1
|
Gao J, Li L. Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review). Exp Ther Med 2023; 26:444. [PMID: 37614437 PMCID: PMC10443056 DOI: 10.3892/etm.2023.12143] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia worldwide, has gradually become a global health concern for society and individuals with the process of global ageing. Although extensive research has been carried out on AD, the etiology and pathological mechanism of the disease are still unclear, and there is no specific drug to cure or delay AD progression. The exploration of enhancing nerve regeneration in AD has gradually attracted increasing attention. In the current review, the existing therapeutic strategies were summarized to induce nerve regeneration which can increase the number of neurons, and improve the survival of neurons, the plasticity of synapses and synaptic activity. The strategies include increasing neurotrophic expression (such as brain-derived neurotrophic factor and nerve growth factor), inhibiting acetylcholinesterase (such as donepezil, tacrine, rivastigmine and galanthamine), elevating histone deacetylase levels (such as RGFP-966, Tasquinimod, CM-414 and 44B), stimulating the brain by physiotherapy (such as near-infrared light, repetitive transcranial magnetic stimulation, and transcranial direct current stimulation) and transplanting exogenous neural stem cells. However, further evaluations need to be performed to determine the optimal treatment. The present study reviews recent interventions for enhancing adult neurogenesis and attempts to elucidate their mechanisms of action, which may provide a theoretical basis for inducing nerve regeneration to fight against AD.
Collapse
Affiliation(s)
- Junyan Gao
- Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Liping Li
- Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
2
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
3
|
Rahbaran M, Zekiy AO, Bahramali M, Jahangir M, Mardasi M, Sakhaei D, Thangavelu L, Shomali N, Zamani M, Mohammadi A, Rahnama N. Therapeutic utility of mesenchymal stromal cell (MSC)-based approaches in chronic neurodegeneration: a glimpse into underlying mechanisms, current status, and prospects. Cell Mol Biol Lett 2022; 27:56. [PMID: 35842587 PMCID: PMC9287902 DOI: 10.1186/s11658-022-00359-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Recently, mesenchymal stromal cell (MSC)-based therapy has become an appreciated therapeutic approach in the context of neurodegenerative disease therapy. Accordingly, a myriad of studies in animal models and also some clinical trials have evinced the safety, feasibility, and efficacy of MSC transplantation in neurodegenerative conditions, most importantly in Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). The MSC-mediated desired effect is mainly a result of secretion of immunomodulatory factors in association with release of various neurotrophic factors (NTFs), such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Thanks to the secretion of protein-degrading molecules, MSC therapy mainly brings about the degradation of pathogenic protein aggregates, which is a typical appearance of chronic neurodegenerative disease. Such molecules, in turn, diminish neuroinflammation and simultaneously enable neuroprotection, thereby alleviating disease pathological symptoms and leading to cognitive and functional recovery. Also, MSC differentiation into neural-like cells in vivo has partially been evidenced. Herein, we focus on the therapeutic merits of MSCs and also their derivative exosome as an innovative cell-free approach in AD, HD, PD, and ALS conditions. Also, we give a brief glimpse into novel approaches to potentiate MSC-induced therapeutic merits in such disorders, most importantly, administration of preconditioned MSCs.
Collapse
Affiliation(s)
- Mohaddeseh Rahbaran
- Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mahta Bahramali
- Biotechnology Department, University of Tehran, Tehran, Iran
| | | | - Mahsa Mardasi
- Biotechnology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Delaram Sakhaei
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Mohammadi
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran.
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
4
|
Wang ZB, Wang ZT, Sun Y, Tan L, Yu JT. The future of stem cell therapies of Alzheimer's disease. Ageing Res Rev 2022; 80:101655. [PMID: 35660003 DOI: 10.1016/j.arr.2022.101655] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/04/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) places a heavy burden on the global economy. There is no effective disease-modifying treatment available at present. Since the advent of induced pluripotent stem cells (iPSCs) reprogrammed from human somatic cells, new approaches using iPSC-derived products provided novel insights into AD pathogenesis and drug candidates for the AD treatment. Multiple recent studies using animal models have increased the possibility of reducing pathology and improving cognitive function by cell replacement therapies. In this review, we summarized the advantages, limitations, and future directions of cell replacement therapy, discussed the safety and ethical concerns of this novel therapeutic approach and the possibility of translation to clinical practice.
Collapse
|
5
|
Tatulian SA. Challenges and hopes for Alzheimer's disease. Drug Discov Today 2022; 27:1027-1043. [PMID: 35121174 DOI: 10.1016/j.drudis.2022.01.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/01/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Recent drug development efforts targeting Alzheimer's disease (AD) have failed to produce effective disease-modifying agents for many reasons, including the substantial presymptomatic neuronal damage that is caused by the accumulation of the amyloid β (Aβ) peptide and tau protein abnormalities, deleterious adverse effects of drug candidates, and inadequate design of clinical trials. New molecular targets, biomarkers, and diagnostic techniques, as well as alternative nonpharmacological approaches, are sorely needed to detect and treat early pathological events. This article analyzes the successes and debacles of pharmaceutical endeavors to date, and highlights new technologies that may lead to the more effective diagnosis and treatment of the pathologies that underlie AD. The use of focused ultrasound, deep brain stimulation, stem cell therapy, and gene therapy, in parallel with pharmaceuticals and judicious lifestyle adjustments, holds promise for the deceleration, prevention, or cure of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, College of Sciences, and Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
6
|
Stem cells from human exfoliated deciduous teeth affect mitochondria and reverse cognitive decline in a senescence-accelerated mouse prone 8 model. Cytotherapy 2021; 24:59-71. [PMID: 34598900 DOI: 10.1016/j.jcyt.2021.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AIMS Stem cell therapy is a novel therapy being explored for AD. The molecular mechanism of its effect is still unclear. The authors investigated the effects and mechanism by injection of SHEDs into an AD mouse model. METHODS SHEDs were cultured in vitro and injected into AD SAMP8 mice by caudal vein, and SHEDs labeled via synthetic dye showed in vivo migration to the head. The cognitive ability of SAMP8 mice was evaluated via Barnes maze and new object recognition. The pathological indicators of AD, including Tau, amyloid plaques and inflammatory factors, were examined at the protein or RNA level. Next, macro-proteomics analysis and weighted gene co-expression network analysis (WGCNA) based on protein groups and behavioral data were applied to discover the important gene cluster involved in the improvement of AD by SHEDs, which was further confirmed in an AD model in both mouse and cell lines. RESULTS SHED treatment improved the cognitive ability and pathological symptoms of SAMP8 mice. Proteomics analysis indicated that these improvements were tightly related to the mitochondria, which was proved through examination of the shape and function of mitochondria both in vivo (SAMP8 brain) and in vitro (SH-SY5Y cells). Finally, the core targets of SHEDs in the mitochondrial pathway, Hook3, Mic13 and MIF, were screened out and confirmed in vivo. CONCLUSIONS SHED treatment significantly relieved AD symptoms, improved cognitive ability and reversed memory loss in an AD mouse model, possibly through the recovery of dysfunctional mitochondria. These results raise the possibility that SHED may ease the symptoms of AD by targeting the mitochondria.
Collapse
|
7
|
Central Nervous System Tissue Regeneration after Intracerebral Hemorrhage: The Next Frontier. Cells 2021; 10:cells10102513. [PMID: 34685493 PMCID: PMC8534252 DOI: 10.3390/cells10102513] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Despite marked advances in surgical techniques and understanding of secondary brain injury mechanisms, the prognosis of intracerebral hemorrhage (ICH) remains devastating. Harnessing and promoting the regenerative potential of the central nervous system may improve the outcomes of patients with hemorrhagic stroke, but approaches are still in their infancy. In this review, we discuss the regenerative phenomena occurring in animal models and human ICH, provide results related to cellular and molecular mechanisms of the repair process including by microglia, and review potential methods to promote tissue regeneration in ICH. We aim to stimulate research involving tissue restoration after ICH.
Collapse
|
8
|
Genetic Modification of Mesenchymal Stem Cells for Neurological Disease Therapy: What Effects Does it Have on Phenotype/Cell Behavior, Determining Their Effectiveness? Mol Diagn Ther 2021; 24:683-702. [PMID: 32926348 DOI: 10.1007/s40291-020-00491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells are a promising tool in regenerative medicine, and their functions can be enhanced through genetic modification. Recent advances in genetic engineering provide several methods that enable gene delivery to mesenchymal stem cells. However, it remains to be decided whether genetic modification of mesenchymal stem cells by vectors carrying reporter or therapeutic genes leads to adverse effects on morphology, phenotypic profiles, and viability of transplanted cells. In this regard, we focus on the description of genetic modification methods of mesenchymal stem cells, their effectiveness, and the impact on phenotype/cell behavior/proliferation and the differentiation ability of these cells in vitro and in vivo. Furthermore, we compare the main effects of genetically modified mesenchymal stem cells with native mesenchymal stem cells when applied in the therapy of neurological diseases.
Collapse
|
9
|
Zhang L, Dong ZF, Zhang JY. Immunomodulatory role of mesenchymal stem cells in Alzheimer's disease. Life Sci 2020; 246:117405. [PMID: 32035129 DOI: 10.1016/j.lfs.2020.117405] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia and is characterized by gradual loss in memory, language, and cognitive function. The hallmarks of AD include extracellular amyloid deposition, intracellular neuronal fiber entanglement, and neuronal loss. Despite strenuous efforts toward improvement of AD, there remains a lack of effective treatment and current pharmaceutical therapies only alleviate the symptoms for a short period of time. Interestingly, some progress has been achieved in treatment of AD based on mesenchymal stem cell (MSC) transplantation in recent years. MSC transplantation, as a rising therapy, is used as an intervention in AD, because of the enormous potential of MSCs, including differentiation potency, immunoregulatory function, and no immunological rejection. Although numerous strategies have focused on the use of MSCs to replace apoptotic or degenerating neurons, recent studies have implied that MSC-immunoregulation, which modulates the activity state of microglia or astrocytes and mediates neuroinflammation via several transcription factors (NFs) signaling pathways, may act as a major mechanism for the therapeutic efficacy of MSC and be responsible for some of the satisfactory results. In this review, we will focus on the role of MSC-immunoregulation in MSC-based therapy for AD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, China.
| | - Zhi-Fang Dong
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, China.
| | - Jie-Yuan Zhang
- Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|