1
|
Paladhi A, Daripa S, Nath A, Hira SK. TLR7-Induced Mitochondrial Reactive Oxygen Species Production in Monocyte-derived Dendritic Cells Drives IL-12-Dependent NK Cell Activation and Enhances Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1255-1263. [PMID: 39240186 DOI: 10.4049/jimmunol.2400340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Dendritic cell (DC)-based vaccines are promising immunotherapies for cancer. Although DC-based therapies are known to activate tumor-specific T cells, the interplay between DCs and NK cells in this setting is not fully understood. In this study, we demonstrated a novel TLR7/ mitochondrial reactive oxygen species (mROS)/IL-12 axis that drives potent NK cell responses against tumors. We showed that TLR7 activation by imiquimod in peripheral blood monocyte-derived CD11c+ DCs triggered mROS production, leading to enhanced IL-12 secretion and subsequent NK cell activation, as evidenced by increased IFN-γ production and tumor cell cytotoxicity. Notably, mROS neutralization abrogates NK cell-mediated tumor cell lysis, and TLR7-mediated DC activation of NK cells occurs independently of MyD88, suggesting involvement of the noncanonical NF-κB pathway. Our findings provide a rationale for targeting the TLR7/mROS/IL-12 axis to enhance the efficacy of DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Ankush Paladhi
- Cellular Immunology Laboratory, Department of Zoology, University of Burdwan, Bardhaman, India
| | - Samrat Daripa
- Cellular Immunology Laboratory, Department of Zoology, University of Burdwan, Bardhaman, India
| | - Arghya Nath
- ICMR-DHR-VRDL, Burdwan Medical College and Hospital, Bardhaman, India
| | - Sumit Kumar Hira
- Cellular Immunology Laboratory, Department of Zoology, University of Burdwan, Bardhaman, India
| |
Collapse
|
2
|
Mohtasham N, Zarepoor M, Shooshtari Z, Hesari KK, Mohajertehran F. Genes involved in metastasis in oral squamous cell carcinoma: A systematic review. Health Sci Rep 2024; 7:e1977. [PMID: 38665153 PMCID: PMC11043498 DOI: 10.1002/hsr2.1977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 04/28/2024] Open
Abstract
Background and Aims Oral squamous cell carcinoma is the most prevalent malignancy in the oral cavity, with a significant mortality rate. In oral squamous cell carcinoma patients, the survival rate could decrease because of delayed diagnosis. Thus, prevention, early diagnosis, and appropriate treatment can effectively increase the survival rate in patients. In this systematic review, we discussed the role of different genes in oral squamous cell carcinoma metastasis. Herein, we aimed to summarize clinical results, regarding the potential genes that promote oral squamous cell carcinoma metastasis. Methods This systematic review was carried out under the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. An electronic search for all relevant articles published in English between January 2018 and April 2022 was performed using Scopus, PubMed, and Google Scholar search engines. All original studies published in English were included, and we excluded studies that were in a non-English language. Results A total of 4682 articles were found, of which 14 were relevant and detected significant genes in oral squamous cell carcinoma progression. These findings investigated the overexpression of interferon-induced proteins with tetratricopeptide repeats 1 and 3 (IFIT1, IFT3), high-mobility group A2 (HMGA2), transformed growth factor-beta-induced, lectin galactoside-binding soluble 3 binding protein (LGALS3BP), bromodomain containing 4, COP9 signaling complex 6, heterogeneous nuclear ribonucleoproteins A2B1 (HNRNPA2B1), 5'-3' exoribonuclease 2 (XRN2), cystatin-A (CSTA), fibroblast growth factors 8 (FGF8), forkhead box P3, cadherin-3, also known as P-cadherin and Wnt family member 5A, ubiquitin-specific-processing protease 7, and retinoic acid receptor responder protein 2 genes lead to promote metastasis in oral squamous cell carcinoma. Overexpression of some genes (IFIT1, 3, LGALS3BP, HMGA2, HNRNPA2B1, XRN2, CSTA, and FGF8) was proven to be correlated with poor survival rates in oral squamous cell carcinoma patients. Conclusion Studies suggest that metastatic genes indicate a poor prognosis for oral squamous cell carcinoma patients. Detecting these metastatic genes in oral squamous cell carcinoma patients may be of predictive value and can also facilitate assessing oral squamous cell carcinoma development and its response to treatment.
Collapse
Affiliation(s)
- Nooshin Mohtasham
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial PathologySchool of Dentistry, Mashhad University of Medical SciencesMashhadIran
- Oral and Maxillofacial Diseases Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| | - Marzieh Zarepoor
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| | - Zahra Shooshtari
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| | - Kiana Kamyab Hesari
- Doctor of Veterinary Medicine StudentSciences and Research UniversityTehranIran
| | - Farnaz Mohajertehran
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial PathologySchool of Dentistry, Mashhad University of Medical SciencesMashhadIran
- Oral and Maxillofacial Diseases Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| |
Collapse
|
3
|
Jevšinek Skok D, Hauptman N. Steadfast Toll Like Receptor 4 ( TLR4) 5-Hydroxymethylcytosine Levels in Cell-Free DNA: A Promising Consistency Marker for Colorectal Cancer Patients. Genes (Basel) 2023; 14:1636. [PMID: 37628686 PMCID: PMC10454843 DOI: 10.3390/genes14081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Cell-free DNA (cfDNA) from patient blood is emerging as a noninvasive diagnostic avenue for various cancers. We aimed to identify reliable biomarkers in cfDNA by investigating genes exhibiting significant differences between colorectal cancer and control samples. Our objective was to identify genes that showed a positive difference between cancer and control samples. To achieve this, we conducted an in silico analysis to identify genes that exhibit no significant variation in methylation between genomic DNA (gDNA) and cfDNA. We collected experimental data from publicly available repositories, which included 5-hydroxymethylcytosine (5hmC) profiles of gDNA and cfDNA samples from both cancer patients and healthy individuals. By comparing and overlapping these two groups, we identified 187 genes of interest, of which 53 genes had a positive difference among colon cancer patients and healthy individuals. Next, we performed an ANOVA test on these genes, resulting in the identification of 12 genes that showed statistically significant higher levels of 5hmC in cfDNA and gDNA from cancer patients compared to healthy individuals. Additionally, we compared the 5hmC status of these genes between cfDNA and gDNA from cancer patients. Interestingly, we found that the 5hmC of the toll like receptor 4 (TLR4) gene was not statistically different between cfDNA and gDNA from cancer patients, indicating consistency between cfDNA and gDNA. These findings have important implications, not only for experimental validation but also for the development of more sensitive and robust noninvasive methods to improve diagnostic, prognostic, and treatment options for colon cancer.
Collapse
Affiliation(s)
- Daša Jevšinek Skok
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia;
| | - Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Qadir J, Wen SY, Yuan H, Yang BB. CircRNAs regulate the crosstalk between inflammation and tumorigenesis: The bilateral association and molecular mechanisms. Mol Ther 2023; 31:1514-1532. [PMID: 36518080 PMCID: PMC10278049 DOI: 10.1016/j.ymthe.2022.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammation, a hallmark of cancer, has been associated with tumor progression, transition into malignant phenotype and efficacy of the chemotherapeutic agents in cancer. Chronic inflammation provides a favorable environment for tumorigenesis by inducing immunosuppression, whereas acute inflammation prompts tumor suppression by generating anti-tumor immune responses. Inflammatory factors derived from interstitial cells or tumor cells can stimulate cell proliferation and survival by modulating oncogenes and/or tumor suppressors. Recently, a new class of RNAs, i.e., circular RNAs (circRNAs), has been implicated in inflammatory diseases. Although there are reports on circRNAs imparting functions in inflammatory insults, whether these circularized transcripts hold the potential to regulate inflammation-induced cancer or tumor-related inflammation, and modulate the interactions between tumor microenvironment (TME) and the inflammatory stromal/immune cells, awaits further elucidation. Contextually, the current review describes the molecular association between inflammation and cancer, and spotlights the regulatory mechanisms by which circRNAs can moderate TME in response to inflammatory signals/triggers. We also present comprehensive information about the immune cell(s)-specific expression and functions of the circRNAs in TME, modulation of inflammatory signaling pathways to drive tumorigenesis, and their plausible roles in inflammasomes and tumor development. Moreover, the therapeutic potential of these circRNAs in harnessing inflammatory responses in cancer is also discussed.
Collapse
Affiliation(s)
- Javeria Qadir
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shuo-Yang Wen
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hui Yuan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Wang R, Hua Y, Wu H, Wang J, Xiao YC, Chen X, Ao Q, Zeng Q, Zhu X, Zhang X. Hydroxyapatite nanoparticles promote TLR4 agonist-mediated anti-tumor immunity through synergically enhanced macrophage polarization. Acta Biomater 2023; 164:626-640. [PMID: 37086827 DOI: 10.1016/j.actbio.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Macrophages represent the most prevalent immune cells in the tumor micro-environment, making them an appealing target for tumor immunotherapy. One of our previous studies showed that hydroxyapatite nanoparticles (HANPs) enhanced Toll-like receptor 4 (TLR4) signal transduction in macrophages. This study was proposed to investigate how HANPs manipulated the phenotype and function of macrophage against 4T1 tumors in the presence or absence of MPLA, a low toxic Toll-like receptor 4 (TLR4) agonist. The results demonstrated that the addition of HANPs to MPLA significantly promoted cytokine secretion and macrophage polarization toward a tumoricidal M1 phenotype. Further, the resulting supernatant from HANPs/MPLA co-stimulated macrophages enhanced 4T1 tumor cells apoptosis compared to that from macrophages treated with a single component or PBS control. In particular, we found HANPs elicited immunogenic cell death (ICD) indicated by the increased expression of "danger signals", including HMGB1, CRT and ATP in 4T1 cells. Subsequently, the ICD derivatives-containing supernatant from HANPs-treated 4T1 cells activated macrophage and shifted the phenotype of the cells toward M1 type. Moreover, in a tumor-bearing mice model, HANPs and MPLA synergistically delayed tumor growth compared to PBS control, which was positively associated with the promoted macrophage polarization and ICD induction. Therefore, our findings demonstrated a potential platform to modulate the function of macrophages, and shed a new insight into the mechanism involving the immunomodulatory effect of HANPs for tumor therapy. STATEMENT OF SIGNIFICANCE: Polarizing macrophage toward tumoricidal phenotype by harnessing Toll-like receptor (TLR) agonists has been proven effective for tumor immunotherapy. However, the immunomodulatory potency of TLR agonists is limited due to immune suppression or tolerance associated with TLR activation in immune cells. Herein, we introduced hydroxyapatite nanoparticles (HANPs) to MPLA, a TLR4 agonist. The results demonstrated that the addition of HANPs to MPLA promoted macrophage shift toward tumoricidal M1 phenotype, supported a "hot" tumor transformation, and delayed 4T1 tumor growth. Moreover, we found that HANPs elicited immunogenic cell death that produced "danger" signals from cancer cells thereby further facilitated macrophage polarization. This work is significant to direct the rational design of HANPs coupled with or without TLR agonists for tumor immunotherapy.
Collapse
Affiliation(s)
- Ruiqi Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, China, 610041
| | - Yuchen Hua
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - Jingyu Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, China, 610041
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| |
Collapse
|
6
|
Franco AR, Artusa V, Peri F. Use of Fluorescent Chemical Probes in the Study of Toll-like Receptors (TLRs) Trafficking. Methods Mol Biol 2023; 2700:57-74. [PMID: 37603174 DOI: 10.1007/978-1-0716-3366-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Fluorescent chemical probes are used nowadays as a chemical resource to study the physiology and pharmacology of several important endogenous receptors. Different fluorescent groups have been coupled with known ligands of these receptors, allowing the visualization of their localization and trafficking. One of the most important molecular players of innate immunity and inflammation are the Toll-Like Receptors (TLRs). These Pattern-Recognition Receptors (PRR) have as natural ligands microbial-derived pathogen-associated molecular patterns (PAMPs) and also endogenous molecules called danger-associated molecular patterns (DAMPs). These ligands activate TLRs to start a response that will determine the host's protection and overall cell survival but can also lead to chronic inflammation and autoimmune syndromes. TLRs action is tightly related to their subcellular localization and trafficking. Understanding this trafficking phenomenon can enlighten critical molecular pathways that might allow to decipher the causes of different diseases. In this chapter, the study of function, localization and trafficking of TLRs through the use of chemical probes will be discussed. Furthermore, an example protocol of the use of fluorescent chemical probes to study TLR4 trafficking using high-content analysis will be described.
Collapse
Affiliation(s)
- Ana Rita Franco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Valentina Artusa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
7
|
Jing L, Zhang X, Liu D, Yang Y, Xiong H, Dong G. ACK1 Contributes to the Pathogenesis of Inflammation and Autoimmunity by Promoting the Activation of TLR Signaling Pathways. Front Immunol 2022; 13:864995. [PMID: 35669783 PMCID: PMC9164107 DOI: 10.3389/fimmu.2022.864995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) are the first line of defense in the immune system, whose activation plays a key role in the pathogenesis of inflammation and autoimmunity. TLRs can activate a variety of immune cells such as macrophages and dendritic cells, which produce proinflammatory cytokines, chemokines, and co-stimulatory molecules that lead to the development of inflammation and autoimmune diseases. As a nonreceptor tyrosine kinase, ACK1 is involved in multiple signaling pathways and physiological processes. However, the roles of ACK1 in the activation of TLR pathways and in the pathogenesis of inflammation and autoimmune diseases have not yet been reported. We found that the expression of ACK1 could be upregulated by TLR pathways in vivo and in vitro. Intriguingly, overexpression of ACK1 significantly promoted the activation of TLR4, TLR7, and TLR9 pathways, while knockdown of ACK1 or the use of the ACK1 inhibitor AIM-100 significantly inhibited the activation of TLR4, TLR7, and TLR9 pathways. In vivo studies showed that the inhibition of ACK1 activity by AIM-100 could significantly protect mice from the TLR4 agonist lipopolysaccharide (LPS)-mediated endotoxin shock and alleviate the condition of imiquimod-mediated lupus-prone mice and MRL/lpr mice. In summary, ACK1 participates in TLR-mediated inflammation and autoimmunity and has great potential in controlling inflammation and alleviating autoimmune diseases.
Collapse
Affiliation(s)
- Lina Jing
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Xin Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Dong Liu
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Guanjun Dong, ; Huabao Xiong,
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Guanjun Dong, ; Huabao Xiong,
| |
Collapse
|
8
|
The Critical Role of Toll-like Receptor-mediated Signaling in Cancer Immunotherapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
9
|
Karime C, Wang J, Woodhead G, Mody K, Hennemeyer CT, Borad MJ, Mahadevan D, Chandana SR, Babiker H. Tilsotolimod: an investigational synthetic toll-like receptor 9 (TLR9) agonist for the treatment of refractory solid tumors and melanoma. Expert Opin Investig Drugs 2021; 31:1-13. [PMID: 34913781 DOI: 10.1080/13543784.2022.2019706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cancer immunotherapy has seen tremendous strides in the past 15 years, with the introduction of several novel immunotherapeutic agents. Nevertheless, as clinical practice has shown, significant challenges remain with a considerable number of patients responding sub-optimally to available therapeutic options. Research has demonstrated the important immunoregulatory role of the tumor microenvironment (TME), with the potential to either hinder or promote an effective anti-tumor immune response. As such, scientific efforts have focused on investigating novel candidate immunomodulatory agents with the potential to alter the TME toward a more immunopotentiating composition. AREAS COVERED Herein, we discuss the novel investigational toll-like receptor 9 agonist tilsotolimod currently undergoing phase II and III clinical trials for advanced refractory cancer, highlighting its mode of action, efficacy, tolerability, and potential future applications in the treatment of cancer. To this effect, we conducted an exhaustive Web of Science and PubMed search to evaluate available research on tilsotolimod as of August 2021. EXPERT OPINION With encouraging early clinical results demonstrating extensive TME immunomodulation and abscopal effects on distant tumor lesions, tilsotolimod has emerged as a potential candidate immunomodulatory agent with the possibility to augment currently available immunotherapy and provide novel avenues of treatment for patients with advanced refectory cancer.
Collapse
Affiliation(s)
| | - Jing Wang
- Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Gregory Woodhead
- Department of Medical Imaging, University of Arizona Collage of Medicine, Tucson, AZ, USA
| | - Kabir Mody
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Charles T Hennemeyer
- Department of Medical Imaging, University of Arizona Collage of Medicine, Tucson, AZ, USA
| | - Mitesh J Borad
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Daruka Mahadevan
- Division of Hematology and Oncology, University of Texas Health San Antonio, TX, USA
| | - Sreenivasa R Chandana
- Department of Medicine, Michigan State University, East Lansing, MI, USA.,Phase I Program, Start Midwest, Grand Rapids, MI, USA
| | - Hani Babiker
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
10
|
Xu J, Guo R, Jia J, He Y, He S. Activation of Toll-like receptor 2 enhances peripheral and tumor-infiltrating CD8 + T cell cytotoxicity in patients with gastric cancer. BMC Immunol 2021; 22:67. [PMID: 34620075 PMCID: PMC8499526 DOI: 10.1186/s12865-021-00459-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) play central roles in the initiation of innate immune response, and also control adaptive immunity activation. Thus, the aim of the study was to investigate the regulation of TLR activation to CD8+ T cells has not been fully elucidated in gastric cancer (GC). MATERIALS AND METHODS Thirty-two GC patients and twenty-three healthy controls were enrolled. Expression profile of TLRs in peripheral and tumor-infiltrating CD8+ T cells was investigated. Purified CD8+ T cells were stimulated with Pam3Csk4, an agonist of TLR2, and cytotoxic and co-inhibitory molecules in CD8+ T cells was measured. Direct and indirect contact coculture system between CD8+ T cells and AGS cells was set up. Modulation of TLR2 activation to CD8+ T cells was assessed by measuring lactate dehydrogenase release and cytokine secretion. RESULTS TLR2 mRNA and TLR2+ cell percentage was down-regulated in GC derived peripheral and tumor-infiltrating CD8+ T cells. CD8+ T cells from GC patients showed exhausted phenotype, which presented as decreased perforin/granzyme B, increased programmed death-1, and reduced cytotoxicity to AGS cells. TLR2 activation by Pam3Csk4 enhanced perforin and granzyme B expression in CD8+ T cells, however, did not affect either proinflammatory cytokine production or co-inhibitory molecules expression. Pam3Csk4 stimulation enhanced cytolytic activation of peripheral and tumor-infiltrating CD8+ T cells from GC, but not those from healthy individuals. CONCLUSION The present data revealed an important immunomodulatory activity of TLR2 to CD8+ T cells in GC patients.
Collapse
Affiliation(s)
- Junli Xu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Rd, Xi'an, 710061, Shaanxi Province, China.,Department of Gastroenterology, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi Province, China
| | - Rongya Guo
- Department of Chemistry, Shaanxi Institute for Food and Drug Control, Xi'an, 710065, Shaanxi Province, China
| | - Jing Jia
- Department of Dermatology, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi Province, China
| | - Yun He
- Department of Gastroenterology, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi Province, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Rd, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
11
|
Luo X, Cui J, Long X, Chen Z. TLRs Play Crucial Roles in Regulating RA Synoviocyte. Endocr Metab Immune Disord Drug Targets 2021; 20:1156-1165. [PMID: 32338225 DOI: 10.2174/1871530320666200427115225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease comparing the inflammation of synovium. Macrophage-like synoviocytes and fibroblast-like synoviocytes (synoviocytes) are crucial ingredients of synovium. Therein, a lot of research has focused on synoviocytes. Researches demonstrated that TLR1, TLR2, TLR3, TLR4, TLR5, TLR6 TLR7 and TLR9 are expressed in synoviocyte. Additionally, the expression of TLR2, TLR3, TLR4 and TLR5 is increased in RA synoviocyte. In this paper, we review the exact role of TLR2, TLR3, TLR4 and TLR5 participate in regulating the production of inflammatory factors in RA synoviocyte. Furthermore, we discuss the role of vasoactive intestinal peptide (VIP), MicroRNA, Monome of Chinese herb and other cells (Monocyte and T cell) influence the function of synoviocyte by regulating TLRs. The activation of toll-like receptors (TLRs) in synoviocyte leads to the aggravation of arthritis, comparing with angiogenesis and bone destruction. Above all, TLRs are promising targets for managing RA.
Collapse
Affiliation(s)
- Xuling Luo
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Juncheng Cui
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Xin Long
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Zhiwei Chen
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| |
Collapse
|
12
|
Lu JL, Xia QD, Sun Y, Xun Y, Hu HL, Liu CQ, Sun JX, Xu JZ, Hu J, Wang SG. Toll-Like Receptor 4 as a Favorable Prognostic Marker in Bladder Cancer: A Multi-Omics Analysis. Front Cell Dev Biol 2021; 9:651560. [PMID: 34141706 PMCID: PMC8204102 DOI: 10.3389/fcell.2021.651560] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background The toll-like receptor 4 (TLR4) agonist, Bacille Calmette-Guérin, has exhibited gratifying effects in treating bladder cancer. The study aims to explore the expression pattern, prognostic value, and potential mechanism of TLR4 in bladder cancer. Methods The transcriptome file from the GSE13507 dataset in the Gene Expression Omnibus database and the promoter methylation file from the bladder cancer dataset in The Cancer Genome Atlas database were downloaded for analysis. The prognostic value of the TLRs was assessed by univariate Cox regression. Immunohistochemistry was applied to verify the expression of TLR4 in bladder cancer. The drug response is estimated through the R package “pRRophetic.” The CIBERSORT algorithm was carried out to estimate the infiltrating immune cells of samples. Gene Set Enrichment Analysis (GSEA) was performed to identify the pathways involved under varied TLR4 expression levels. Results TLR4 is decreased in tumor tissues compared with surrounding tumor tissues or normal tissue, which is also positively correlated to the overall survival rate (hazard ratio [HR] = 0.38) and cancer-specific survival rate (HR = 0.15) of patients with bladder cancer. Low expression of TLR4 is observed in tumors with malignant performance (high pathological grade, higher tumor stage, and progression). Patients with low TLR4 levels are more sensitive to gemcitabine rather than cisplatin. The promoter methylation level of TLR4 is positively associated with TLR4 expression (P < 0.001). The cg14629571 methylation site largely contributes to the overall methylation level. The CIBERSORT analysis shows that high TLR4 expression is associated with lower levels of plasma cells, M0 macrophages, and M1 macrophages. The GSEA results indicate that the TGF-β pathway and apoptosis are activated in high TLR4 bladder cancer, while G2M checkpoint and E2F targets pathways are enriched in low TLR4 bladder cancer. Conclusion This research discusses the abnormal expression and prognostic value of TLR4 in bladder cancer. The TLR4 expression can effectively predict oncological outcomes and drug sensitivity of bladder cancer patients. TLR4 is also associated with infiltrating immune cell variation and cancer pathway dysregulation. The results provide a novel prognostic marker and potential drug targets for bladder cancer.
Collapse
Affiliation(s)
- Jun-Lin Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Dong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng-Long Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Qian Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Xuan Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Zhou Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Zhang X, Yang Y, Jing L, Zhai W, Zhang H, Ma Q, Li C, Yan F, Cheng D, Zhang J, Ning Z, Shi H, Wang C, Zhao M, Dai J, Li Z, Ming J, Yu M, Wang H, Cheng H, Xiong H, Dong G. Pyruvate Kinase M2 Contributes to TLR-Mediated Inflammation and Autoimmunity by Promoting Pyk2 Activation. Front Immunol 2021; 12:680068. [PMID: 34025679 PMCID: PMC8138060 DOI: 10.3389/fimmu.2021.680068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) play critical roles in regulating the abnormal activation of the immune cells resulting in the pathogenesis of inflammation and autoimmune diseases. Pyruvate kinase M2 (PKM2), which governs the last step of glycolysis, is involved in multiple cellular processes and pathological conditions. However, little is known about the involvement of PKM2 in regulating TLR-mediated inflammation and autoimmunity. Herein, we investigated the role of PKM2 in the activation of the TLR pathways and the pathogenesis of inflammation and autoimmune diseases. The activation of TLR4, TLR7 and TLR9 pathways was found to induce the up-regulation of PKM2 expression in macrophages, dendritic cells (DCs) and B cells. The over-expression of PKM2 promotes the activation of TLR4, TLR7 and TLR9 pathways while interference with the PKM2 expression or the addition of the PKM2 inhibitor (PKM-IN) markedly inhibited the activation of TLR4, TLR7 and TLR9 pathways. Mechanistically, PKM2 augmented the activation of TLR4, TLR7 and TLR9 pathways by promoting the activation of the proline-rich tyrosine kinase 2 (Pyk2). Intriguingly, the PKM2 inhibitor PKM2-IN significantly protected the mice from the endotoxic shock mediated by the TLR4-agonist LPS. Additionally, it alleviated the progression in the TLR7-agonist imiquimod-mediated lupus mice and spontaneous lupus MRL/lpr mice. Moreover, PKM2 expression was highly elevated in the monocytes, DCs and B cells from systemic lupus erythematous (SLE) patients compared with those from the healthy donors. Besides, the PKM2 expression level was positively correlated with the degree of activation of these immune cells. In summary, PKM2 contributed to TLR-mediated inflammation and autoimmunity and can be a valuable target to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Xin Zhang
- School of Medical Laboratory, Weifang Medical University, Weifang, China
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lina Jing
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weiwei Zhai
- Department of Clinical Laboratory, Jining No. 1 People’s Hospital, Jining, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Dalei Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hui Shi
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Jiankuo Ming
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Meimei Yu
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Haiyan Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongyan Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| |
Collapse
|
14
|
El-Kharashy G, Gowily A, Okda T, Houssen M. Association between serum soluble Toll-like receptor 2 and 4 and the risk of breast cancer. Mol Clin Oncol 2021; 14:38. [PMID: 33414918 PMCID: PMC7783720 DOI: 10.3892/mco.2020.2200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Soluble Toll-like receptor (sTLR) 2 and 4 are endogenous negative regulators of TLR2 and TLR4 signaling. Therefore, the present study aimed to determine the serum levels of sTLR2 and 4, and to investigate the association between their levels and the clinicopathological parameters of patients with breast cancer. A total of 100 female patients with breast cancer (50 non-metastatic and 50 metastatic), as well as 50 healthy control volunteers were enrolled in the present study, and serum levels of sTLR2 and 4 were determined by ELISA. A significant increase in serum sTLR2 was detected in patients with non-metastatic (2,258.2±1,832.44 pg/ml) and metastatic (5,997.4±8,585.23 pg/ml) breast cancer, compared with the control group (1,106.8± 99.93 pg/ml; P=0.0001). A significant increase in serum sTLR4 was also detected in patients with both non-metastatic (1,945.2±1,709.53 pg/ml) and metastatic breast cancer (7,800.1±13,041.28 pg/ml), compared with the control group (1,106.8±108.32 pg/ml; P=0.0001). Furthermore, a positive correlation was observed between the levels of serum sTLR4 and 2 and clinicopathological parameters, such as progesterone receptor and estrogen receptor expression. In conclusion, sTLR2 and sTLR4 may be potential biomarkers of breast cancer susceptibility.
Collapse
Affiliation(s)
- Ghada El-Kharashy
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Ahmed Gowily
- Department of Oncology Medicine, Faculty of Medicine, Alexandria University, Alexandria 21111, Egypt
| | - Tarek Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Maha Houssen
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
15
|
Goncharuk MV, Lushpa VA, Goncharuk SA, Arseniev AS, Mineev KS. Sampling the cultivation parameter space for the bacterial production of TLR1 intracellular domain reveals the multiple optima. Protein Expr Purif 2021; 181:105832. [PMID: 33516826 DOI: 10.1016/j.pep.2021.105832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 10/25/2022]
Abstract
T7 expression system is an extremely popular approach for the recombinant protein production in Escherichia coli for structural and functional studies and therapeutic applications. There are many useful tools and successful techniques that allow expressing the desired protein in this system. However, high yield of soluble protein often requires a systematic optimization of a wide range of cell cultivation parameters. Here we analyze the effect of three key cultivation parameters - chemical inductor, temperature and time of post-induction culturing on the expression level of TLR1 intracellular TIR domain in a soluble form. In addition, the influence of Triton X-100 detergent on the protein solubility during the cell lysis was investigated. We show that a high expression level of the correctly folded soluble protein can be obtained under different combinations of cultivation parameters.
Collapse
Affiliation(s)
- Marina V Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia.
| | - Vladislav A Lushpa
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia; Moscow Institute of Physics and Technology, 141701, Institutsky per, 9, Dolgoprudny, Russia
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia
| |
Collapse
|
16
|
Zhang W, Zhang K, Zhang P, Zheng J, Min C, Li X. Research Progress of Pancreas-Related Microorganisms and Pancreatic Cancer. Front Oncol 2021; 10:604531. [PMID: 33520714 PMCID: PMC7841623 DOI: 10.3389/fonc.2020.604531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is one of the most common digestive system cancers. Early diagnosis is difficult owing to the lack of specific symptoms and reliable biomarkers. The cause of pancreatic cancer remains ambiguous. Smoking, drinking, new-onset diabetes, and chronic pancreatitis have been proven to be associated with the occurrence of pancreatic cancer. In recent years, a large number of studies have clarified that a variety of microorganisms colonized in pancreatic cancer tissues are also closely related to the occurrence and development of pancreatic cancer, and the specific mechanisms include inflammatory induction, immune regulation, metabolism, and microenvironment changes caused by microorganism. The mechanism of action of the pancreatic colonized microbiome in the tumor microenvironment, as well as immunotherapy approaches require further study in order to find more evidence to explain the complex relationship between the pancreatic colonized microbiome and PDAC. Relevant studies targeting the microbiome may provide insight into the mechanisms of PDAC development and progression, improving treatment effectiveness and overall patient prognosis. In this article, we focus on the research relating to the microorganisms colonized in pancreatic cancer tissues, including viruses, bacteria, and fungi. We also highlight the microbial diversity in the occurrence, invasion, metastasis, treatment, and prognosis of pancreatic cancer in order to elucidate its significance in the early diagnosis and new therapeutic treatment of pancreatic cancer, which urgently need to be improved in clinical practice. The elimination or increase in diversity of the pancreatic microbiome is beneficial for prolonging the survival of PDAC patients, improving the response to chemotherapy drugs, and reducing tumor burden. The colonization of microorganisms in the pancreas may become a new hotspot in the diagnosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Sun Y, Huang WM, Tang PC, Zhang X, Zhang XY, Yu BC, Fan YY, Ge XQ, Zhang XL. Neuroprotective effects of natural cordycepin on LPS-induced Parkinson’s disease through suppressing TLR4/NF-κB/NLRP3-mediated pyroptosis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
18
|
Wu X, Wang P, Zhang Y, Gao L, Zheng B, Xu Y, Mo J. Toll-Like Receptor Characterization Correlates with Asthma and Is Predictive of Diagnosis. DNA Cell Biol 2020; 39:1313-1321. [PMID: 32543891 DOI: 10.1089/dna.2020.5543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) play crucial roles in the recognition of invading pathogens and the immune system. However, the effect of TLRs in asthma is still not fully known. This study was performed to better understand the role of TLR signatures in asthma. Blood samples from case-control studies (study 1: 348 asthmas and 39 normal controls and validation study 2: 411 asthmas and 87 normal controls) were enrolled. The single-sample gene set enrichment analysis method was performed to quantify the abundance of 21 TLR signatures. Gene ontology analysis and pathway function analysis were conducted for functional analysis, and a protein-protein interaction network was constructed. The area under the curve (AUC) value was used to assess the diagnostic capacity. In this study, TLR2/TLR3/TLR4 pathway, MyD88-dependent/independent TLR pathway, positive regulation of TLR4 pathway, and TLR binding signatures were significantly higher in asthma. Functional analysis showed that biological processes and pathways were still involved in TLR cascades and TLR signaling pathway. Eleven hub TLR-related genes were identified, and further validation demonstrated that the combination of TLR-related genes was a good diagnostic biomarker for asthma (AUC = 0.8). Our study provided more insight into the underlying immune mechanism of how TLR signatures affected asthma. The use of the easy-to-apply TLR-related genes might represent a promising blood-based biomarker for early detection of asthma.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Pan Wang
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yaqiong Zhang
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Lin Gao
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Beijia Zheng
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Youwen Xu
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jinggang Mo
- The First Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Hepatobiliary Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
19
|
Song H, Liu Q, Liao Q. Circular RNA and tumor microenvironment. Cancer Cell Int 2020; 20:211. [PMID: 32518520 PMCID: PMC7268656 DOI: 10.1186/s12935-020-01301-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are small non-coding RNAs with a unique ring structure and play important roles as gene regulators. Disturbed expressions of circRNAs is closely related to varieties of pathological processes. The roles of circRNAs in cancers have gained increasing concerns. The communications between the cancer cells and tumor microenvironment (TME) play complicated roles to affect the malignant behaviors of cancers, which potentially present new therapeutic targets. Herein, we reviewed the roles of circRNAs in the TME.
Collapse
Affiliation(s)
- Huixin Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730 China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730 China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730 China
| |
Collapse
|