1
|
Li Z, Duan Y, Yan S, Zhang Y, Wu Y. The miR-302/367 cluster: Aging, inflammation, and cancer. Cell Biochem Funct 2023; 41:752-766. [PMID: 37555645 DOI: 10.1002/cbf.3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs that occupy a significant role in biological processes as important regulators of intracellular homeostasis. First, we will discuss the biological genesis and functions of the miR-302/367 cluster, including miR-302a, miR-302b, miR-302c, miR-302d, and miR-367, as well as their roles in physiologically healthy tissues. The second section of this study reviews the progress of the miR-302/367 cluster in the treatment of cancer, inflammation, and diseases associated with aging. This cluster's aberrant expression in cells and/or tissues exhibits similar or different effects in various diseases through molecular mechanisms such as proliferation, apoptosis, cycling, drug resistance, and invasion. This article also discusses the upstream and downstream regulatory networks of miR-302/367 clusters and their related mechanisms. Particularly because studies on the upstream regulatory molecules of miR-302/367 clusters, which include age-related macular degeneration, myocardial infarction, and cancer, have become more prevalent in recent years. MiR-302/367 cluster can be an important therapeutic target and the use of miRNAs in combination with other molecular markers may improve diagnostic or therapeutic capabilities, providing unique insights and a more dynamic view of various diseases. It is noted that miRNAs can be an important bio-diagnostic target and offer a promising method for illness diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Zhou Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yan Duan
- Department of Stomatology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Shaofu Yan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yao Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yunxia Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
2
|
Zhou Y, Xue X, Luo J, Li P, Xiao Z, Zhang W, Zhou J, Li P, Zhao J, Ge H, Tian Z, Zhao X. Circular RNA circ-FIRRE interacts with HNRNPC to promote esophageal squamous cell carcinoma progression by stabilizing GLI2 mRNA. Cancer Sci 2023; 114:3608-3622. [PMID: 37417427 PMCID: PMC10475760 DOI: 10.1111/cas.15899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/29/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023] Open
Abstract
Increasing evidence has shown that circular RNAs (circRNAs) interact with RNA-binding proteins (RBPs) and promote cancer progression. However, the function and mechanism of the circRNA/RBP complex in esophageal squamous cell carcinoma (ESCC) are still largely unknown. Herein, we first characterized a novel oncogenic circRNA, circ-FIRRE, by RNA sequencing (Ribo-free) profiling of ESCC samples. Furthermore, we observed marked circ-FIRRE overexpression in ESCC patients with high TNM stage and poor overall survival. Mechanistic studies indicated that circ-FIRRE, as a platform, interacts with the heterogeneous nuclear ribonucleoprotein C (HNRNPC) protein to stabilize GLI2 mRNA by directly binding to its 3'-UTR in the cytoplasm, thereby resulting in elevated GLI2 protein expression and subsequent transcription of its target genes MYC, CCNE1, and CCNE2, ultimately contributing to ESCC progression. Moreover, HNRNPC overexpression in circ-FIRRE knockdown cells notably abolished circ-FIRRE knockdown-mediated Hedgehog pathway inhibition and ESCC progression impairment in vitro and in vivo. Clinical specimen results showed that circ-FIRRE and HNRNPC expression was positively correlated with GLI2 expression, which reveals the clear significance of the circ-FIRRE/HNRNPC-GLI2 axis in ESCC. In summary, our results indicate that circ-FIRRE could serve as a valuable biomarker and potential therapeutic target for ESCC and highlight a novel mechanism of the circ-FIRRE/HNRNPC complex in ESCC progression regulation.
Collapse
Affiliation(s)
- Yongjia Zhou
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Xia Xue
- Department of PharmacyThe Second Hospital of Shandong UniversityJinanChina
| | - Junwen Luo
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Peiwei Li
- Institute of Medical SciencesThe Second Hospital of Shandong UniversityJinanChina
| | - Zhaohua Xiao
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Wenhao Zhang
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Jie Zhou
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Peichao Li
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Jiangfeng Zhao
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Haibo Ge
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Zhongxian Tian
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
- Key Laboratory of Thoracic Cancer in Universities of ShandongThe Second Hospital of Shandong UniversityJinanChina
| | - Xiaogang Zhao
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
- Key Laboratory of Thoracic Cancer in Universities of ShandongThe Second Hospital of Shandong UniversityJinanChina
| |
Collapse
|
3
|
Sun T, Liu Z. MicroRNA-139-5p suppresses non-small cell lung cancer progression by targeting ATAD2. Pathol Res Pract 2023; 249:154719. [PMID: 37595446 DOI: 10.1016/j.prp.2023.154719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/10/2023] [Accepted: 07/26/2023] [Indexed: 08/20/2023]
Abstract
MiR-139-5p is a suppressor in multiple types of cancer. However, whether miR-139-5p affects NSCLC is unknown. In this study, miR-139-5p expression in clinical samples was examined by real-time PCR and in situ hybridization (ISH). MiR-139-5p mimic was transfected to monitor NSCLC cell behaviors. Potential target was predicated using bioinformatics database. Next, whether miR-139-5p impacted cell behaviors via regulation of its predicted target gene were further evaluated. The result revealed that miR-139-5p was lower in NSCLC samples/cells. MiR-139-5p restrained A549 cell proliferation, accelerated apoptosis, and inhibited the β-catenin signaling. ATAD2 was a predicted target of miR-139-5p, and it was highly expressed in NSCLC tissues. ATAD2 overexpression abolished the miR-139-5p's anti-tumor effect on cell proliferation and apoptosis. TWS119 (a β-catenin signaling activator) partially reversed miR-139-5p overexpression-induced suppression of cell proliferation and promotion of cell apoptosis. In tumor xenografts, miR-139-5p restrained tumor growth. MiR-139-5p was a tumor suppressor in NSCLC by regulating the oncogene ATAD2 and β-catenin signaling. Our study provides a promising target for cancer treatment.
Collapse
Affiliation(s)
- Tong Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
4
|
Wu H, Zhang L, Chen B, Ou B, Xu J, Tian N, Yang D, Ai Y, Chen Q, Quan D, Zhang T, Lv L, Tian Y, Zhang J, Wu S. B13, a well-tolerated inhibitor of hedgehog pathway, exhibited potent anti-tumor effects against colorectal carcinoma in vitro and in vivo. Bioorg Chem 2023; 135:106488. [PMID: 36989734 DOI: 10.1016/j.bioorg.2023.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
Abnormal activation of Hedgehog (Hh) signaling pathway mediates the genesis and progression of various tumors [1]. Currently, three drugs targeting the Hh signaling component Smoothened (Smo) have been marketed for the clinical treatment of basal cell tumors or acute myeloid leukemia. However, drug resistance is a common problem in those drugs, so the study of Smo inhibitors that can overcome drug resistance has important guiding significance for clinical adjuvant drugs. MTT assay, clone formation assay and EdU assay were used to detect the proliferation inhibitory activity of the drugs on tumor cells. The effect of B13 on cell cycle and apoptosis were detected by flow cytometry. An acute toxicity test was used to detect the toxicity of B13 in vivo, and xenograft tumor model was used to detect the efficacy of B13 in vivo. The binding of B13 to Smo was studied by BODIPY-cyclopamine competitive binding assay and molecular docking. The effect of B13 on the expression and localization of downstream target gene Gli1/2 of Smo was investigated by Western Blot and immunofluorescence assay. SmoD473H mutant cell line was constructed to study the effect of B13 against drug resistance. (1) B13 had the strongest inhibitory activity against colorectal cancer cells. (2) B13 can effectively inhibit the clone formation and EdU positive rate of colon cancer cells. (3) B13 can block the cell cycle in the G2/M phase and cell apoptosis. (4) B13 has low toxicity in vivo, and its efficacy in vivo is better than that of the Vismodegib. (5) Molecular docking and BODIPY-cyclopamine experiments showed that B13 could bind to Smo protein. (6) B13 can inhibit the protein expression of Gli1, the downstream of Smo, and inhibit its entry into the nucleus. (7) B13 could inhibit the expression of Gli1 in the HEK293 cells with SmoD473H, and the molecular docking results showed that B13 could bind SmoD473H protein. B13 with the best anti-tumor activity was screened out by MTT assay. In vitro, pharmacodynamics experiments showed that B13 could effectively inhibit the proliferation and metastasis of colorectal cancer cells, induce cell cycle arrest, and induce cell apoptosis. In vivo pharmacodynamics experiments showed that B13 was superior to Vismodegib in antitumor activity and had low toxicity in vivo. Mechanism studies have shown that B13 can bind Smo protein, inhibit the expression of downstream Gli1 and its entry into the nucleus. Notably, B13 overcomes resistance caused by SmoD473H mutations.
Collapse
|
5
|
Becker V, Yuan X, Boewe AS, Ampofo E, Ebert E, Hohneck J, Bohle RM, Meese E, Zhao Y, Menger MD, Laschke MW, Gu Y. Hypoxia-induced downregulation of microRNA-186-5p in endothelial cells promotes non-small cell lung cancer angiogenesis by upregulating protein kinase C alpha. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:421-436. [PMID: 36845338 PMCID: PMC9945639 DOI: 10.1016/j.omtn.2023.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
The tumor microenvironment stimulates the angiogenic activity of endothelial cells (ECs) to facilitate tumor vascularization, growth, and metastasis. The involvement of microRNA-186-5p (miR-186) in regulating the aberrant activity of tumor-associated ECs has so far not been clarified. In the present study, we demonstrated that miR-186 is significantly downregulated in ECs microdissected from human non-small cell lung cancer (NSCLC) tissues compared with matched non-malignant lung tissues. In vitro analyses of primary human dermal microvascular ECs (HDMECs) exposed to different stimuli indicated that this miR-186 downregulation is triggered by hypoxia via activation of hypoxia-inducible factor 1 alpha (HIF1α). Transfection of HDMECs with miR-186 mimic (miR-186m) significantly inhibited their proliferation, migration, tube formation, and spheroid sprouting. In contrast, miR-186 inhibitor (miR-186i) exerted pro-angiogenic effects. In vivo, endothelial miR-186 overexpression inhibited the vascularization of Matrigel plugs and the initial growth of tumors composed of NSCLC cells (NCI-H460) and HDMECs. Mechanistic analyses revealed that the gene encoding for protein kinase C alpha (PKCα) is a bona fide target of miR-186. Activation of this kinase significantly reversed the miR-186m-repressed angiogenic activity of HDMECs. These findings indicate that downregulation of miR-186 in ECs mediates hypoxia-stimulated NSCLC angiogenesis by upregulating PKCα.
Collapse
Affiliation(s)
- Vivien Becker
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Xu Yuan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Anne S. Boewe
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Elke Ebert
- Institute of Pathology, Medical Center, Saarland University, 66421 Homburg/Saar, Germany
| | - Johannes Hohneck
- Institute of Pathology, Medical Center, Saarland University, 66421 Homburg/Saar, Germany
| | - Rainer M. Bohle
- Institute of Pathology, Medical Center, Saarland University, 66421 Homburg/Saar, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Yingjun Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Yuan Gu
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
- Corresponding author: Yuan Gu, Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| |
Collapse
|
6
|
Errafii K, Jayyous A, Arredouani A, Khatib H, Azizi F, Mohammad RM, Abdul-Ghani M, Chikri M. Comprehensive analysis of circulating miRNA expression profiles in insulin resistance and type 2 diabetes in Qatari population. ALL LIFE 2022. [DOI: https://doi.org/10.1080/26895293.2022.2033853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Khaoula Errafii
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- African Genome Center, Mohamed IV Polytechnic, Benguerir, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Amin Jayyous
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
| | - Abdelillah Arredouani
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Fouad Azizi
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M. Mohammad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muhammad Abdul-Ghani
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamed Chikri
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| |
Collapse
|
7
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
8
|
Sharma U, Tuli HS, Uttam V, Choudhary R, Sharma B, Sharma U, Prakash H, Jain A. Role of Hedgehog and Hippo signaling pathways in cancer: A special focus on non-coding RNAs. Pharmacol Res 2022; 186:106523. [DOI: 10.1016/j.phrs.2022.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
|
9
|
Manukonda R, Narayana RV, Kaliki S, Mishra DK, Vemuganti GK. Emerging therapeutic targets for retinoblastoma. Expert Opin Ther Targets 2022; 26:937-947. [PMID: 36524402 DOI: 10.1080/14728222.2022.2158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Retinoblastoma (Rb) is an early childhood intraocular tumor of the retina and is managed by multimodal therapeutic approaches. Recent advanced targeted delivery of chemotherapeutic drugs to the eye has improved the possibility of globe salvage. However, enucleation is inevitable for advanced and recurrent Rb. The cumulative knowledge of identification of newer molecular biology tools, exosomal cargo, role of cancer stem cells (CSCs), and its microenvironment in the progression of the diseases warrants a relook at the traditional treatment protocol and explore the feasibility of targeted therapies. AREAS COVERED This review covers Rb pathobiology, novel molecular-targeted therapeutics, and strategies targeting Rb CSCs and provides an update on potential therapeutic targets such as second messengers and exosomal cargo. EXPERT OPINION The emergence of early diagnosis and multimodality treatment protocols have significantly improved the clinical outcome of children with advanced Rb; however, the problem of tumor recurrence has not yet been overcome. Improved understanding of the molecular pathways, identification, and characterization of CSCs opens up new targeted therapy approaches. The contemporary evidence from other fields shows promising evidence that combining conservative treatment modalities with targeting therapies specific for CSCs in clinical practice is essential for achieving high globe salvage rate in Rb patients.
Collapse
Affiliation(s)
- Radhika Manukonda
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, India
| | - Revu Vl Narayana
- School of Medical Sciences, University of Hyderabad, Science Complex, Hyderabad, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, India
| | - Dilip K Mishra
- Ophthalmic Pathology Laboratory, LV Prasad Eye Institute, Hyderabad, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Science Complex, Hyderabad, India
| |
Collapse
|
10
|
miR-302 Suppresses the Proliferation, Migration, and Invasion of Breast Cancer Cells by Downregulating ATAD2. Cancers (Basel) 2022; 14:cancers14184345. [PMID: 36139505 PMCID: PMC9497224 DOI: 10.3390/cancers14184345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary ATPase family AAA domain-containing protein 2 (ATAD2) overexpression is associated with poor survival and disease recurrence in multiple cancers. The current study aimed to investigate the expression and function of ATAD2 in breast cancer. Our results showed that ATAD2 expression was upregulated in human breast cancer tissues and cell lines, while ATAD2 knockdown inhibited the proliferation, migration, and invasion of breast cancer cells. Moreover, we provide evidence suggesting that miR-302 directly targets ATAD2 and thus modulates cancer cell proliferation, migration, and invasion in vitro. Moreover, ATAD2 overexpression rescued the inhibition of tumor growth caused by miR-302 in xenograft mice. These findings indicate that miR-302 plays a crucial role in inhibiting the malignant phenotypes of breast cancer cells by targeting ATAD2. Abstract Breast cancer is the most common malignant tumor in women. The ATPase family AAA domain-containing protein 2 (ATAD2) contains an ATPase domain and a bromodomain, and is abnormally expressed in various human cancers, including breast cancer. However, the molecular mechanisms underlying the regulation of ATAD2 expression in breast cancer remain unclear. This study aimed to investigate the expression and function of ATAD2 in breast cancer. We found that ATAD2 was highly expressed in human breast cancer tissues and cell lines. ATAD2 depletion via RNA interference inhibited the proliferation, migration, and invasive ability of the SKBR3 and T47D breast cancer cell lines. Furthermore, Western blot analysis and luciferase assay results revealed that ATAD2 is a putative target of miR-302. Transfection with miR-302 mimics markedly reduced cell migration and invasion. These inhibitory effects of miR-302 were restored by ATAD2 overexpression. Moreover, miR-302 overexpression in SKBR3 and T47D cells suppressed tumor growth in the xenograft mouse model. However, ATAD2 overexpression rescued the decreased tumor growth seen after miR-302 overexpression. Our findings indicate that miR-302 plays a prominent role in inhibiting the cancer cell behavior associated with tumor progression by targeting ATAD2, and could thus be a valuable target for breast cancer therapy.
Collapse
|
11
|
HajiEsmailPoor Z, Tabnak P, Ahmadzadeh B, Ebrahimi SS, Faal B, Mashatan N. Role of hedgehog signaling related non-coding RNAs in developmental and pathological conditions. Biomed Pharmacother 2022; 153:113507. [DOI: 10.1016/j.biopha.2022.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/23/2022] [Accepted: 07/30/2022] [Indexed: 11/02/2022] Open
|
12
|
Han X, Li B. The emerging role of noncoding RNAs in the Hedgehog signaling pathway in cancer. Biomed Pharmacother 2022; 154:113581. [PMID: 36037783 DOI: 10.1016/j.biopha.2022.113581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Hedgehog (HH), a conserved signaling pathway, is involved in embryo development, organogenesis, and other biological functions. Dysregulation and abnormal activation of HH are involved in tumorigenesis and tumor progression. With the emergence of interest in noncoding RNAs, studies on their involvement in abnormal regulation of biological processes in tumors have been published one after another. In this review, we focus on the crosstalk between noncoding RNAs and the HH pathway in tumors and elaborate the mechanisms by which long noncoding RNAs and microRNAs regulate or are regulated by HH signaling in cancer. We also discuss the interaction between noncoding RNAs and the HH pathway from the perspective of cancer hallmarks, presenting this complex network as concisely as possible and organizing ideas for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xue Han
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Bo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China. libo--
| |
Collapse
|
13
|
Tumor-Promoting ATAD2 and Its Preclinical Challenges. Biomolecules 2022; 12:biom12081040. [PMID: 36008934 PMCID: PMC9405547 DOI: 10.3390/biom12081040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
ATAD2 has received extensive attention in recent years as one prospective oncogene with tumor-promoting features in many malignancies. ATAD2 is a highly conserved bromodomain family protein that exerts its biological functions by mainly AAA ATPase and bromodomain. ATAD2 acts as an epigenetic decoder and transcription factor or co-activator, which is engaged in cellular activities, such as transcriptional regulation, DNA replication, and protein modification. ATAD2 has been reported to be highly expressed in a variety of human malignancies, including gastrointestinal malignancies, reproductive malignancies, urological malignancies, lung cancer, and other types of malignancies. ATAD2 is involved in the activation of multiple oncogenic signaling pathways and is closely associated with tumorigenesis, progression, chemoresistance, and poor prognosis, but the oncogenic mechanisms vary in different cancer types. Moreover, the direct targeting of ATAD2’s bromodomain may be a very challenging task. In this review, we summarized the role of ATAD2 in various types of malignancies and pointed out the pharmacological direction.
Collapse
|
14
|
Dutta M, Das B, Mohapatra D, Behera P, Senapati S, Roychowdhury A. MicroRNA-217 modulates pancreatic cancer progression via targeting ATAD2. Life Sci 2022; 301:120592. [PMID: 35504332 DOI: 10.1016/j.lfs.2022.120592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022]
Abstract
AIMS Pancreatic cancer is a fatal disease across the world with 5 years survival rate less than 10%. ATAD2, a valid cancer drug-target, is overexpressed in pancreatic malignancy with high oncogenic potential. However, the mechanism of the upregulated expression of ATAD2 in pancreatic cancer is unknown. Since microRNAs (miRNAs) could potentially control target mRNA expressions, and are involved in cancer as tumor-suppressors, oncomiR or both, we examine the possibility of miRNA-mediated regulation of ATAD2 in pancreatic cancer cells (PCCs). MAIN METHODS Our in-silico approach first identifies hsa-miR-217 as a candidate regulator for ATAD2 expression. For further validation, luciferase reporter assay is performed. We overexpress hsa-miRNA-217 and assess cellular viability, migration, apoptosis and cell cycle progression in three different PCCs (BxPC3, PANC1, and MiaPaCa2). KEY FINDINGS We find hsa-miRNA-217 has potential binding site at the 3'UTR of ATAD2. Luciferase assay confirms that ATAD2 is a direct target of hsa-miR-217. Overexpression of hsa-miR-217 drastically downregulates ATAD2 expression in PCCs, thus, corroborating binding studies. The elevated expression of hsa-miRNA-217 diminishes cell proliferation and migration as well as induces apoptosis and cell cycle arrest in PCCs. Finally, siRNA mediated ATAD2 knockdown or overexpression of hsa-miRNA-217 in PCCs showed inactivation of the AKT signaling pathway. Therefore, hsa-miR-217 abrogates pancreatic cancer progression through inactivation of the AKT signaling pathway and this might be partly due to miR-217 mediated suppression of ATAD2 expression. SIGNIFICANCE The application of hsa-miR-217 mimic could be a promising therapeutic strategy for the treatment of pancreatic cancer patients in near future.
Collapse
Affiliation(s)
- Madhuri Dutta
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Biswajit Das
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - Debasish Mohapatra
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - Padmanava Behera
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India; Department of Microbiology, Shiksha 'O' Anusandhan (SOA) University, Bhubaneswar, Odisha 751003, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India.
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
15
|
Errafii K, Jayyous A, Arredouani A, Khatib H, Azizi F, Mohammad RM, Abdul-Ghani M, Chikri M. Comprehensive analysis of circulating miRNA expression profiles in insulin resistance and type 2 diabetes in Qatari population. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2033853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Khaoula Errafii
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- African Genome Center, Mohamed IV Polytechnic, Benguerir, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Amin Jayyous
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
| | - Abdelillah Arredouani
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Fouad Azizi
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M. Mohammad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muhammad Abdul-Ghani
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamed Chikri
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| |
Collapse
|
16
|
Hui Z, Wang S, Li J, Wang J, Zhang Z. Compound Tongluo Decoction inhibits endoplasmic reticulum stress-induced ferroptosis and promoted angiogenesis by activating the Sonic Hedgehog pathway in cerebral infarction. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114634. [PMID: 34536518 DOI: 10.1016/j.jep.2021.114634] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebral infarction is one of the most common types of cerebrovascular diseases that threaten people's health. Compound Tongluo Decoction (CTLD), a traditional Chinese medicine formula, has various pharmacological activities, including the alleviation of cerebral infarction symptoms. AIM OF THE STUDY This study aims to explore the potential mechanism by which CTLD alleviates cerebral infarction. MATERIAL AND METHODS Middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation and reperfusion (OGD/R) cell model were established for research. The expression of proteins related to endoplasmic reticulum (ER) stress, ferroptosis, Sonic Hedgehog (SHH) pathway and angiogenesis was analyzed by Western blot analysis. The expression of CD31 was detected by immunofluorescence to investigate angiogenesis. In addition, the expression of GRP78 and XBP-1 in brain tissues was investigated by immunohistochemistry. With the application of Prussian blue staining, iron deposition in brain tissue was detected. The levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) were detected using ELISA kits. The angiogenesis was analyzed by tube formation assay. RESULTS The results presented in this research showed that CTLD and 4-phenyl butyric acid (4-PBA; the inhibitor of ER stress) could alleviate cerebral infarction. Mechanistically, CTLD and 4-PBA rescued ER stress and ferroptosis, but promoted SHH signaling in rats with cerebral infarction. In addition, cerebral infarction exhibited a high level of angiogenesis, which was aggravated by CTLD but suppressed by 4-PBA. Furthermore, CTLD inhibited ER stress and ferroptosis, but promoted SHH signaling and angiogenesis in OGD/R-induced PC12 cells, which was partly abolished by SANT-1, an antagonist of SHH signaling. CONCLUSION In conclusion, this study revealed that CTLD might inhibit ferroptosis induced by endoplasmic reticulum stress and promote angiogenesis by activating the Sonic Hedgehog pathway in rats with cerebral infarction.
Collapse
Affiliation(s)
- Zhen Hui
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, Jiangsu province, PR China
| | - Sulei Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, Jiangsu province, PR China
| | - Jianxiang Li
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, Jiangsu province, PR China
| | - Jingqing Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, Jiangsu province, PR China
| | - Zhennian Zhang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, Jiangsu province, PR China.
| |
Collapse
|
17
|
Tang Y, Chen Y, Zhang Z, Tang B, Zhou Z, Chen H. Nanoparticle-Based RNAi Therapeutics Targeting Cancer Stem Cells: Update and Prospective. Pharmaceutics 2021; 13:pharmaceutics13122116. [PMID: 34959397 PMCID: PMC8708448 DOI: 10.3390/pharmaceutics13122116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) are characterized by intrinsic self-renewal and tumorigenic properties, and play important roles in tumor initiation, progression, and resistance to diverse forms of anticancer therapy. Accordingly, targeting signaling pathways that are critical for CSC maintenance and biofunctions, including the Wnt, Notch, Hippo, and Hedgehog signaling cascades, remains a promising therapeutic strategy in multiple cancer types. Furthermore, advances in various cancer omics approaches have largely increased our knowledge of the molecular basis of CSCs, and provided numerous novel targets for anticancer therapy. However, the majority of recently identified targets remain ‘undruggable’ through small-molecule agents, whereas the implications of exogenous RNA interference (RNAi, including siRNA and miRNA) may make it possible to translate our knowledge into therapeutics in a timely manner. With the recent advances of nanomedicine, in vivo delivery of RNAi using elaborate nanoparticles can potently overcome the intrinsic limitations of RNAi alone, as it is rapidly degraded and has unpredictable off-target side effects. Herein, we present an update on the development of RNAi-delivering nanoplatforms in CSC-targeted anticancer therapy and discuss their potential implications in clinical trials.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Bo Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
- Correspondence: (Z.Z.); (H.C.)
| | - Haining Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
- Correspondence: (Z.Z.); (H.C.)
| |
Collapse
|
18
|
Zhao Y, Wang Z, Gao M, Wang X, Feng H, Cui Y, Tian X. lncRNA MALAT1 regulated ATAD2 to facilitate retinoblastoma progression via miR-655-3p. Open Med (Wars) 2021; 16:931-943. [PMID: 34222668 PMCID: PMC8231467 DOI: 10.1515/med-2021-0290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/03/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was reported as an oncogene in many tumors including retinoblastoma (RB). This research mainly focused on the functions and mechanism of MALAT1 in RB. MALAT1 was upregulated in RB tissues and cells, and it served as a competing endogenous RNA (ceRNA) and inhibited miRNA-655-3p (miR-655-3p) expression, which eventually regulated the expression of miR-655-3p downstream target ATPase Family AAA Domain Containing 2 (ATAD2). The level of ATAD2 significantly increased, while that of miR-655-3p remarkably decreased in RB tissues and cells. MALAT1 depletion inhibited cell proliferation, metastasis, and epithelial-mesenchymal transition (EMT), but promoted apoptosis in vitro and blocked xenograft tumor growth in vivo. MALAT1 exerted its oncogenic functions in RB by regulating miR-655-3p/ATAD2 axis.
Collapse
Affiliation(s)
- Yuxin Zhao
- Department of Ophthalmology, Weihai Central Hospital, No. 3, Mishandongluxi, Wendeng District, Weihai, 264400, Shandong, China
| | - Zhaoxia Wang
- Department of Pediatric, Weihai Central Hospital, Weihai, Shandong, China
| | - Meili Gao
- Department of Ophthalmology, Weihai Central Hospital, No. 3, Mishandongluxi, Wendeng District, Weihai, 264400, Shandong, China
| | - Xuehong Wang
- Department of Ophthalmology, Weihai Central Hospital, No. 3, Mishandongluxi, Wendeng District, Weihai, 264400, Shandong, China
| | - Hui Feng
- Department of Ophthalmology, Weihai Central Hospital, No. 3, Mishandongluxi, Wendeng District, Weihai, 264400, Shandong, China
| | - Yuanyuan Cui
- Department of Ophthalmology, Weihai Central Hospital, No. 3, Mishandongluxi, Wendeng District, Weihai, 264400, Shandong, China
| | - Xia Tian
- Department of Ophthalmology, Weihai Central Hospital, No. 3, Mishandongluxi, Wendeng District, Weihai, 264400, Shandong, China
| |
Collapse
|
19
|
Gregorius J, Wang C, Stambouli O, Hussner T, Qi Y, Tertel T, Börger V, Mohamud Yusuf A, Hagemann N, Yin D, Dittrich R, Mouloud Y, Mairinger FD, Magraoui FE, Popa-Wagner A, Kleinschnitz C, Doeppner TR, Gunzer M, Meyer HE, Giebel B, Hermann DM. Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice. Basic Res Cardiol 2021; 116:40. [PMID: 34105014 PMCID: PMC8187185 DOI: 10.1007/s00395-021-00881-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
Obtained from the right cell-type, mesenchymal stromal cell (MSC)-derived small extracellular vesicles (sEVs) promote stroke recovery. Within this process, microvascular remodeling plays a central role. Herein, we evaluated the effects of MSC-sEVs on the proliferation, migration, and tube formation of human cerebral microvascular endothelial cells (hCMEC/D3) in vitro and on post-ischemic angiogenesis, brain remodeling and neurological recovery after middle cerebral artery occlusion (MCAO) in mice. In vitro, sEVs obtained from hypoxic (1% O2), but not 'normoxic' (21% O2) MSCs dose-dependently promoted endothelial proliferation, migration, and tube formation and increased post-ischemic endothelial survival. sEVs from hypoxic MSCs regulated a distinct set of miRNAs in hCMEC/D3 cells previously linked to angiogenesis, three being upregulated (miR-126-3p, miR-140-5p, let-7c-5p) and three downregulated (miR-186-5p, miR-370-3p, miR-409-3p). LC/MS-MS revealed 52 proteins differentially abundant in sEVs from hypoxic and 'normoxic' MSCs. 19 proteins were enriched (among them proteins involved in extracellular matrix-receptor interaction, focal adhesion, leukocyte transendothelial migration, protein digestion, and absorption), and 33 proteins reduced (among them proteins associated with metabolic pathways, extracellular matrix-receptor interaction, focal adhesion, and actin cytoskeleton) in hypoxic MSC-sEVs. Post-MCAO, sEVs from hypoxic MSCs increased microvascular length and branching point density in previously ischemic tissue assessed by 3D light sheet microscopy over up to 56 days, reduced delayed neuronal degeneration and brain atrophy, and enhanced neurological recovery. sEV-induced angiogenesis in vivo depended on the presence of polymorphonuclear neutrophils. In neutrophil-depleted mice, MSC-sEVs did not influence microvascular remodeling. sEVs from hypoxic MSCs have distinct angiogenic properties. Hypoxic preconditioning enhances the restorative effects of MSC-sEVs.
Collapse
Affiliation(s)
- Jonas Gregorius
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Chen Wang
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Oumaima Stambouli
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Tanja Hussner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Yachao Qi
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Tobias Tertel
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Verena Börger
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Nina Hagemann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Dongpei Yin
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Robin Dittrich
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Yanis Mouloud
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Fabian D Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Aurel Popa-Wagner
- Center of Experimental and Clinical Medicine, University of Medicine and Pharmacy, Craiova, Romania
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | | | - Matthias Gunzer
- Leibniz Institute for Analytical Sciences (ISAS), Dortmund, Germany
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Helmut E Meyer
- Leibniz Institute for Analytical Sciences (ISAS), Dortmund, Germany
- Medical Proteom-Center Ruhr University, Bochum, Germany
| | - Bernd Giebel
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany.
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany.
| |
Collapse
|
20
|
Guo L, Bai Y, Ni T, Li Y, Cao R, Ji S, Li S. MicroRNA‑153‑3p suppresses retinoblastoma cell growth and invasion via targeting the IGF1R/Raf/MEK and IGF1R/PI3K/AKT signaling pathways. Int J Oncol 2021; 59:47. [PMID: 34036380 PMCID: PMC8143749 DOI: 10.3892/ijo.2021.5227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence has demonstrated that microRNAs (miRNAs or miRs) play significant roles in various types of human tumors, including retinoblastoma (RB). However, the biological role and regulatory mechanisms of miRNAs in RB remain to be fully elucidated. The present study was designed to identify the regulatory effects of miRNAs in RB and the underlying mechanisms. Differentially expressed miRNAs in RB tissue were screened out based on the Gene Expression Omnibus (GEO) dataset, GSE7072, which revealed that miR-153 in particular, displayed the highest fold change in expression. It was identified that miR-153 was significantly downregulated in RB tissues, and its downregulation was closely associated with a larger tumor base and differentiation. Functional analysis revealed that the overexpression of miR-153 inhibited RB cell proliferation, migration and invasion, and promoted the apoptosis of WERI-RB-1 and Y79 cells. In addition, insulin-like growth factor 1 receptor (IGF1R) was identified as a target of miR-153 in RB cells. More importantly, it was demonstrated that miR-153 upregulation inhibited the expression of its target gene, IGF1R, which inhibited the activation of the Raf/MEK and PI3K/AKT signaling pathways. Collectively, the present study demonstrates for the first time, to the best of our knowledge, that miR-153 functions as a tumor suppressor in RB by targeting the IGF1R/Raf/MEK and IGF1R/PI3K/AKT signaling pathways. Collectively, the findings presented herein demonstrate that miR-153 targets IGF1R and blocks the activation of the Raf/MEK and PI3K/AKT signaling pathway, thus preventing the progression of RB. Thus, this miRNA may serve as a novel prognostic biomarker and therapeutic target for RB.
Collapse
Affiliation(s)
- Long Guo
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Yu Bai
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Tianyu Ni
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Yuan Li
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Rong Cao
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Shuzhe Ji
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Shuzhen Li
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| |
Collapse
|
21
|
Nayak A, Dutta M, Roychowdhury A. Emerging oncogene ATAD2: Signaling cascades and therapeutic initiatives. Life Sci 2021; 276:119322. [PMID: 33711386 DOI: 10.1016/j.lfs.2021.119322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
ATAD2 is a promising oncoprotein with tumor-promoting functions in many cancers. It is a valid cancer drug-target and a potential cancer-biomarker for multiple malignancies. As a cancer/testis antigen (CTA), ATAD2 could also be a probable candidate for immunotherapy. It is a unique CTA that belongs to both AAA+ ATPase and bromodomain family proteins. Since 2007, several research groups have been reported on the pleiotropic oncogenic functions of ATAD2 in diverse signaling pathways, including Rb/E2F-cMyc pathway, steroid hormone signaling pathway, p53 and p38-MAPK-mediated apoptotic pathway, AKT pathway, hedgehog signaling pathway, HIF1α signaling pathway, and Epithelial to Mesenchymal Transition (EMT) pathway in various cancers. In all these pathways, ATAD2 participates in chromatin dynamics, DNA replication, and gene transcription, demonstrating its role as an epigenetic reader and transcription factor or coactivator to promote tumorigenesis. However, despite the progress, an overall mechanism of ATAD2-mediated oncogenesis in diverse origin is elusive. In this review, we summarize the accumulated evidence to envision the overall ATAD2 signaling networks during carcinogenesis and highlight the area where missing links await further research. Besides, the structure-function aspect of ATAD2 is also discussed. Since the efforts have already been initiated to explore targeted drug molecules and RNA-based therapeutic alternatives against ATAD2, their potency and prospects have been elucidated. Together, we believe this is a well-rounded review on ATAD2, facilitating a new drift in ATAD2 research, essential for its clinical implication as a biomarker and/or cancer drug-target.
Collapse
Affiliation(s)
- Aditi Nayak
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Madhuri Dutta
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
22
|
Liu C, Hou J, Shan F, Wang L, Lu H, Ren T. Long Non-Coding RNA CRNDE Promotes Colorectal Carcinoma Cell Progression and Paclitaxel Resistance by Regulating miR-126-5p/ATAD2 Axis. Onco Targets Ther 2020; 13:4931-4942. [PMID: 32581554 PMCID: PMC7276211 DOI: 10.2147/ott.s237580] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background Long non-coding RNA colorectal neoplasia differentially expressed (lncRNA CRNDE) and microRNA-126-5p (miR-126-5p) were reported to be related to the development of colorectal carcinoma (CRC). However, the detailed mechanism of CRNDE and miR-126-5p is not fully understood. The purpose of this research was to explore their roles and molecular mechanism in CRC. Methods Quantitative real-time polymerase chain reaction was performed to detect the transcription levels of genes. Paclitaxel (PTX) was used to analyze cell drug resistance. 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and flow cytometry analysis were employed to assess cell proliferation and apoptosis, respectively. Furthermore, cell migratory and invasive abilities were measured using transwell assay. The interaction between miR-126-5p and CRNDE or ATPase family AAA domain-containing protein 2 (ATAD2) was predicted by online tool starbase and then confirmed using the dual-luciferase reporter assay. Besides, Western blot assay was carried out to detect the levels of proteins. Results CRNDE and ATAD2 expressions were upregulated and miR-126-5p expression was downregulated in CRC tissues and cells. CRNDE depletion repressed PTX resistance and the growth of CRC cells. Interestingly, we found that miR-126-5p was a target gene of CRNDE, and miR-126-5p directly targeted ATAD2. Furthermore, CRNDE affected CRC cell progression via modulation of miR-126-5p/ATAD2 axis in CRC cells. Conclusion Our data suggested that CRNDE regulated CRC cell development and PTX resistance by modulating miR-126-5p/ATAD2 axis, providing the theoretical basis for the treatment of CRC patients.
Collapse
Affiliation(s)
- Chang Liu
- Department of Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, People's Republic of China
| | - Jianfeng Hou
- Department of Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, People's Republic of China
| | - Fengxiao Shan
- Department of Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, People's Republic of China
| | - Lijuan Wang
- Department of Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, People's Republic of China
| | - Hanjie Lu
- Department of Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, People's Republic of China
| | - Tiejun Ren
- Department of Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, People's Republic of China
| |
Collapse
|
23
|
He Y, Huang H, Jin L, Zhang F, Zeng M, Wei L, Tang S, Chen D, Wang W. CircZNF609 enhances hepatocellular carcinoma cell proliferation, metastasis, and stemness by activating the Hedgehog pathway through the regulation of miR-15a-5p/15b-5p and GLI2 expressions. Cell Death Dis 2020; 11:358. [PMID: 32398664 PMCID: PMC7217914 DOI: 10.1038/s41419-020-2441-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022]
Abstract
Emerging evidence has revealed that aberrantly expressed circular RNAs (circRNAs) play vital roles in tumorigenesis and progression of diverse human malignancies. Although an existing literature has elucidated the regulatory role of circZNF609 in breast cancer, the crucial function that circZNF609 exerted on hepatocellular carcinoma (HCC) remains unclear. Herein, we determined to explore the molecular mechanism of circZNF609 in HCC. In this study, circZNF609 was conspicuously overexpressed and featured with loop structure in HCC. Functional tests revealed that decreased expression of circZNF609 suppressed cell proliferation, metastasis and stemness, whereas induced cell apoptosis in HCC. Subsequent molecular mechanism assays indicated that circZNF609 contributed to HCC progression through activation of Hedgehog pathway. Moreover, circZNF609 was found to be negatively correlated with miR-15a-5p/15b-5p but positively correlated with GLI2. Moreover, there was a negative correlation between miR-15a-5p/15b-5p and GLI2. Rescue experiments testified that GLI2 overexpression could recover circZNF609 depletion-mediated function on HCC development while miR-15a-5p/15b-5p inhibition could partially rescue circZNF609 silencing-mediated effect on HCC progression. Final experiments in vivo further elucidated the suppressive function of circZNF609 knockdown on the tumorigenesis of HCC. Briefly, circZNF609 enhances HCC cell proliferation, metastasis, and stemness by activating the Hedgehog pathway through the regulation of miR-15a-5p/15b-5p and GLI2 expressions.
Collapse
Affiliation(s)
- Yangke He
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.,Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Hui Huang
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.,Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Li Jin
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55# Renmin South Road, 610041, Chengdu, Sichuan, China
| | - Fang Zhang
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55# Renmin South Road, 610041, Chengdu, Sichuan, China.,Department of Burn and Plastic Surgery, Affiliated hospital of Chengdu Medical College, 610000, Chengdu, Sichuan, China
| | - Ming Zeng
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.,Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Liang Wei
- Department of Burn and Plastic Surgery, Affiliated hospital of Chengdu Medical College, 610000, Chengdu, Sichuan, China
| | - Shijia Tang
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.,Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Dongqin Chen
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Pudong New District, 200127, Shanghai, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University&Jiangsu Cancer Hospital&Jiangsu Institute of Cancer Research, No. 42 Baiziting Road, Xuanwu District, 210009, Nanjing, China. .,Department of Medical Oncology, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Gusu District, 215006, Suzhou, Jiangsu, China.
| | - Wansheng Wang
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Gusu District, 215006, Suzhou, Jiangsu, China
| |
Collapse
|
24
|
Lin S, Song S, Sun R, Zhang M, Du Y, Zhang D, Xu W, Wang H. Oncogenic circular RNA Hsa‐circ‐000684 interacts with microRNA‐186 to upregulate ZEB1 in gastric cancer. FASEB J 2020; 34:8187-8203. [PMID: 32388910 DOI: 10.1096/fj.201903246r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Sen Lin
- Department of Digestive Disease The Second Hospital of Shandong University Ji'nan P. R. China
| | - Suzhen Song
- Department of Internal Medicine Shandong University of Traditional Chinese Medicine Ji'nan P. R. China
| | - Rong Sun
- Central Laboratory The Second Hospital of Shandong University Ji'nan P. R. China
| | - Mingbao Zhang
- Department of Digestive Disease The Second Hospital of Shandong University Ji'nan P. R. China
| | - Yating Du
- Department of Digestive Disease The Second Hospital of Shandong University Ji'nan P. R. China
| | - Dongdong Zhang
- Department of Digestive Disease The Second Hospital of Shandong University Ji'nan P. R. China
| | - Weihua Xu
- Department of Digestive Disease The Second Hospital of Shandong University Ji'nan P. R. China
| | - Hongbo Wang
- Department of Digestive Disease The Second Hospital of Shandong University Ji'nan P. R. China
| |
Collapse
|
25
|
Xiang Y, Tian Q, Guan L, Niu SS. The Dual Role of miR-186 in Cancers: Oncomir Battling With Tumor Suppressor miRNA. Front Oncol 2020; 10:233. [PMID: 32195180 PMCID: PMC7066114 DOI: 10.3389/fonc.2020.00233] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs which regulate gene expression at post-transcriptional level. Alterations of miR-186 expression were demonstrated in numerous cancers, shown to play a vital role in oncogenesis, invasion, metastasis, apoptosis, and drug resistance. MiR-186 was documented as a tumor suppressor miRNA in the majority of studies, while conflicting reports verified miR-186 as an oncomir. The contradictory role in cancers may impede the application of miR-186, as well as other dual-functional miRNAs, as a diagnostic and therapeutic target. This review emphasizes the alterations and functions of miR-186 in cancers and discusses the mechanisms behind the contradictory findings. Among these, target abundance and dose-dependent effects of miR-186 are highlighted. The paper aims to review the challenges involved in developing diagnostic and therapeutic strategies for cancer treatment based on dual-functional miRNAs.
Collapse
Affiliation(s)
- Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China.,Department of Cell Biology and Genetics, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Qing Tian
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Li Guan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Shuai-Shuai Niu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Hubei, China
| |
Collapse
|
26
|
Xu L, Li W, Shi Q, Wang M, Li H, Yang X, Zhang J. MicroRNA‑936 inhibits the malignant phenotype of retinoblastoma by directly targeting HDAC9 and deactivating the PI3K/AKT pathway. Oncol Rep 2020; 43:635-645. [PMID: 31922233 PMCID: PMC6967128 DOI: 10.3892/or.2020.7456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/02/2019] [Indexed: 02/05/2023] Open
Abstract
MicroRNA-936 (miR-936) has been reported to play important roles in the progression of non-small cell lung cancer and glioma. However, the expression and functions of miR-936 in retinoblastoma (RB) remain elusive and need to be further elucidated. Herein, the aims were to measure miR-936 expression in RB, identify the functional importance of miR-936 in the oncogenicity of RB, and investigate the underlying molecular mechanisms. Reverse-transcription quantitative PCR was carried out to determine miR-936 expression in RB tissues and cell lines. Cell proliferation, colony formation, apoptosis, migration, and invasion in vitro and tumor growth in vivo were examined respectively by Cell Counting Kit-8, colony formation, flow cytometric, and Transwell migration and invasion assays and a subcutaneous heterotopic xenograft experiment. The potential target of miR-936 was predicted by bioinformatic analysis and was subsequently validated by luciferase reporter assay, reverse-transcription quantitative PCR, and western blotting. miR-936 expression was weak in both RB tissues and cell lines and was correlated with differentiation, lymph node metastasis and TNM staging in RB. RB cell proliferation, colony formation, migration, and invasion in vitro and tumor growth in vivo were attenuated by exogenous miR-936, whereas apoptosis was enhanced by miR-936 overexpression. Further molecular investigation identified histone deacetylase 9 (HDAC9) as a direct target gene of miR-936 in RB cells. HDAC9 depletion had effects similar to those of miR-936 overexpression in RB cells. Recovery of HDAC9 expression counteracted the tumor-suppressive action of miR-936 on the oncogenicity of RB cells. Ectopic miR-936 expression deactivated the PI3K/AKT pathway in RB cells in vitro and in vivo by decreasing HDAC9 expression. Downregulated miR-936 is related to poor prognosis in RB, and its upregulation inhibits RB aggressiveness via direct targeting of HDAC9 mRNA and thereby inactivation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Lishuai Xu
- Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Weidong Li
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P.R. China
| | - Qian Shi
- Department of Ophthalmology, Yixing Eye Hospital, Yixing, Jiangsu 214200, P.R. China
| | - Minfeng Wang
- Department of Ophthalmology, Yixing Eye Hospital, Yixing, Jiangsu 214200, P.R. China
| | - Heng Li
- Department of Ophthalmology, Suining Central Hospital, Suining, Sichuan 637000, P.R. China
| | - Xiaoli Yang
- Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Junjun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
27
|
Wang XL, Wang S, Wu ZZ, Yang QC, Li H, Xiong HG, Wan SC, Sun ZJ. Overexpression of ATAD2 indicates Poor Prognosis in Oral Squamous Cell Carcinoma. Int J Med Sci 2020; 17:1598-1609. [PMID: 32669963 PMCID: PMC7359390 DOI: 10.7150/ijms.46809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022] Open
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) is highly expressed in a variety of malignancies and can promote the proliferation of tumor cells and inhibit their differentiation. However, the expression of ATAD2 and its related mechanism in oral squamous cell carcinoma (OSCC) are still unknown. Immunohistochemical staining of ATAD2, cancer stem cells (CSCs) markers and immune checkpoint molecules was conducted on human OSCC specimens to determine the expression levels of these proteins and their correlations with the clinicopathological characteristics of ATAD2 in OSCC. Moreover, the role of ATAD2 in cell proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT) were assessed by silencing ATAD2 in vitro. Immunohistochemical analysis revealed that ATAD2 expression in OSCC tissues was markedly higher than that in adjacent dysplastic tissues and normal mucosal tissues. Overexpression of ATAD2 was related to poor overall survival in OSCC patients. In addition, the protein expression of ATAD2 was notably correlated with the expression of B7-H4, PD-L1, CMTM6, Slug and ALDH1 in human OSCC. ATAD2 knockdown arrested the cell cycle, promoted the apoptosis, and inhibited the proliferation, migration, and EMT of OSCC cells. In conclusion, these findings revealed that ATAD2 is highly expressed in OSCC and can act as a poor prognostic indicator.
Collapse
Affiliation(s)
- Xiao-Long Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Zhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hong-Gang Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu-Cheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Li N, Yu Y, Wang B. Downregulation of AAA-domain-containing protein 2 restrains cancer stem cell properties in esophageal squamous cell carcinoma via blockade of the Hedgehog signaling pathway. Am J Physiol Cell Physiol 2019; 319:C93-C104. [PMID: 31747529 DOI: 10.1152/ajpcell.00133.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) ranks among the five most common cancers in China and has a five-year survival rate of less than 15%. The transcription factor ATPase-family AAA-domain-containing protein 2 (ATAD2) has potential as a therapeutic target in various tumors, and microarray-based gene expression profiling reveals dysregulation of ATAD2 specifically in ESCC. Here we investigated whether ATAD2 could mediate a regulation of cancer stem cell (CSC) biological functions in ESCC. Immunohistochemical staining, reverse transcription quantitative polymerase chain reaction, and Western blot assays all revealed upregulation of ATAD2 in ESCC tissues and cell lines, which furthermore correlated with progression of ESCC. In loss-of-function experiments, silencing of ATAD2 inhibited activation of the Hedgehog signaling pathway, as indicated by reduced expression of glioma-associated oncogene family zinc finger 1 (Gli1), smoothened frizzled class receptor (SMO), and patched 1 (PTCH1). Investigations with 5-ethynyl-2'-deoxyuridine (EdU), Transwell assay, scratch test, flow cytometry, and colony formation assay showed that silencing of ATAD2 or inhibiting the Hedgehog signaling decreased the proliferation, invasion, and migration abilities along with colony formation, but elevated the apoptosis rate of CSCs. Furthermore, in vivo experiments validated the suppressive effect of siRNA-mediated ATAD2 silencing on tumor growth in nude mice. Thus, downregulation of ATAD2 can seemingly restrain the malignant phenotypes of ESCC cells through inhibition of the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Nuo Li
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yang Yu
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Baoming Wang
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
29
|
Zhang Y, Zheng A, Xu R, Zhou F, Hao A, Yang H, Yang P. NR2F1-induced NR2F1-AS1 promotes esophageal squamous cell carcinoma progression via activating Hedgehog signaling pathway. Biochem Biophys Res Commun 2019; 519:497-504. [PMID: 31530388 DOI: 10.1016/j.bbrc.2019.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
Emerging evidence has uncovered the extremely important roles of long noncoding RNAs (lncRNAs) in the progression of malignant tumors which includes numerous processes of gene regulation. LncRNA NR2F1-AS1 has been confirmed to have close correlation with the tumorigenesis of diverse cancers. However, the underlying regulatory function of it on esophageal squamous cell carcinoma (ESCC) progression is poorly known and thus needs more elucidations. In this study, a markedly elevated expression of NR2F1-AS1 was discovered in ESCC cells. Functional assays demonstrated that NR2F1-AS1 deficiency repressed ESCC progression. Molecular mechanism tests verified that knockdown of NR2F1-AS1 could lower the expression of GLI2 (a key protein molecule of Hedgehog signaling pathway) in ESCC. Additionally, NR2F1-AS1 was confirmed to facilitate ESCC progression via activation of Hedgehog signaling pathway. NR2F1-AS1 activated Hedgehog signaling pathway by regulating GLI2 to upregulate NR2F1 expression in ESCC. Besides, NR2F1 was testified to activate NR2F1-AS1 transcription in ESCC. Final rescue assays further demonstrated that NR2F1 upregulation could reverse the NR2F1-AS1 knockdown-mediated function on ESCC progression. Briefly, NR2F1-induced NR2F1-AS1 promotes ESCC progression through activation of Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Yaowen Zhang
- The First Department of Radiation Oncology, Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, No.1, Huanbin Road, Anyang, 455000, Henan Province, China
| | - Anping Zheng
- The First Department of Radiation Oncology, Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, No.1, Huanbin Road, Anyang, 455000, Henan Province, China
| | - Ruiping Xu
- The First Department of Radiation Oncology, Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, No.1, Huanbin Road, Anyang, 455000, Henan Province, China.
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, No.1, Huanbin Road, Anyang, 455000, Henan Province, China
| | - Anlin Hao
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, No.1, Huanbin Road, Anyang, 455000, Henan Province, China
| | - Haijun Yang
- Department of Pathology, Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, No.1, Huanbin Road, Anyang, 455000, Henan Province, China
| | - Pengyu Yang
- The First Department of Radiation Oncology, Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, No.1, Huanbin Road, Anyang, 455000, Henan Province, China
| |
Collapse
|