1
|
Totoń-Żurańska J, Mikolajczyk TP, Saju B, Guzik TJ. Vascular remodelling in cardiovascular diseases: hypertension, oxidation, and inflammation. Clin Sci (Lond) 2024; 138:817-850. [PMID: 38920058 DOI: 10.1042/cs20220797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Optimal vascular structure and function are essential for maintaining the physiological functions of the cardiovascular system. Vascular remodelling involves changes in vessel structure, including its size, shape, cellular and molecular composition. These changes result from multiple risk factors and may be compensatory adaptations to sustain blood vessel function. They occur in diverse cardiovascular pathologies, from hypertension to heart failure and atherosclerosis. Dynamic changes in the endothelium, fibroblasts, smooth muscle cells, pericytes or other vascular wall cells underlie remodelling. In addition, immune cells, including macrophages and lymphocytes, may infiltrate vessels and initiate inflammatory signalling. They contribute to a dynamic interplay between cell proliferation, apoptosis, migration, inflammation, and extracellular matrix reorganisation, all critical mechanisms of vascular remodelling. Molecular pathways underlying these processes include growth factors (e.g., vascular endothelial growth factor and platelet-derived growth factor), inflammatory cytokines (e.g., interleukin-1β and tumour necrosis factor-α), reactive oxygen species, and signalling pathways, such as Rho/ROCK, MAPK, and TGF-β/Smad, related to nitric oxide and superoxide biology. MicroRNAs and long noncoding RNAs are crucial epigenetic regulators of gene expression in vascular remodelling. We evaluate these pathways for potential therapeutic targeting from a clinical translational perspective. In summary, vascular remodelling, a coordinated modification of vascular structure and function, is crucial in cardiovascular disease pathology.
Collapse
Affiliation(s)
- Justyna Totoń-Żurańska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz P Mikolajczyk
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Blessy Saju
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| | - Tomasz J Guzik
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
2
|
Pan W, Jie W, Huang H. Vascular calcification: Molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e200. [PMID: 36620697 PMCID: PMC9811665 DOI: 10.1002/mco2.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
Vascular calcification (VC) is recognized as a pathological vascular disorder associated with various diseases, such as atherosclerosis, hypertension, aortic valve stenosis, coronary artery disease, diabetes mellitus, as well as chronic kidney disease. Therefore, it is a life-threatening state for human health. There were several studies targeting mechanisms of VC that revealed the importance of vascular smooth muscle cells transdifferentiating, phosphorous and calcium milieu, as well as matrix vesicles on the progress of VC. However, the underlying molecular mechanisms of VC need to be elucidated. Though there is no acknowledged effective therapeutic strategy to reverse or cure VC clinically, recent evidence has proved that VC is not a passive irreversible comorbidity but an active process regulated by many factors. Some available approaches targeting the underlying molecular mechanism provide promising prospects for the therapy of VC. This review aims to summarize the novel findings on molecular mechanisms and therapeutic interventions of VC, including the role of inflammatory responses, endoplasmic reticulum stress, mitochondrial dysfunction, iron homeostasis, metabolic imbalance, and some related signaling pathways on VC progression. We also conclude some recent studies on controversial interventions in the clinical practice of VC, such as calcium channel blockers, renin-angiotensin system inhibitions, statins, bisphosphonates, denosumab, vitamins, and ion conditioning agents.
Collapse
Affiliation(s)
- Wei Pan
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Wei Jie
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| |
Collapse
|
3
|
Neradova A, Wasilewski G, Prisco S, Leenders P, Caron M, Welting T, van Rietbergen B, Kramann R, Floege J, Vervloet MG, Schurgers LJ. Combining phosphate binder therapy with vitamin K2 inhibits vascular calcification in an experimental animal model of kidney failure. Nephrol Dial Transplant 2022; 37:652-662. [PMID: 34718756 DOI: 10.1093/ndt/gfab314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Hyperphosphataemia is strongly associated with cardiovascular disease and mortality. Recently, phosphate binders (PBs), which are used to bind intestinal phosphate, have been shown to bind vitamin K, thereby potentially aggravating vitamin K deficiency. This vitamin K binding by PBs may offset the beneficial effects of phosphate reduction in reducing vascular calcification (VC). Here we assessed whether combining PBs with vitamin K2 supplementation inhibits VC. METHODS We performed 3/4 nephrectomy in rats, after which warfarin was given for 3 weeks to induce vitamin K deficiency. Next, animals were fed a high phosphate diet in the presence of low or high vitamin K2 and were randomized to either control or one of four different PBs for 8 weeks. The primary outcome was the amount of thoracic and abdominal aorta VC measured by high-resolution micro-computed tomography (µCT). Vitamin K status was measured by plasma MK7 levels and immunohistochemically analysed in vasculature using uncarboxylated matrix Gla protein (ucMGP) specific antibodies. RESULTS The combination of a high vitamin K2 diet and PB treatment significantly reduced VC as measured by µCT for both the thoracic (P = 0.026) and abdominal aorta (P = 0.023), compared with MK7 or PB treatment alone. UcMGP stain was significantly more present in the low vitamin K2-treated groups in both the thoracic (P < 0.01) and abdominal aorta (P < 0.01) as compared with high vitamin K2-treated groups. Moreover, a high vitamin K diet and PBs led to reduced vascular oxidative stress. CONCLUSION In an animal model of kidney failure with vitamin K deficiency, neither PB therapy nor vitamin K2 supplementation alone prevented VC. However, the combination of high vitamin K2 with PB treatment significantly attenuated VC.
Collapse
Affiliation(s)
- Aegida Neradova
- Dianet Amsterdam/Department of Nephrology Amsterdam UMC, Amsterdam, The Netherlands
| | - Grzegorz Wasilewski
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
- Nattopharma ASA, Oslo, Norway
| | - Selene Prisco
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Peter Leenders
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Marjolein Caron
- Department of Orthopedic Surgery, Laboratory for Experimental Orthopedics, Maastricht University, Maastricht, The Netherlands
| | - Tim Welting
- Department of Orthopaedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Bert van Rietbergen
- Department of Orthopaedic Surgery, Maastricht University, Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany
- Division of Nephrology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology, RWTH Aachen University Hospital, Aachen, Germany
| | - Marc G Vervloet
- Department of Nephrology and Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
4
|
Hammad SK, Eissa RG, Shaheen MA, Younis NN. Resveratrol Ameliorates Aortic Calcification in Ovariectomized Rats via SIRT1 Signaling. Curr Issues Mol Biol 2021; 43:1057-1071. [PMID: 34563044 PMCID: PMC8928980 DOI: 10.3390/cimb43020075] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
Postmenopausal women are at an increased risk of vascular calcification which is defined as the pathological deposition of minerals in the vasculature, and is strongly linked with increased cardiovascular disease risk. Since estrogen-replacement therapy is associated with increased cancer risk, there is a strong need for safer therapeutic approaches. In this study we aimed to investigate the protective and therapeutic effects of the phytoestrogen resveratrol against vascular calcification in ovariectomized rats, a preclinical model of postmenopause. Furthermore, we aimed to compare the effects of resveratrol to those of estrogen and to explore the mechanisms underpinning those effects. Treatment with resveratrol or estrogen ameliorated aortic calcification in ovariectomized rats, as shown by reduced calcium deposition in the arterial wall. Mechanistically, the effects of resveratrol and estrogen were mediated via the activation of SIRT1 signaling. SIRT1 protein expression was downregulated in the aortas of ovariectomized rats, and upregulated in rats treated with resveratrol or estrogen. Moreover, resveratrol and estrogen reduced the levels of the osteogenic markers: runt-related transcription factor 2 (RUNX2), osteocalcin and alkaline phosphatase (ALP) which have been shown to play a role during vascular calcification. Additionally, the senescence markers (p53, p16 and p21) which were also reported to play a role in the pathogenesis of vascular calcification, were reduced upon treatment with resveratrol and estrogen. In conclusion, the phytoestrogen resveratrol may be a safer alternative to estrogen, as a therapeutic approach against the progression of vascular calcification during postmenopause.
Collapse
Affiliation(s)
- Sally K. Hammad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.G.E.); (N.N.Y.)
| | - Rana G. Eissa
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.G.E.); (N.N.Y.)
| | - Mohamed A. Shaheen
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Nahla N. Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.G.E.); (N.N.Y.)
| |
Collapse
|
5
|
Mandatori D, Penolazzi L, Pelusi L, Lambertini E, Michelucci F, Porreca A, Cerritelli P, Pipino C, Di Iorio A, Bruni D, Di Nicola M, Buda R, Piva R, Pandolfi A. Three-Dimensional Co-Culture System of Human Osteoblasts and Osteoclast Precursors from Osteoporotic Patients as an Innovative Model to Study the Role of Nutrients: Focus on Vitamin K2. Nutrients 2021; 13:nu13082823. [PMID: 34444982 PMCID: PMC8399348 DOI: 10.3390/nu13082823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 01/03/2023] Open
Abstract
Several natural compounds, such as vitamin K2, have been highlighted for their positive effects on bone metabolism. It has been proposed that skeletal disorders, such as osteoporosis, may benefit from vitamin K2-based therapies or its regular intake. However, further studies are needed to better clarify the effects of vitamin K2 in bone disorders. To this aim, we developed in vitro a three-dimensional (3D) cell culture system one step closer to the bone microenvironment based on co-culturing osteoblasts and osteoclasts precursors obtained from bone specimens and peripheral blood of the same osteoporotic patient, respectively. Such a 3-D co-culture system was more informative than the traditional 2-D cell cultures when responsiveness to vitamin K2 was analyzed, paving the way for data interpretation on single patients. Following this approach, the anabolic effects of vitamin K2 on the osteoblast counterpart were found to be correlated with bone turnover markers measured in osteoporotic patients’ sera. Overall, our data suggest that co-cultured osteoblasts and osteoclast precursors from the same osteoporotic patient may be suitable to generate an in vitro 3-D experimental model that potentially reflects the individual’s bone metabolism and may be useful to predict personal responsiveness to nutraceutical or drug molecules designed to positively affect bone health.
Collapse
Affiliation(s)
- Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (D.M.); (L.P.); (A.P.); (C.P.); (M.D.N.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Letizia Penolazzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (E.L.)
| | - Letizia Pelusi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (D.M.); (L.P.); (A.P.); (C.P.); (M.D.N.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Elisabetta Lambertini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (E.L.)
| | - Francesca Michelucci
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.M.); (P.C.); (A.D.I.); (D.B.); (R.B.)
| | - Annamaria Porreca
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (D.M.); (L.P.); (A.P.); (C.P.); (M.D.N.)
| | - Pietro Cerritelli
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.M.); (P.C.); (A.D.I.); (D.B.); (R.B.)
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (D.M.); (L.P.); (A.P.); (C.P.); (M.D.N.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Angelo Di Iorio
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.M.); (P.C.); (A.D.I.); (D.B.); (R.B.)
| | - Danilo Bruni
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.M.); (P.C.); (A.D.I.); (D.B.); (R.B.)
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (D.M.); (L.P.); (A.P.); (C.P.); (M.D.N.)
| | - Roberto Buda
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.M.); (P.C.); (A.D.I.); (D.B.); (R.B.)
| | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (E.L.)
- Correspondence: (R.P.); (A.P.); Tel.: +39-0532-974405 (R.P.); +39-0871-541425 (A.P.)
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (D.M.); (L.P.); (A.P.); (C.P.); (M.D.N.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (R.P.); (A.P.); Tel.: +39-0532-974405 (R.P.); +39-0871-541425 (A.P.)
| |
Collapse
|
6
|
Chinetti G, Neels JG. Roles of Nuclear Receptors in Vascular Calcification. Int J Mol Sci 2021; 22:6491. [PMID: 34204304 PMCID: PMC8235358 DOI: 10.3390/ijms22126491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification is defined as an inappropriate accumulation of calcium depots occurring in soft tissues, including the vascular wall. Growing evidence suggests that vascular calcification is an actively regulated process, sharing similar mechanisms with bone formation, implicating both inhibitory and inducible factors, mediated by osteoclast-like and osteoblast-like cells, respectively. This process, which occurs in nearly all the arterial beds and in both the medial and intimal layers, mainly involves vascular smooth muscle cells. In the vascular wall, calcification can have different clinical consequences, depending on the pattern, localization and nature of calcium deposition. Nuclear receptors are transcription factors widely expressed, activated by specific ligands that control the expression of target genes involved in a multitude of pathophysiological processes, including metabolism, cancer, inflammation and cell differentiation. Some of them act as drug targets. In this review we describe and discuss the role of different nuclear receptors in the control of vascular calcification.
Collapse
Affiliation(s)
- Giulia Chinetti
- Université Côte d’Azur, CHU, INSERM, C3M, 06204 Nice, France;
| | - Jaap G. Neels
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
| |
Collapse
|
7
|
The Dual Role of Vitamin K2 in "Bone-Vascular Crosstalk": Opposite Effects on Bone Loss and Vascular Calcification. Nutrients 2021; 13:nu13041222. [PMID: 33917175 PMCID: PMC8067793 DOI: 10.3390/nu13041222] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis (OP) and vascular calcification (VC) represent relevant health problems that frequently coexist in the elderly population. Traditionally, they have been considered independent processes, and mainly age-related. However, an increasing number of studies have reported their possible direct correlation, commonly defined as “bone-vascular crosstalk”. Vitamin K2 (VitK2), a family of several natural isoforms also known as menaquinones (MK), has recently received particular attention for its role in maintaining calcium homeostasis. In particular, VitK2 deficiency seems to be responsible of the so-called “calcium paradox” phenomenon, characterized by low calcium deposition in the bone and its accumulation in the vessel wall. Since these events may have important clinical consequences, and the role of VitK2 in bone-vascular crosstalk has only partially been explained, this review focuses on its effects on the bone and vascular system by providing a more recent literature update. Overall, the findings reported here propose the VitK2 family as natural bioactive molecules that could be able to play an important role in the prevention of bone loss and vascular calcification, thus encouraging further in-depth studies to achieve its use as a dietary food supplement.
Collapse
|