1
|
Ren S, Zhu Y, Wang S, Zhang Q, Zhang N, Zou X, Wei C, Wang Z. The pseudogene DUXAP10 contributes to gefitinib resistance in NSCLC by repressing OAS2 expression. Acta Biochim Biophys Sin (Shanghai) 2023; 55:81-90. [PMID: 36471952 PMCID: PMC10157544 DOI: 10.3724/abbs.2022176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Gefitinib, an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI),is the currently recommended first-line therapy for advanced EGFR-mutant lung cancer, and understanding the mechanism of resistance is the key to formulating therapeutic strategies for EGFR-TKIs. In this study, we evaluate the expression patterns and potential biological functions of the pseudogene DUXAP10 in gefitinib resistance. We find that pseudogene DUXAP10 expression is significantly upregulated in NSCLC gefitinib-resistant cells and tissues. Gain and loss of function assays reveal that knockdown of DUXAP10 by siRNA reverses gefitinib resistance both in vitro and in vivo. Furthermore, DUXAP10 interacts with the histone methyltransferase enhancer of zeste homolog 2 (EZH2) to repress the expression of 2',5'-oligoadenylate synthetase (OAS2). Overall, our study highlights the pivotal role of DUXAP10 in gefitinib resistance, and the DUXAP10/EZH2/OAS2 axis might be a promising therapeutic target to overcome acquired gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Shengnan Ren
- Cancer Medical Centerthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Department of OncologySir Run Run HospitalNanjing Medical UniversityNanjing210011China
| | - Ya Zhu
- Cancer Medical Centerthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
| | - Siying Wang
- Cancer Medical Centerthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
| | - Qinqiu Zhang
- Cancer Medical Centerthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
| | - Niu Zhang
- Cancer Medical Centerthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
| | - Xiaoteng Zou
- Cancer Medical Centerthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
| | - Chenchen Wei
- Cancer Medical Centerthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
| | - Zhaoxia Wang
- Cancer Medical Centerthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
| |
Collapse
|
2
|
Nsengimana B, Khan FA, Awan UA, Wang D, Fang N, Wei W, Zhang W, Ji S. Pseudogenes and Liquid Phase Separation in Epigenetic Expression. Front Oncol 2022; 12:912282. [PMID: 35875144 PMCID: PMC9305658 DOI: 10.3389/fonc.2022.912282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudogenes have been considered as non-functional genes. However, peptides and long non-coding RNAs produced by pseudogenes are expressed in different tumors. Moreover, the dysregulation of pseudogenes is associated with cancer, and their expressions are higher in tumors compared to normal tissues. Recent studies show that pseudogenes can influence the liquid phase condensates formation. Liquid phase separation involves regulating different epigenetic stages, including transcription, chromatin organization, 3D DNA structure, splicing, and post-transcription modifications like m6A. Several membrane-less organelles, formed through the liquid phase separate, are also involved in the epigenetic regulation, and their defects are associated with cancer development. However, the association between pseudogenes and liquid phase separation remains unrevealed. The current study sought to investigate the relationship between pseudogenes and liquid phase separation in cancer development, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Bernard Nsengimana
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Faiz Ali Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Life Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Usman Ayub Awan
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Pakistan
| | - Dandan Wang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Na Fang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wenqiang Wei
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| | - Weijuan Zhang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| |
Collapse
|
3
|
Xu Y, Yu X, Sun Z, He Y, Guo W. Roles of lncRNAs Mediating Wnt/β-Catenin Signaling in HCC. Front Oncol 2022; 12:831366. [PMID: 35356220 PMCID: PMC8959654 DOI: 10.3389/fonc.2022.831366] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the second most deadly cancer worldwide. Due to the absence of early diagnostic markers and effective therapeutic approaches, distant metastasis and increasing recurrence rates are major difficulties in the clinical treatment of HCC. Further understanding of its pathogenesis has become an urgent goal in HCC research. Recently, abnormal expression of long noncoding RNAs (lncRNAs) was identified as a vital regulator involved in the initiation and development of HCC. Activation of the Wnt/β-catenin pathway has been reported to obviously impact cell proliferation, invasion, and migration of HCC. This article reviews specific interactions, significant mechanisms and molecules related to HCC initiation and progression to provide promising strategies for treatment.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Dysregulation of PER3 clock gene and its only pseudogene in colorectal cancer and type 2 diabetes. ARCH BIOL SCI 2022. [DOI: 10.2298/abs220223009n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The period (PER) family genes (PER1, PER2, and PER3) play a fundamental role
in regulating the day/night cycle. PER3 has a pseudogene variant, PER3P1 or
PER4, whose role and expression pattern is unclear in human health and
diseases. This study was performed to evaluate the expression levels of
normal PER family members and the PER3P1 pseudogene in colorectal cancer
(CRC) and type 2 diabetes (T2D). Blood samples were taken from 50 diabetic
patients and analyzed using real-time PCR for quantification of PER3 and
PER3P1 expression. Colorectal tumor tissues of 50 individuals were also used
to evaluate the expression of PER members. All PER members, including
PER3P1, were found to be downregulated in colorectal tumor samples. Blood
samples collected from diabetic subjects revealed an opposite expression
pattern; both PER3 and its pseudogene were found to be upregulated when
compared to the control group. Our results reveal coordination between the
expression pattern of PER3P1 and normal PER family genes. Based on our
findings and the pathological importance of this pseudogene, it can be
suggested that PER3P1 may be one of the key regulators of the molecular
clock network and PER family expression. This hypothesis needs to be
confirmed by further studies.
Collapse
|
5
|
Zeng R, Wang C, Wang W, Wang S. Long non-coding RNA DUXAP9 promotes hepatocellular carcinoma cell stemness via directly interacting with sox9. ENVIRONMENTAL TOXICOLOGY 2021; 36:1793-1801. [PMID: 34086387 DOI: 10.1002/tox.23300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Long non-coding RNA (LncRNA) DUXAP9 expression was recently found to be higher in hepatocellular carcinoma (HCC) tissues and cells, and correlated with a shorter overall survival of HCC patients. However, its roles in HCC progression have never been revealed. Here, the roles of DUXAP9 in HCC cell stemness are explored as cancer stem cells (CSCs) contribute to one of the root of cancer progression. We found that DUXAP9 positively regulated HCC cell stemness, as characterized by the change of sphere-formation ability, ALDH activity and stemness marker expression. Further luciferase reporter, mRNA stability and RNA-RNA in vitro interaction assays indicated that DUXAP9 directly bound to the 3' untranslated region (UTR) of sox9, enhanced the mRNA stability of sox9 and thus increased sox9 expression. Notably, the effects induced by DUXAP9 on HCC cell stemness depended on sox9 expression. Therefore, this work identifies a novel DUXAP9/sox9 axis essential for HCC cell stemness.
Collapse
Affiliation(s)
- Ru Zeng
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Chunyue Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Wenyi Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shuangjia Wang
- Department of Hepato-Biliary-Pancreatic and Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P.R. China
| |
Collapse
|
6
|
Ding Y, Liu N, Chen M, Xu Y, Fang S, Xiang W, Hua X, Chen G, Zhong Y, Yu H. Overexpressed pseudogene MT1L associated with tumor immune infiltrates and indicates a worse prognosis in BLCA. World J Surg Oncol 2021; 19:133. [PMID: 33888142 PMCID: PMC8063461 DOI: 10.1186/s12957-021-02231-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND BLCA is a common cancer worldwide, and it is both aggressive and fatal. Immunotherapy (ICT) has achieved an excellent curative effect in BLCA; however, only some BLCA patients can benefit from ICT. MT1L is a pseudogene, and a previous study suggested that MT1L can be used as an indicator of prognosis in colorectal cancer. However, the role of MT1L in BLCA has not yet been determined. METHODS Data were collected from TCGA, and logistic regression, Kaplan-Meier plotter, and multivariate Cox analysis were performed to demonstrate the correlation between the pseudogene MT1L and the prognosis of BLCA. To identify the association of MT1L with tumor-infiltrating immune cells, TIMER and TISIDB were utilized. Additionally, GSEA was performed to elucidate the potential biological function. RESULTS The expression of MT1L was decreased in BLCA. Additionally, MT1L was positively correlated with immune cells, such as Tregs (ρ = 0.708) and MDSCs (ρ = 0.664). We also confirmed that MT1L is related to typical markers of immune cells, such as PD-1 and CTLA-4. In addition, a high MT1L expression level was associated with the advanced T and N and high grade in BLCA. Increased expression of MT1L was significantly associated with shorter OS times of BLCA patients (p < 0.05). Multivariate Cox analysis revealed that MT1L expression could be an independent prognostic factor in BLCA. CONCLUSION Collectively, our findings demonstrated that the pseudogene MT1L regulates the immune microenvironment, correlates with poor survival, and is an independent prognostic biomarker in BLCA.
Collapse
Affiliation(s)
- Yanpeng Ding
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Nuomin Liu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Mengge Chen
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yulian Xu
- Department of Oncology, First People's Hospital of Zaoyang, Zaoyang, 441200, China
| | - Sha Fang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wenbin Xiang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinying Hua
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Gaili Chen
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yahua Zhong
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Haijun Yu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Wuhan University, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
7
|
Du Y, Gao Y. Development and validation of a novel pseudogene pair-based prognostic signature for prediction of overall survival in patients with hepatocellular carcinoma. BMC Cancer 2020; 20:887. [PMID: 32938429 PMCID: PMC7493157 DOI: 10.1186/s12885-020-07391-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND There is growing evidence that pseudogenes may serve as prognostic biomarkers in several cancers. The present study was designed to develop and validate an accurate and robust pseudogene pairs-based signature for the prognosis of hepatocellular carcinoma (HCC). METHODS RNA-sequencing data from 374 HCC patients with clinical follow-up information were obtained from the Cancer Genome Atlas (TCGA) database and used in this study. Survival-related pseudogene pairs were identified, and a signature model was constructed by Cox regression analysis (univariate and least absolute shrinkage and selection operator). All individuals were classified into high- and low-risk groups based on the optimal cutoff. Subgroups analysis of the novel signature was conducted and validated in an independent cohort. Pearson correlation analyses were carried out between the included pseudogenes and the protein-coding genes based on their expression levels. Enrichment analysis was performed to predict the possible role of the pseudogenes identified in the signature. RESULTS A 19-pseudogene pair signature, which included 21 pseudogenes, was established. Patients in high-risk group demonstrated an increased the risk of adverse prognosis in the TCGA cohort and the external cohort (all P < 0.001). The novel pseudogene signature was independent of other conventional clinical variables used for survival prediction in HCC patients in the two cohorts revealed by the multivariate Cox regression analysis (all P < 0.001). Subgroup analysis further demonstrated the diagnostic value of the signature across different stages, grades, sexes, and age groups. The C-index of the prognostic signature was 0.761, which was not only higher than that of several previous risk models but was also much higher than that of a single age, sex, grade, and stage risk model. Furthermore, functional analysis revealed that the potential biological mechanisms mediated by these pseudogenes are primarily involved in cytokine receptor activity, T cell receptor signaling, chemokine signaling, NF-κB signaling, PD-L1 expression, and the PD-1 checkpoint pathway in cancer. CONCLUSION The novel proposed and validated pseudogene pair-based signature may serve as a valuable independent prognostic predictor for predicting survival of patients with HCC.
Collapse
Affiliation(s)
- Yajuan Du
- Department of structural heart disease, the First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Ying Gao
- Department of Radiotherapy Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
8
|
Li J, Jiang L, Liu Z, Li Y, Xu Y, Liu H. Oncogenic pseudogene DUXAP10 knockdown suppresses proliferation and invasion and induces apoptosis of papillary thyroid carcinoma cells by inhibition of Akt/mTOR pathway. Clin Exp Pharmacol Physiol 2020; 47:1473-1483. [PMID: 32215944 DOI: 10.1111/1440-1681.13310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
Abstract
Pseudogenes, another novel group of non-coding segments without protein-coding capacity, are closely associated with tumourigenesis and cancer progression. Double homeoboxA pseudogene 10 (DUXAP10) is reported to be robustly expressed in thyroid carcinoma. However, the functional role and underlying mechanism of DUXAP10 in papillary thyroid carcinoma (PTC) progression remain undefined. DUXAP10 expression in PTC cells was detected by qRT-PCR. Cell proliferation and invasion were determined using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and Transwell invasion assay, respectively. Apoptosis was evaluated using flow cytometry. Protein expression of matrix metalloproteinase (MMP)-2, MMP-9, protein kinase B (Akt), phosphorylated Akt, mammalian target of rapamycin (mTOR), and phosphorylated mTOR was examined by western blot. Results showed that DUXAP10 was significantly overexpressed in PTC cells compared with normal thyroid follicular epithelium cells. DUXAP10 silencing suppressed cell proliferation and invasive ability, reduced the expression of MMP-2 and MMP-9, and increased apoptotic rate and caspase-3 activity in PTC cells. Additionally, the Akt/mTOR pathway was inhibited following DUXAP10 knockdown in PTC cells. Activation of the Akt/mTOR pathway by 740Y-P and MHY1485 attenuated DUXAP10 knockdown-induced proliferation reduction, invasion suppression and apoptosis in PTC cells. In conclusion, DUXAP10 knockdown suppressed proliferation and invasion and induced apoptosis in PTC cells at least partially by inhibition of the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jian Li
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Li Jiang
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Zhu Liu
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yanguo Li
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yang Xu
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Hongwei Liu
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
9
|
Yue C, Liang C, Li P, Yan L, Zhang D, Xu Y, Wei Z, Wu J. DUXAP8 a Pan-Cancer Prognostic Marker Involved in the Molecular Regulatory Mechanism in Hepatocellular Carcinoma: A Comprehensive Study Based on Data Mining, Bioinformatics, and in vitro Validation. Onco Targets Ther 2019; 12:11637-11650. [PMID: 32021243 PMCID: PMC6942538 DOI: 10.2147/ott.s231750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022] Open
Abstract
Background Double homeobox A pseudogene 8 (DUXAP8) has been identified as a key regulator at the posttranscriptional level in various types of cancers. However, whether DUXAP8 has a role in hepatocellular carcinoma (HCC) progression remains to be determined. Here, we aimed to investigate the potential clinical value of DUXAP8 as a pan-cancer marker, and its role in HCC development through an integrated analysis strategy and in vitro experimental validation. Methods Comprehensive analysis was performed using data mined from public databases to evaluate the expression patterns and clinical value of DUXAP8 in human pan-cancers. Bioinformatics analysis was performed to investigate the potential biological functions of DUXAP8 in HCC based on TCGA database. Real-time qPCR analysis was used to examine the expression levels of DUXAP8 in HCC tissue samples and cell lines. DUXAP8-siRNA was used to silence DUXAP8 in the Hep-G2 cell line to examine the role of DUXAP8 in HCC cell proliferation and invasion. Results DUXAP8 was significantly upregulated in various types of human cancers and could serve as a potential pan-cancer diagnostic and prognostic biomarker. Bioinformatics analysis suggested that DUXAP8 might be involved in the regulation of the biological processes of HCC cell cycle, cell division and cell proliferation. Additionally, downregulation of DUXAP8 inhibited HCC cell proliferation and invasion in vitro. Conclusion This study revealed that DUXAP8 may serve as a potential pan-cancer prognostic and diagnostic marker in humans. In addition, DUXAP8 promoted HCC cell proliferation and invasion, suggesting that it may represent a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Chaosen Yue
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chaojie Liang
- Department of General Surgery, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Pengyang Li
- Department of Medicine, Saint Vincent Hospital, Worcester, MA, USA
| | - Lijun Yan
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Dongxin Zhang
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yingchen Xu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhigang Wei
- Department of General Surgery, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jixiang Wu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|