostic biomarker for diabetic nephropathy.
Collapse
Affiliation(s)
- Yan Hong
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.,Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Jidong Wang
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.,Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Lai Zhang
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.,Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Wenjuan Sun
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.,Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Xuefang Xu
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.,Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Kaiyue Zhang
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.,Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| |
Collapse
|
49
|
Khordadmehr M, Shahbazi R, Baradaran B, Sadreddini S, Shanehbandi D, Hajiasgharzadeh K, Firouzamandi M. Mir-193a-5p Replacement Can Alter Metastasis Gene Expression in Breast Adenocarcinoma Cells In Vitro. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Recent evidence presented the significant role of the microRNA-193 (miR-193) family in biological processes by the contribution of specific targeting, which mainly display as a tumor suppressor in various cancers. In the present study, we evaluated the effect of miR-193a-5p replacement on some metastasis gene expression in metastatic breast cancer (BC) cells. Methods: For this purpose, firstly, the quantitative real-time polymerase chain reaction (qRTPCR) was used to detect the miR-193a-5p expression in the MDA-MB-231 BC cell line. Subsequently, miR-193a-5p was transfected into the cells, and the expression levels of ROCK1 (Rho‑associated, coiled‑coil containing protein kinase 1), CXCR4 (Chemokine Receptor-4), CD44, and vimentin genes were evaluated by qRT-PCR. Results: The expression level of miR-193a-5p strongly reduced in MDA-MB-231 cells. Interestingly, the ROCK1 (P < 0. 001), CD44 (P < 0.0001), CXCR4 (P < 0. 001) and vimentin (P < 0. 001) expression levels significantly decreased following miR-193a-5p transfection in MDA-MB-231 BC cells. Conclusion: To conclude, it seems that miR-193a-5p restoration can attenuate the metastatic behavior of BC cells in vitro through decreased expression level of metastasis-related genes and may constitute an effective novel therapeutic strategy in miRNA-replacement therapy and treatment of metastatic breast adenocarcinoma in the future.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - Masoumeh Firouzamandi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran
| |
Collapse
|
50
|
Cao C, Wang B, Tang J, Zhao J, Guo J, Guo Q, Yue X, Zhang Z, Liu G, Zhang H, Wang Y, Zhang J. Circulating exosomes repair endothelial cell damage by delivering miR-193a-5p. J Cell Mol Med 2020; 25:2176-2189. [PMID: 33354912 PMCID: PMC7882992 DOI: 10.1111/jcmm.16202] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Circulating exosomes delivering microRNAs are involved in the occurrence and development of cardiovascular diseases. How are the circulating exosomes involved in the repair of endothelial injury in acute myocardial infarction (AMI) convalescence (3-7 days) was still not clear. In this study, circulating exosomes from AMI patients (AMI-Exo) and healthy controls (Normal-Exo) were extracted. In vitro and in vivo, our study showed that circulating exosomes protected endothelial cells (HUVECs) from oxidative stress damage; meanwhile, Normal-Exo showed better protective effects. Through the application of related inhibitors, we found that circulating exosomes shuttled between HUVECs via dynamin. Microarry analysis and qRT-PCR of circulating exosomes showed higher expression of miR-193a-5p in Normal-Exo. Our study showed that miR-193a-5p was the key factor on protecting endothelial cells in vitro and in vivo. Bioinformatics analyses found that activin A receptor type I (ACVR1) was the potential downstream target of miR-193a-5p, which was confirmed by ACVR1 expression and dual-luciferase report. Inhibitor of ACVR1 showed similar protective effects as miR-193a-5p. While overexpression of ACVR1 could attenuate protective effects of miR-193a-5p. To sum up, these findings suggest that circulating exosomes could shuttle between cells through dynamin and deliver miR-193a-5p to protect endothelial cells from oxidative stress damage via ACVR1.
Collapse
Affiliation(s)
- Chang Cao
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
| | - Bo Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
| | - Junnan Tang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiacheng Guo
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
| | - Qianqian Guo
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
| | - Xiaoting Yue
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
| | - Zenglei Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
| | - Gangqiong Liu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yunzhe Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
| | - Jinying Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|