1
|
Liu L, Fang T, Miao C, Li X, Zeng Y, Wang T, Cao Y, Huang D, Song D. DLX6-AS1 regulates odonto/osteogenic differentiation in dental pulp cells under the control of BMP9 via the miR-128-3p/MAPK14 axis: A laboratory investigation. Int Endod J 2024; 57:1623-1638. [PMID: 38973098 DOI: 10.1111/iej.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/08/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
AIM The regenerative capacity of dental pulp relies on the odonto/osteogenic differentiation of dental pulp cells (DPCs), but dynamic microenvironmental changes hinder the process. Bone morphogenetic protein 9 (BMP9) promotes differentiation of DPCs towards an odonto/osteogenic lineage, forming dentinal-like tissue. However, the molecular mechanism underlying its action remains unclear. This study investigates the role of DLX6 antisense RNA 1 (DLX6-AS1) in odonto/osteogenic differentiation induced by BMP9. METHODOLOGY Custom RT2 profiler PCR array, quantitative Real-Time PCR (qRT-PCR) and western blots were used to investigate the expression pattern of DLX6-AS1 and its potential signal axis. Osteogenic ability was evaluated using alkaline phosphatase and alizarin red S staining. Interactions between lncRNA and miRNA, as well as miRNA and mRNA, were predicted through bioinformatic assays, which were subsequently validated via RNA immunoprecipitation and dual luciferase reporter assays. Student's t-test or one-way ANOVA with post hoc Tukey HSD tests were employed for data analysis, with a p-value of less than .05 considered statistically significant. RESULTS DLX6-AS1 was upregulated upon BMP9 overexpression in DPCs, thereby promoting odonto/osteogenic differentiation. Additionally, miR-128-3p participated in BMP9-induced odonto/osteogenic differentiation by interacting with the downstream signal MAPK14. Modifying the expression of miR-128-3p and transfecting pcMAPK14/siMAPK14 had a rescue impact on odonto/osteogenic differentiation downstream of DLX6-AS1. Lastly, miR-128-3p directly interacted with both MAPK14 and DLX6-AS1. CONCLUSIONS DLX6-AS1 could regulate the odonto/osteogenic differentiation of DPCs under the control of BMP9 through the miR-128-3p/MAPK14 axis.
Collapse
Affiliation(s)
- Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tongfeng Fang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Miao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiangfen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanglin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact Mater 2024; 40:182-211. [PMID: 38966600 PMCID: PMC11223092 DOI: 10.1016/j.bioactmat.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment. However, novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative, biologically-driven regenerative medicine strategies. For example, cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration. These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators (HDACis, DNMTis, and ncRNAs), which are cost-effective and easily applied to stimulate pulp tissue regrowth. Unfortunately, many biological factors hinder the clinical development of regenerative therapies, including a lack of blood supply and poor infection control in the necrotic root canal system. Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability, cost concerns, and regulatory issues. This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration, explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition. It will highlight the components of dental pulp regenerative approaches, describe their current limitations, and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.
Collapse
Affiliation(s)
- Ross M. Quigley
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
3
|
Huang L, Chen X, Yang X, Zhang Y, Liang Y, Qiu X. Elucidating epigenetic mechanisms governing odontogenic differentiation in dental pulp stem cells: an in-depth exploration. Front Cell Dev Biol 2024; 12:1394582. [PMID: 38863943 PMCID: PMC11165363 DOI: 10.3389/fcell.2024.1394582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Epigenetics refers to the mechanisms such as DNA methylation and histone modification that influence gene expression without altering the DNA sequence. These epigenetic modifications can regulate gene transcription, splicing, and stability, thereby impacting cell differentiation, development, and disease occurrence. The formation of dentin is intrinsically linked to the odontogenic differentiation of dental pulp stem cells (DPSCs), which are recognized as the optimal cell source for dentin-pulp regeneration due to their varied odontogenic potential, strong proliferative and angiogenic characteristics, and ready accessibility Numerous studies have demonstrated the critical role of epigenetic regulation in DPSCs differentiation into specific cell types. This review thus provides a comprehensive review of the mechanisms by which epigenetic regulation controls the odontogenesis fate of DPSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoling Qiu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Ru Y, Ma M, Zhou X, Kriti D, Cohen N, D’Souza S, Schaniel C, Motch Perrine SM, Kuo S, Pinto D, Housman G, Wu M, Holmes G, Schadt E, van Bakel H, Zhang B, Jabs EW. Transcriptomic landscape of human induced pluripotent stem cell-derived osteogenic differentiation identifies a regulatory role of KLF16. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579844. [PMID: 38405902 PMCID: PMC10888757 DOI: 10.1101/2024.02.11.579844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Osteogenic differentiation is essential for bone development and metabolism, but the underlying gene regulatory networks have not been well investigated. We differentiated mesenchymal stem cells, derived from 20 human induced pluripotent stem cell lines, into preosteoblasts and osteoblasts, and performed systematic RNA-seq analyses of 60 samples for differential gene expression. We noted a highly significant correlation in expression patterns and genomic proximity among transcription factor (TF) and long noncoding RNA (lncRNA) genes. We identified TF-TF regulatory networks, regulatory roles of lncRNAs on their neighboring coding genes for TFs and splicing factors, and differential splicing of TF, lncRNA, and splicing factor genes. TF-TF regulatory and gene co-expression network analyses suggested an inhibitory role of TF KLF16 in osteogenic differentiation. We demonstrate that in vitro overexpression of human KLF16 inhibits osteogenic differentiation and mineralization, and in vivo Klf16+/- mice exhibit increased bone mineral density, trabecular number, and cortical bone area. Thus, our model system highlights the regulatory complexity of osteogenic differentiation and identifies novel osteogenic genes.
Collapse
Affiliation(s)
- Ying Ru
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Meng Ma
- Mount Sinai Genomics, Sema4, Stamford, CT, 06902, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ninette Cohen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: Division of Cytogenetics and Molecular Pathology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health Laboratories, Lake Success, NY, 11030, USA
| | - Sunita D’Souza
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: St Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Christoph Schaniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Susan M. Motch Perrine
- Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sharon Kuo
- Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Dalila Pinto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Genevieve Housman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
| |
Collapse
|
5
|
Chen X, Qin Y, Wang X, Lei H, Zhang X, Luo H, Guo C, Sun W, Fang S, Qin W, Jin Z. METTL3-Mediated m6A Modification Regulates the Osteogenic Differentiation through LncRNA CUTALP in Periodontal Mesenchymal Stem Cells of Periodontitis Patients. Stem Cells Int 2024; 2024:3361794. [PMID: 38283119 PMCID: PMC10817817 DOI: 10.1155/2024/3361794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/29/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Objective Periodontitis is a chronic inflammatory disease that causes loss of periodontal support tissue. Our objective was to investigate the mechanism by which METTL3-mediated N6-methyladenosine modification regulates the osteogenic differentiation through lncRNA in periodontal mesenchymal stem cells in patients with periodontitis (pPDLSCs). Material and Methods. We carried out a series of experiments, including methylated RNA immunoprecipitation-PCR, quantitative real-time polymerase chain reaction, and western blotting. The expressions of alkaline phosphatase (ALP), Runx2, Col1, Runx2 protein level, ALP staining, and Alizarin red staining were used to demonstrate the degree of osteogenic differentiation. Results We found that METTL3 was the most significantly differentially expressed methylation-related enzyme in pPDLSCs and promoted osteogenic differentiation of pPDLSCs. METTL3 regulated the stability and expression of lncRNA CUTALP, while lncRNA CUTALP promoted osteogenic differentiation of pPDLSCs by inhibiting miR-30b-3p. At different time points of osteogenic differentiation, lncRNA CUTALP expression was positively correlated with Runx2, while miR-30b-3p showed the opposite pattern. The attenuated osteogenic differentiation induced by METTL3 knockdown was recovered by lncRNA CUTALP overexpression. The attenuated osteogenic differentiation induced by lncRNA CUTALP knockdown could be reversed by the miR-30b-3p inhibitor. Conclusions In summary, METTL3/lncRNA CUTALP/miR-30b-3p/Runx2 is a regulatory network in the osteogenic differentiation of pPDLSCs.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Yuan Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Xian Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Hao Lei
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 730070, China
| | - Xiaochen Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Houzhuo Luo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Changgang Guo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Weifu Sun
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Shishu Fang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Wen Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
6
|
Bassett C, Triplett H, Lott K, Howard KM, Kingsley K. Differential Expression of MicroRNA (MiR-27, MiR-145) among Dental Pulp Stem Cells (DPSCs) Following Neurogenic Differentiation Stimuli. Biomedicines 2023; 11:3003. [PMID: 38002003 PMCID: PMC10669296 DOI: 10.3390/biomedicines11113003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
This study sought to evaluate the expression of previously identified microRNAs known to regulate neuronal differentiation in mesenchymal stem cells (MSCs), including miR-27, miR-125, miR-128, miR-135, miR-140, miR-145, miR-218 and miR-410, among dental pulp stem cells (DPSCs) under conditions demonstrated to induce neuronal differentiation. Using an approved protocol, n = 12 DPSCs were identified from an existing biorepository and treated with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF), which were previously demonstrated to induce neural differentiation markers including Sox1, Pax6 and NFM among these DPSCs. This study revealed that some microRNAs involved in the neuronal differentiation of MSCs were also differentially expressed among the DPSCs, including miR-27 and miR-145. In addition, this study also revealed that administration of bFGF and EGF was sufficient to modulate miR-27 and miR-145 expression in all of the stimulus-responsive DPSCs but not among all of the non-responsive DPSCs-suggesting that further investigation of the downstream targets of these microRNAs may be needed to fully evaluate and understand these observations.
Collapse
Affiliation(s)
- Charlton Bassett
- School of Medicine, University of Nevada, Las Vegas 1700 West Charleston Boulevard, Las Vegas, NV 89106, USA; (C.B.); (H.T.); (K.L.)
| | - Hunter Triplett
- School of Medicine, University of Nevada, Las Vegas 1700 West Charleston Boulevard, Las Vegas, NV 89106, USA; (C.B.); (H.T.); (K.L.)
| | - Keegan Lott
- School of Medicine, University of Nevada, Las Vegas 1700 West Charleston Boulevard, Las Vegas, NV 89106, USA; (C.B.); (H.T.); (K.L.)
| | - Katherine M. Howard
- School of Dental Medicine, University of Nevada, Las Vegas 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| | - Karl Kingsley
- School of Dental Medicine, University of Nevada, Las Vegas 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| |
Collapse
|
7
|
Luo N, Deng YW, Wen J, Xu XC, Jiang RX, Zhan JY, Zhang Y, Lu BQ, Chen F, Chen X. Wnt3a-Loaded Hydroxyapatite Nanowire@Mesoporous Silica Core-Shell Nanocomposite Promotes the Regeneration of Dentin-Pulp Complex via Angiogenesis, Oxidative Stress Resistance, and Odontogenic Induction of Stem Cells. Adv Healthc Mater 2023; 12:e2300229. [PMID: 37186211 DOI: 10.1002/adhm.202300229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Pulp exposure often leads to pulp necrosis, root fractures, and ultimate tooth loss. The repair of the exposure site with pulp capping treatment is of great significance to preserving pulp vitality, but its efficacy is impaired by the low bioactivity of capping materials and cell injuries from the local accumulation of oxidative stress. This study develops a Wnt3a-loaded hydroxyapatite nanowire@mesoporous silica (Wnt3a-HANW@MpSi) core-shell nanocomposite for pulp capping treatments. The ultralong and highly flexible hydroxyapatite nanowires provide the framework for the composites, and the mesoporous silica shell endows the composite with the capacity of efficiently loading/releasing Wnt3a and Si ions. Under in vitro investigation, Wnt3a-HANW@MpSi not only promotes the oxidative stress resistance of dental pulp stem cells (DPSCs), enhances their migration and odontogenic differentiation, but also exhibits superior properties of angiogenesis in vitro. Revealed by the transcriptome analysis, the underlying mechanisms of odontogenic enhancement by Wnt3a-HANW@MpSi are closely related to multiple biological processes and signaling pathways toward pulp/dentin regeneration. Furthermore, an animal model of subcutaneous transplantation demonstrates the significant reinforcement of the formation of dentin-pulp complex-like tissues and blood vessels by Wnt3a-HANW@MpSi in vivo. These results indicate the promising potential of Wnt3a-HANW@MpSi in treatments of dental pulp exposure.
Collapse
Affiliation(s)
- Nan Luo
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Yu-Wei Deng
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Jin Wen
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Xiao-Chen Xu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Rui-Xue Jiang
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Jing-Yu Zhan
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Yu Zhang
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Bing-Qiang Lu
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Feng Chen
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Xi Chen
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| |
Collapse
|
8
|
Soheilifar MH, Nobari S, Hakimi M, Adel B, Masoudi-Khoram N, Reyhani E, Neghab HK. Current concepts of microRNA-mediated regulatory mechanisms in human pulp tissue-derived stem cells: a snapshot in the regenerative dentistry. Cell Tissue Res 2023:10.1007/s00441-023-03792-4. [PMID: 37247032 DOI: 10.1007/s00441-023-03792-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
One of the most studied class of non-coding RNAs is microRNAs (miRNAs) which regulate more than 60% of human genes. A network of miRNA gene interactions participates in stem cell self-renewal, proliferation, migration, apoptosis, immunomodulation, and differentiation. Human pulp tissue-derived stem cells (PSCs) are an attractive source of dental mesenchymal stem cells (MSCs) which comprise human dental pulp stem cells (hDPSCs) obtained from the dental pulp of permanent teeth and stem cells isolated from exfoliated deciduous teeth (SHEDs) that would be a therapeutic opportunity in stomatognathic system reconstruction and repair of other damaged tissues. The regenerative capacity of hDPSCs and SHEDs is mediated by osteogenic, odontogenic, myogenic, neurogenic, angiogenic differentiation, and immunomodulatory function. Multi-lineage differentiation of PSCs can be induced or inhibited by the interaction of miRNAs with their target genes. Manipulating the expression of functional miRNAs in PSCs by mimicking miRNAs or inhibiting miRNAs emerged as a therapeutic tool in the clinical translation. However, the effectiveness and safety of miRNA-based therapeutics, besides higher stability, biocompatibility, less off-target effects, and immunologic reactions, have received particular attention. This review aimed to comprehensively overview the molecular mechanisms underlying miRNA-modified PSCs as a futuristic therapeutic option in regenerative dentistry.
Collapse
Affiliation(s)
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Hakimi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashir Adel
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Reyhani
- Faculty of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Iranmanesh P, Vedaei A, Salehi-Mazandarani S, Nikpour P, Khazaei S, Khademi A, Galler KM, Nekoofar MH, Dummer PMH. MicroRNAs-mediated regulation of the differentiation of dental pulp-derived mesenchymal stem cells: a systematic review and bioinformatic analysis. Stem Cell Res Ther 2023; 14:76. [PMID: 37038220 PMCID: PMC10088330 DOI: 10.1186/s13287-023-03289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Human dental pulp-derived mesenchymal stem cells (hDP-MSCs), which include human dental pulp stem cells (hDPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs), are promising cell sources for regenerative therapies. Nevertheless, a lack of knowledge relating to the mechanisms regulating their differentiation has limited their clinical application. microRNAs (miRNAs) are important regulatory molecules in cellular processes including cell differentiation. This systematic review aims to provide a panel of miRNAs that regulate the differentiation of hDP-MSCs including hDPSCs and SHEDs. Additionally, bioinformatic analyses were conducted to discover target genes, signaling pathways and gene ontologies associated with the identified miRNAs. METHODS A literature search was performed in MEDLINE (via PubMed), Web of Science, Scopus, Embase and Cochrane Library. Experimental studies assessing the promotive/suppressive effect of miRNAs on the differentiation of hDP-MSCs and studies evaluating changes to the expression of miRNAs during the differentiation of hDP-MSCs were included. miRNAs involved in odontogenic/osteogenic differentiation were then included in a bioinformatic analysis. A miRNA-mRNA network was constructed, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. A protein-protein interaction (PPI) network was also constructed. RESULTS Of 766 initially identified records through database searching, 42 and 36 studies were included in qualitative synthesis and bioinformatic analyses, respectively. Thirteen miRNAs promoted and 17 suppressed odontogenic/osteogenic differentiation of hDP-MSCs. hsa-miR-140-5p, hsa-miR-218 and hsa-miR-143 were more frequently reported suppressing the odontogenic/osteogenic differentiation of hDP-MSCs. hsa-miR-221 and hsa-miR-124 promoted and hsa-miR-140-5p inhibited neuronal differentiation, hsa-miR-26a-5p promoted and hsa-miR-424 suppressed angiogenic differentiation, and hsa-miR-135 and hsa-miR-143 inhibited differentiation within myogenic lineages. A miRNA-mRNA network including 1890 nodes and 2171 edges was constructed. KEGG pathway analysis revealed MAPK, PI3K-Akt and FoxO as key signaling pathways involved in the odontogenic/osteogenic differentiation of hDP-MSCs. CONCLUSIONS The findings of this systematic review support the potential application of the specific miRNAs to regulate the directed differentiation of hDP-MSCs in the field of regenerative therapies.
Collapse
Affiliation(s)
- Pedram Iranmanesh
- Dental Research Center, Department of Endodontics, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Vedaei
- Student Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadra Salehi-Mazandarani
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saber Khazaei
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abbasali Khademi
- Dental Research Center, Department of Endodontics, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kerstin M. Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Erlangen, Erlangen, Germany
| | - Mohammad-Hossein Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, Bahçeşehir University School of Dentistry, Istanbul, Turkey
| | - Paul M. H. Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Differential Effects of Extracellular Matrix Glycoproteins Fibronectin and Laminin-5 on Dental Pulp Stem Cell Phenotypes and Responsiveness. J Funct Biomater 2023; 14:jfb14020091. [PMID: 36826890 PMCID: PMC9963712 DOI: 10.3390/jfb14020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) with the potential to differentiate in a limited number of other tissue types. Some evidence has suggested the modulation of DPSC growth may be mediated, in part, by exogenous extracellular matrix (ECM) glycoproteins, including fibronectin (FN) and laminin-5 (LN5). Although preliminary research suggests that some ECM glycoproteins may work as functional biomaterials to modulate DPSC growth responses, the primary goal of this project is to determine the specific effects of FN and LN5 on DPSC growth and viability. Using an existing DPSC repository, n = 16 DPSC isolates were cultured and 96-well growth assays were performed, which revealed FN, LN5 and the combination of these were sufficient to induce statistically significant changes in growth among five (n = 5) DPSC isolates. In addition, the administration of FN (either alone or in combination) was sufficient to induce the expression of alkaline phosphatase (ALP) and dentin sialophosphoprotein (DSPP), while LN5 induced the expression of ALP only, suggesting differential responsiveness among DPSCs. Moreover, these responses appeared to correlate with the expression of MSC biomarkers NANOG, Oct4 and Sox2. These results add to the growing body of evidence suggesting that functional biomaterials, such as ECM glycoproteins FN and LN5, are sufficient to induce phenotypic and differentiation-specific effects in a specific subset of DPSC isolates. More research will be needed to determine which biomarkers or additional factors are necessary and sufficient to induce the differentiation and development of DPSCs ex vivo and in vitro for biomedical applications.
Collapse
|
11
|
Liu Z, Li S, Xu S, A Bu Du Xi Ku NEBY, Wen J, Zeng X, Shen X, Xu P. Hsa_ Circ_0005044 Promotes Osteo/Odontogenic Differentiation of Dental Pulp Stem Cell Via Modulating miR-296-3p/FOSL1. DNA Cell Biol 2023; 42:14-26. [PMID: 36576872 DOI: 10.1089/dna.2022.0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Circular RNAs (circRNAs) are a form of RNAs that lack coding potential. The role of such circRNAs in dental pulp stem cell (DPSC) osteo/odontogenic differentiation remains to be determined. In this study, circRNA expression profiles in DPSC osteo/odontogenic differentiation process were analyzed by RNA-seq. qRT-PCR was used to confirm the differential expression of circ_0005044, miR-296-3p, and FOSL1 in DPSC osteogenic differentiation process. Circ_0005044, miR-296-3p, and FOSL1 were knocked down or overexpressed. Osteoblastic activity and associated mineral activity were monitored via alkaline phosphatase (ALP) and alizarin red S (ARS) staining. Interactions between miR-296-3p, circ_0005044, and FOSL1 were assessed through luciferase reporter assays. Finally, an in vivo system was used to confirm the relevance of circ_0005044 to osteoblastic differentiation. As results, we detected significant circ_0005044 and FOSL1 upregulation in DPSC osteo/odontogenic differentiation process, as well as concomitant miR-296-3p downregulation. When knocking down circ_0005044 or overexpressed miR-296-3p, this significantly inhibited osteogenesis. Luciferase reporter assay confirmed that miR-296-3p was capable of binding to conserved sequences in the wild-type forms of both the circ_0005044 and FOSL1. Furthermore, knocking down circ_0005044 in vivo significantly attenuated bone formation. Therefore, the circ_0005044/miR-2964-3p/FOSL1 axis regulates DPSC osteo/odontogenic differentiation, which may provide potential molecular targets for dental-pulp complex regeneration.
Collapse
Affiliation(s)
- Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | | | - Jun Wen
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiongqun Zeng
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqing Shen
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Pingping Xu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
METTL3-Mediated lncSNHG7 m 6A Modification in the Osteogenic/Odontogenic Differentiation of Human Dental Stem Cells. J Clin Med 2022; 12:jcm12010113. [PMID: 36614914 PMCID: PMC9821659 DOI: 10.3390/jcm12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Human dental pulp stem cells (hDPSCs) play an important role in endodontic regeneration. N6-methyladenosine (m6A) is the most common RNA modification, and noncoding RNAs have also been demonstrated to have regulatory roles in the expression of m6A regulatory proteins. However, the study on m6A modification in hDPSCs has not yet been conducted. Methods: Single base site PCR (MazF) was used to detect the m6A modification site of lncSNHG7 before and after mineralization of hDPSCs to screen the target m6A modification protein, and bioinformatics analysis was used to analyze the related pathways rich in lncSNHG7. After knockdown and overexpression of lncSNHG7 and METTL3, the osteogenic/odontogenic ability was detected. After METTL3 knockdown, the m6A modification level and its expression of lncSNHG7 were detected by MazF, and their binding was confirmed. Finally, the effects of lncSNHG7 and METTL3 on the Wnt/β-catenin pathway were detected. Results: MazF experiments revealed that lncSNHG7 had a m6A modification before and after mineralization of hDPSCs, and the occurrence site was 2081. METTL3 was most significantly upregulated after mineralization of hDPSCs. Knockdown/ overexpression of lncSNHG7 and METTL3 inhibited/promoted the osteogenic/odontogenic differentiation of hDPSCs. The m6A modification and expression of lncSNHG7 were both regulated by METTL3. Subsequently, lncSNHG7 and METTL3 were found to regulate the Wnt/β-catenin signaling pathway. Conclusion: These results revealed that METTL3 can activate the Wnt/β-catenin signaling pathway by regulating the m6A modification and expression of lncSNHG7 in hDPSCs to enhance the osteogenic/odontogenic differentiation of hDPSCs. Our study provides new insight into stem cell-based tissue engineering.
Collapse
|
13
|
Identifying Genes that Affect Differentiation of Human Neural Stem Cells and Myelination of Mature Oligodendrocytes. Cell Mol Neurobiol 2022:10.1007/s10571-022-01313-5. [DOI: 10.1007/s10571-022-01313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
AbstractHuman neural stem cells (NSCs) are self-renewing, multipotent cells of the central nervous system (CNS). They are characterized by their ability to differentiate into a range of cells, including oligodendrocytes (OLs), neurons, and astrocytes, depending on exogenous stimuli. An efficient and easy directional differentiation method was developed for obtaining large quantities of high-quality of human OL progenitor cells (OPCs) and OLs from NSCs. RNA sequencing, immunofluorescence staining, flow cytometry, western blot, label-free proteomic sequencing, and qPCR were performed in OL lines differentiated from NSC lines. The changes in the positive rate of typical proteins were analyzed expressed by NSCs, neurons, astrocytes, OPCs, and OLs. We assessed Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of differentially expressed (DE) messenger RNAs (mRNAs) related to the differentiation of NSCs and the maturation of OLs. The percentage of NSCs differentiated into neurons, astrocytes, and OLs was 82.13%, 80.19%, and 90.15%, respectively. We found that nestin, PAX6, Musashi, and vimentin were highly expressed in NSCs; PDGFR-α, A2B5, NG2, OLIG2, SOX10, and NKX2-2 were highly expressed in OPCs; and CNP, GALC, PLP1, and MBP were highly expressed in OLs. RNA sequencing, western blot and qPCR revealed that ERBB4 and SORL1 gradually increased during NSC–OL differentiation. In conclusion, NSCs can differentiate into neurons, astrocytes, and OLs efficiently. PDGFR-α, APC, ID4, PLLP, and other markers were related to NSC differentiation and OL maturation. Moreover, we refined a screening method for ERBB4 and SORL1, which may underlie NSC differentiation and OL maturation.
Graphical Abstract
Potential unreported genes and proteins may regulate differentiation of human neural stem cells into oligodendrocyte lineage. Neural stem cells (NSCs) can differentiate into neurons, astrocytes, and oligodendrocyte (OLs) efficiently. By analyzing the DE mRNAs and proteins of NSCs and OLs lineage, we could identify reported markers and unreported markers of ERBB4 and SORL1 that may underlie regulate NSC differentiation and OL maturation.
Collapse
|
14
|
Exploring craniofacial and dental development with microRNAs. Biochem Soc Trans 2022; 50:1897-1909. [DOI: 10.1042/bst20221042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
microRNAs (miRs) are small RNA molecules that regulate many cellular and developmental processes. They control gene expression pathways during specific developmental time points and are required for tissue homeostasis and stem cell maintenance. miRs as therapeutic reagents in tissue regeneration and repair hold great promise and new technologies are currently being designed to facilitate their expression or inhibition. Due to the large amount of miR research in cells and cancer many cellular processes and gene networks have been delineated however, their in vivo response can be different in complex tissues and organs. Specifically, this report will discuss animal developmental models to understand the role of miRs as well as xenograft, disease, and injury models. We will discuss the role of miRs in clinical studies including their diagnostic function, as well as their potential ability to correct craniofacial diseases.
Collapse
|
15
|
Song Y, Nie L, Wang M, Liao W, Huan C, Jia Z, Wei D, Liu P, Fan K, Mao Z, Wang C, Huo W. Differential Expression of lncRNA-miRNA-mRNA and Their Related Functional Networks in New-Onset Type 2 Diabetes Mellitus among Chinese Rural Adults. Genes (Basel) 2022; 13:genes13112073. [PMID: 36360309 PMCID: PMC9690016 DOI: 10.3390/genes13112073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Increasing evidence suggested that the expression and inter-regulation of long noncoding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) were related to the development of diabetes. Based on bioinformatics analysis, this study aimed to comprehensively analyze the dysregulated RNA molecules related to new-onset type 2 diabetes mellitus (T2DM). Twenty-four patients with new-onset T2DM were included as cases, and sex- and age-matched participants were included as controls. The differentially expressed lncRNAs, miRNAs, and mRNAs between the two groups were screened by RNA sequencing. LncRNA-miRNA-mRNA network and enrichment analysis were used to reveal the RNA molecules that were potentially associated with T2DM and their early changes. A total of 123 lncRNAs, 49 miRNAs, and 312 mRNAs were differentially expressed in the new-onset T2DM (fold change ≥ 1.5 and p value < 0.05). Functional analysis revealed that differentially expressed RNAs were likely to play essential roles in diabetes-related pathways. In addition, the protein–protein interaction (PPI) network screened multiple hub mRNAs, and lncRNA-miRNA-mRNA networks showed that a single miRNA could be related to multiple lncRNAs, and then they coregulated more mRNAs. SLC25A4, PLCB1, AGTR2, PRKN, and SCD5 were shown to be important mRNAs in T2DM, and miR-199b-5p, miR-202-5p, miR-548o-3p as well as miR-1255b-5p could be involved in their regulation. In conclusion, several new and previously identified dysregulated lncRNAs, miRNAs, and mRNAs were found to be vital biomarkers in T2DM. Their alterations and interactions could modulate the pathophysiology of T2DM. Those findings may provide new insights into the molecular mechanisms underlying the development of T2DM.
Collapse
Affiliation(s)
- Yu Song
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Luting Nie
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Mian Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Changsheng Huan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zexin Jia
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Pengling Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Keliang Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenqian Huo
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-371-67781452; Fax: +86-371-67781868
| |
Collapse
|
16
|
Wang D, Zhu N, Xie F, Qin M, Wang Y. Long non-coding RNA IGFBP7-AS1 promotes odontogenic differentiation of stem cells from human exfoliated deciduous teeth through autophagy: An in vitro study. Arch Oral Biol 2022; 141:105492. [DOI: 10.1016/j.archoralbio.2022.105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
|
17
|
Wang D, Zhu N, Xie F, Qin M, Wang Y. Long non-coding RNA IGFBP7-AS1 accelerates the odontogenic differentiation of stem cells from human exfoliated deciduous teeth by regulating IGFBP7 expression. Hum Cell 2022; 35:1697-1707. [PMID: 36038801 PMCID: PMC9515061 DOI: 10.1007/s13577-022-00763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) are attractive seed cells for dental tissue engineering. We identified the effect of the long noncoding RNA insulin-like growth factor-binding protein 7 antisense RNA 1 (lncRNA IGFBP7-AS1) in vivo and its underlying mechanism during SHED odontogenic differentiation. IGFBP7-AS1 and insulin-like growth factor-binding protein 7 (IGFBP7) were overexpressed using lentiviruses. IGFBP7 expression was knocked down with small interfering RNA. The effect of IGFBP7-AS1 in vivo was confirmed by animal experiments. The effect of IGFBP7 on SHED odontogenic differentiation was assessed with alkaline phosphatase staining, alizarin red S staining, quantitative reverse transcription-PCR, and western blotting. The relationship between IGFBP7-AS1 and IGFBP7 was confirmed by quantitative reverse transcription–PCR and western blotting. IGFBP7-AS1 promoted SHED odontogenesis in vivo, and regulated the expression of the coding gene IGFBP7 positively. Inhibiting IGFBP7 led to suppress SHED odontogenic differentiation while IGFBP7 overexpression had the opposite effect. IGFBP7-AS1 enhanced the stability of IGFBP7. IGFBP7-AS1 promoted SHED odontogenic differentiation in vivo. The underlying mechanism may involve the enhancement of IGFBP7 stability. This may provide novel potential targets for dental tissue engineering.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Fei Xie
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China.
| |
Collapse
|
18
|
Liu J, Yao Y, Huang J, Sun H, Pu Y, Tian M, Zheng M, He H, Li Z. Comprehensive analysis of lncRNA-miRNA-mRNA networks during osteogenic differentiation of bone marrow mesenchymal stem cells. BMC Genomics 2022; 23:425. [PMID: 35672672 PMCID: PMC9172120 DOI: 10.1186/s12864-022-08646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) plays crucial role in osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs), involving in regulation of competing endogenous RNA (ceRNA) mechanisms and conduction of signaling pathways. However, its mechanisms are poorly understood. This study aimed to investigate lncRNAs, miRNAs and mRNAs expression profiles in rat BMMSCs (rBMMSCs) osteogenic differentiation, screen the potential key lncRNA-miRNA-mRNA networks, explore the putative functions and identify the key molecules, as the basis of studying potential mechanism of rBMMSCs osteogenic differentiation driven by lncRNA, providing molecular targets for the management of bone defect. Methods High-throughput RNA sequencing (RNA-seq) was used to determine lncRNAs, miRNAs, and mRNAs expression profiles at 14-day rBMMSCs osteogenesis. The pivotal lncRNA-miRNA and miRNA-mRNA networks were predicted from sequencing data and bioinformatic analysis, and the results were exported by Cytoscape 3.9.0 software. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used for functional exploration. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to validate lncRNAs, miRNAs and mRNAs. Results rBMMSCs were identified, and the osteogenic and adipogenic differentiation ability were detected. A total of 8634 lncRNAs were detected by RNA-seq, and 1524 differential expressed lncRNAs, of which 812 up-regulated and 712 down-regulated in osteo-inductive groups compared with control groups. 30 up-regulated and 61 down-regulated miRNAs, 91 miRNAs were differentially expressed in total. 2453 differentially expressed mRNAs including 1272 up-expressed and 1181 down-expressed were detected. 10 up-regulated lncRNAs were chosen to predict 21 down-regulated miRNAs and 650 up-regulated mRNAs. 49 lncRNA-miRNA and 1515 miRNA–mRNA interactive networks were constructed. GO analysis showed the most important enrichment in cell component and molecular function were “cytoplasm” and “protein binding”, respectively. Biological process related to osteogenic differentiation such as “cell proliferation”, “wound healing”, “cell migration”, “osteoblast differentiation”, “extracellular matrix organization” and “response to hypoxia” were enriched. KEGG analysis showed differentially expressed genes were mainly enriched in “PI3K-Akt signaling pathway”, “Signaling pathway regulating pluripotency of stem cells”, “cGMP-PKG signaling pathway”, “Axon guidance” and “Calcium signaling pathway”. qRT-PCR verified that lncRNA Tug1, lncRNA AABR07011996.1, rno-miR-93-5p, rno-miR-322-5p, Sgk1 and Fzd4 were consistent with the sequencing results, and 4 lncRNA-miRNA-mRNA networks based on validations were constructed, and enrichment pathways were closely related to “PI3K-Akt signaling pathway”, “Signaling pathway regulating pluripotency of stem cells” and “Wnt signaling pathway”. Conclusions lncRNAs, miRNAs and mRNAs expression profiles provide clues for future studies on their roles for BMMSCs osteogenic differentiation. Furthermore, lncRNA–miRNA–mRNA networks give more information on potential new mechanisms and targets for management on bone defect. Supplementary information The online version contains supplementary material available at 10.1186/s12864-022-08646-x.
Collapse
Affiliation(s)
- Jialin Liu
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Affiliated Stomatological Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Yuan Yao
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Affiliated Stomatological Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Jinyong Huang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Hao Sun
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Yixuan Pu
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Mengting Tian
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Meijie Zheng
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Huiyu He
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.
| | - Zheng Li
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.
| |
Collapse
|
19
|
Li D, Lu L, Liu M, Sun J. Inhibition of long noncoding RNA cancer susceptibility candidate 7 attenuates hepatocellular carcinoma development by targeting microRNA-30a-5p. Bioengineered 2022; 13:11296-11308. [PMID: 35484972 PMCID: PMC9208517 DOI: 10.1080/21655979.2022.2068289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Long non-coding RNA (lncRNA) cancer susceptibility candidate 7 (CASC7) was reported to be participated in tumor development. This study was carried out to investigate the functions of CASC7 in hepatocellular carcinoma (HCC) progression. The expression of CASC7 and microRNA-30a-5p (miR-30a-5p) in HCC tissues and cells were detected by quantitative Real-time PCR (qRT-PCR). The expression of Krueppel-like factor 10 (KLF10), transforming growth factor-β (TGF-β), and SMAD3 were detected by Western Blot analysis. Transwell assay, flow cytometry, Cell Counting Kit-8 (CCK-8) assay and colony formation assay were performed to evaluate the effects of CASC7, KLF10 and miR-30a-5p on cell function. The relationship among CASC7, KLF10 and miR-30a-5p was evaluated by luciferase reporter assay and bioinformatics analyses. Tumor growth was detected in nude mice. The expression levels of CASC7 were increased and the expression levels of miR-30a-5p were reduced in HCC cells and tissues. Knockdown of CASC7 and overexpression of miR-30a-5p reduced tumor growth as well as HCC cell proliferation, invasion and migration. In HCC tumor tissues, the expression of miR-30a-5p was negatively correlated with the expression of CASC7. Moreover, as a target of miR-30a-5p, KLF10 was regulated by CASC7 and miR-30a-5p, and CASC7 regulated the KLF10/TGF-β/SMAD3 pathway via binding to miR-30a-5p, thereby promoting HCC cell progression.
Collapse
Affiliation(s)
- Dongsheng Li
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lin Lu
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Miaomiao Liu
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jufeng Sun
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
20
|
Phenytoin Is Promoting the Differentiation of Dental Pulp Stem Cells into the Direction of Odontogenesis/Osteogenesis by Activating BMP4/Smad Pathway. DISEASE MARKERS 2022; 2022:7286645. [PMID: 35493301 PMCID: PMC9050280 DOI: 10.1155/2022/7286645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022]
Abstract
Background The purpose of this study was the evaluation of the potential and mechanism of phenytoin to promote differentiation of human dental pulp stem cells (hDPSC) into odontoblasts/osteoblasts. Methods Fourth-generation human hDPSC originating from healthy pulp of third molars was cultured in control as well as phenytoin-containing media (PHT) for 14 days. qPCR was applied to detect the expression of DSPP, DMP1, and ALP genes. Western blot analysis was used to confirm the findings. One-way analysis of variance (ANOVA) was used for statistical analysis (p < 0.05). Information about phenytoin was assessed from PubChem database, while targets of phenytoin were assessed from six databases. Drug targets were extracted based on the differentially expressed genes (‖logFC‖ ≥ 1, p < 0.05) in the experimental group (50 mg/L PHT, 14 days). GO BP and KEGG pathway enrichment analysis on the obtained drug targets was performed and the target protein functional network diagram was constructed. Results A concentration below 200 mg/L PHT had no obvious toxicity to hDPSC. The expression of DSPP, DMP1, and ALP genes in the 50 mg/L PHT concentration group increased significantly. The WB experiment showed that the protein content of BMP4, Smad1/5/9, and p-Smad1/5 was significantly increased in 50 mg/L PHT in comparison with the NC group (the group without treatment of PHT) at 14 days. Conclusion Phenytoin has the ability of promoting the differentiation of hDPSC into odontoblasts and osteoblasts. BMP4/Smad pathway, inducing odontogenic/osteogenic differentiation of hDPSC, appears a main process in this context.
Collapse
|
21
|
Long Noncoding RNA IGFBP7-AS1 Promotes Odontogenesis of Stem Cells from Human Exfoliated Deciduous Teeth via the p38 MAPK Pathway. Stem Cells Int 2022; 2022:9227248. [PMID: 35469296 PMCID: PMC9034958 DOI: 10.1155/2022/9227248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) are attractive seed cells for dental tissue engineering. Epigenetics refers to heritable changes in gene expression patterns that do not alter DNA sequences. Long noncoding RNAs (lncRNAs) are one of the main methods of epigenetic regulation and participate in cell differentiation; however, little is known regarding the role of lncRNAs during SHED odontogenic differentiation. In this study, RNA sequencing (RNA-seq) was used to obtain the expression profile of lncRNAs and mRNAs during the odontogenic differentiation of SHED. The effect of IGFBP7-AS1 on odontogenic differentiation of SHED was assessed by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, quantitative reverse transcription PCR (qRT-PCR), Western blot, and in vivo. The level of p38 and p-p38 protein expression was examined by Western blot, and the result was verified by adding the p38 inhibitor, SB203580. The expression profiles of lncRNAs and mRNAs were identified by RNA-seq analysis, which help us to further understand the mechanism in odontogenesis epigenetically. IGFBP7-AS1 expression was increased during odontogenic differentiation on days 7 and 14. The ALP staining, ARS staining, and expression of odontogenic markers were upregulated by overexpressing IGFBP7-AS1 in vitro, whereas the expression of osteogenesis markers was not significantly changed on mRNA level. The effect of IGFBP7-AS1 was also verified in vivo. IGFBP7-AS1 could further positively regulate odontogenic differentiation through the p38 MAPK pathway. This may provide novel targets for dental tissue engineering.
Collapse
|
22
|
Zheng X, Gan S, Su C, Zheng Z, Liao Y, Shao J, Zhu Z, Chen W. Screening and preliminary identification of long non-coding RNAs critical for osteogenic differentiation of human umbilical cord mesenchymal stem cells. Bioengineered 2022; 13:6880-6894. [PMID: 35249446 PMCID: PMC8973756 DOI: 10.1080/21655979.2022.2044274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) are attractive therapeutic cells for tissue engineering to treat bone defects. However, how the cells can differentiate into bone remains unclear. Long non-coding RNAs (lncRNAs) are non-coding RNAs that participate in many biological processes, including stem cell differentiation. In this study, we investigated the profiles and functions of lncRNAs in the osteogenic differentiation of hUCMSCs. We identified 343 lncRNAs differentially expressed during osteogenic differentiation, of which 115 were upregulated and 228 were downregulated. We further analyzed these lncRNAs using bioinformatic analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. GO and KEGG pathway analysis showed that ‘intracellular part’ and ‘Phosphatidylinositol signaling system’ were the most correlated molecular function and pathway, respectively. We selected the top 10 upregulated lncRNAs to construct six competing endogenous RNA networks. We validated the impact of the lncRNA H19 on osteogenic differentiation by overexpressing it in hUCMSCs. Overall, our results pave the way to detailed studies of the molecular mechanisms of hUCMSC osteogenic differentiation, and they provide a new theoretical basis to guide the therapeutic application of hUCMSCs.
Collapse
Affiliation(s)
- Xiao Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, Guangdong, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Su
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jingjing Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Lai L, Wang Z, Ge Y, Qiu W, Wu B, Fang F, Xu H, Chen Z. Comprehensive analysis of the long noncoding RNA-associated competitive endogenous RNA network in the osteogenic differentiation of periodontal ligament stem cells. BMC Genomics 2022; 23:1. [PMID: 34979896 PMCID: PMC8725252 DOI: 10.1186/s12864-021-08243-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUD The mechanism implicated in the osteogenesis of human periodontal ligament stem cells (PDLSCs) has been investigated for years. Previous genomics data analyses showed that long noncoding RNA (lncRNA), microRNA (miRNA) and messenger RNA (mRNA) have significant expression differences between induced and control human PDLSCs. Competing for endogenous RNAs (ceRNA), as a widely studied mechanism in regenerative medicine, while rarely reported in periodontal regeneration. The key lncRNAs and their ceRNA network might provide new insights into molecular therapies of periodontal regeneration based on PDLSCs. RESULTS Two networks reflecting the relationships among differentially expressed RNAs were constructed. One ceRNA network was composed of 6 upregulated lncRNAs, 280 upregulated mRNAs, and 18 downregulated miRNAs. The other network contained 33 downregulated lncRNAs, 73 downregulated mRNAs, and 5 upregulated miRNAs. Functional analysis revealed that 38 GO terms and 8 pathways related with osteogenesis were enriched. Twenty-four osteogenesis-related gene-centred lncRNA-associated ceRNA networks were successfully constructed. Among these pathways, we highlighted MAPK and TGF-beta pathways that are closely related to osteogenesis. Subsequently, subnetworks potentially linking the GO:0001649 (osteoblast differentiation), MAPK and TGF-beta pathways were constructed. The qRT-PCR validation results were consistent with the microarray analysis. CONCLUSION We construct a comprehensively identified lncRNA-associated ceRNA network might be involved in the osteogenesis of PDLSCs, which could provide insights into the regulatory mechanisms and treatment targets of periodontal regeneration.
Collapse
Affiliation(s)
- Lingzhi Lai
- Department of Stomatology of Maoming People's Hospital, Maoming, 525000, China
| | - Zhaodan Wang
- Department of Stomatology of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yihong Ge
- Department of Stomatology of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Wei Qiu
- Department of Stomatology of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Buling Wu
- Department of Stomatology of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.,Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, 143 Dongzong Road, Pingshan District, Shenzhen, 518118, China
| | - Fuchun Fang
- Department of Stomatology of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Huiyong Xu
- Department of Stomatology of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Zhao Chen
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, 143 Dongzong Road, Pingshan District, Shenzhen, 518118, China.
| |
Collapse
|
24
|
The management of bone defect using long non-coding RNA as a potential biomarker for regulating the osteogenic differentiation process. Mol Biol Rep 2022; 49:2443-2453. [PMID: 34973122 PMCID: PMC8863721 DOI: 10.1007/s11033-021-07013-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
Tissue engineered bone brings hope to the treatment of bone defects, and the osteogenic differentiation of stem cells is the key link. Inducing osteogenic differentiation of stem cells may be a potential approach to promote bone regeneration. In recent years, lncRNA has been studied in the field increasingly, which is believed can regulate cell cycle, proliferation, metastasis, differentiation and immunity, participating in a variety of physiology and pathology processes. At present, it has been confirmed that certain lncRNAs regulate the osteogenesis of stem cells and take part in mediating signaling pathways including Wnt/β-catenin, MAPK, TGF-β/BMP, and Notch pathways. Here, we provided an overview of lncRNA, reviewed its researches in the osteogenic differentiation of stem cells, emphasized the importance of lncRNA in bone regeneration, and focused on the roles of lncRNA in signaling pathways, in order to make adequate preparations for applying lncRNA to bone tissue Engineering, letting it regulate the osteogenic differentiation of stem cells for bone regeneration.
Collapse
|
25
|
Zhang D, Xue J, Peng F. The regulatory activities of MALAT1 in the development of bone and cartilage diseases. Front Endocrinol (Lausanne) 2022; 13:1054827. [PMID: 36452326 PMCID: PMC9701821 DOI: 10.3389/fendo.2022.1054827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been comprehensively implicated in various cellular functions by mediating transcriptional or post-transcriptional activities. MALAT1 is involved in the differentiation, proliferation, and apoptosis of multiple cell lines, including BMSCs, osteoblasts, osteoclasts, and chondrocytes. Interestingly, MALAT1 may interact with RNAs or proteins, regulating cellular processes. Recently, MALAT1 has been reported to be associated with the development of bone and cartilage diseases by orchestrating the signaling network. The involvement of MALAT1 in the pathological development of bone and cartilage diseases makes it available to be a potential biomarker for clinical diagnosis or prognosis. Although the potential mechanisms of MALAT1 in mediating the cellular processes of bone and cartilage diseases are still needed for further elucidation, MALAT1 shows great promise for drug development.
Collapse
Affiliation(s)
- Di Zhang
- Department of Medical Imaging, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinhua Xue
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Fang Peng
- Department of Pathology, Ganzhou People’s Hospital, Ganzhou, China
- *Correspondence: Fang Peng,
| |
Collapse
|
26
|
Chen W. SNHG7 promotes the osteo/dentinogenic differentiation ability of human dental pulp stem cells by interacting with hsa-miR-6512-3p in an inflammatory microenvironment. Biochem Biophys Res Commun 2021; 581:46-52. [PMID: 34653678 DOI: 10.1016/j.bbrc.2021.09.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022]
Abstract
Excessive inflammation leads to periodontitis, which inhibits the osteogenic differentiation of human dental pulp stem cells (hDPSCs), irreversibly injured and difficultly repaired for the important dental pulp. Hence, it is necessary to study the functional gene to enhance the osteogenic differentiation of hDPSCs. Previous found that SNHG7 expression was increased in the osteogenic differentiation of hDPSCs. However, the regulatory functions of SNHG7 on osteogenic differentiation of hDPSCs in the inflammatory microenvironment still remains unknown. In this study, hDPSCs treatment with 50 ng/mL TNF-α to mimic the inflammatory microenvironment, then cultured in osteoblast differentiation medium for 14 days. SNHG7, miR-6512-3p, BSP, DSPP, DMP-1, RUNX2 and OPN in hDPSCs were detect by RT-qPCR. We found that SNHG7 expression was reduced during the osteogenic differentiation of hDPSCs after different concentrations TNF-α treatment. SNHG7 overexpression improved the TNF-α-induced suppression of calcium deposition, ALP activity, and the expression of BSP, DSPP, DMP-1, RUNX2 and OPN. Furthermore, SNHG7 can sponge with miR-6512-3p. miR-6512-3p expression was increased during the osteogenic differentiation of hDPSCs after different concentrations TNF-α treatment while inhibited after SNHG7 overexpression. knockdown of miR-6512-3p improved the TNF-α-induced suppression of calcium deposition, ALP activity, and the expression of BSP, DSPP, DMP-1, RUNX2 and OPN. Finally, miR-6512-3p overexpression reversed the effect of SNHG7 on the osteo/dentinogenic differentiation of TNF-α-treated hDPSCs. In conclusions, SNHG7 improves the osteogenic differentiation of hDPSCs by inhibiting miR-6512-3p expression under 50 ng/mL TNF-α-induced inflammatory environment, which provided potential targets for the treatment of periodontitis.
Collapse
Affiliation(s)
- Wenyu Chen
- Department of Stomatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410000, China.
| |
Collapse
|
27
|
Li X, Huang Y, Han Y, Yang Q, Zheng Y, Li W. LncPVT1 regulates osteogenic differentiation of human periodontal ligament cells via miR-10a-5p/brain-derived neurotrophic factor. J Periodontol 2021; 93:1093-1106. [PMID: 34793611 DOI: 10.1002/jper.21-0429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Identifying the factors affecting osteoblast differentiation ofperiodontal ligamentcells (PDLCs) can help enhance the regeneration of periodontal tissue.LncRNAplasmacytoma variant translocation 1 (lncPVT1) is an important regulatory factor involved in many biological processes, but its role in osteogenesisremains unclear. METHODS Expressionsof osteogenic markers were detected by quantitative reverse transcription polymerase chain reaction and Western blot analysis. Alkaline phosphatase staining was conducted for early osteoblast differentiation and alizarin red S staining was used for mineral deposition. RNA sequencing was used to identify the miRNAs regulated by lncPVT1 during osteogenesis. Cell transfection was used to overexpress or knockdown lncPVT1 and miR-10a-5p. Dual luciferase reporter assayswere conducted to analyze the binding of miR-10a-5p to brain-derived neurotrophic factor (BDNF). RESULTS LncPVT1 was significantly increased during osteogenic induction of PDLCs. Overexpression of lncPVT1 promoted osteogenesis, whereas lncPVT1 knockdown inhibited this process. RNA sequencing showed that miR-10a-5p expression was significantly increased after lncPVT1 knockdown.RNA immunoprecipitation assay further demonstrated the binding potential of lncPVT1 and miR-10a-5p. MiR-10a-5p inhibited the osteogenesis of PDLCs, and partially reversed the stimulatory effects of lncPVT1.Subsequently, we identified a predicted binding site for miR-10a-5p on BDNF and confirmed it using dual luciferase reporter assays. Moreover, lncPVT1 upregulated the expression of BDNF, while miR-10a-5p downregulated BDNF expression. BDNF promoted osteogenesis and partially rescued the si-lncPVT1-mediated inhibition of PDLCs osteogenic differentiation. CONCLUSION LncPVT1 positively regulated the osteogenic differentiation of PDLCs via miR-10a-5p and BDNF.Our resultsprovide a promising target for enhancing the osteogenic potential of PDLCs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaobei Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Qiaolin Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, P.R. China
| |
Collapse
|
28
|
Hao X, Li D, Zhang D, Jia L. Microarray analysis of long non-coding RNAs related to osteogenic differentiation of human dental pulp stem cells. J Dent Sci 2021; 17:733-743. [PMID: 35756759 PMCID: PMC9201533 DOI: 10.1016/j.jds.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
Background/purpose Dental pulp stem cells (DPSCs) are candidate seed cells for bone tissue engineering, but the molecular regulation of osteogenic differentiation in DPSCs is not fully understood. Long non-coding RNAs (lncRNAs) are important regulators of gene expression, and whether they play roles in osteogenic differentiation of DPSCs requires more study. Materials and methods DPSCs were isolated and cultured. The mRNA and lncRNA expression profiles were compared through microarray assay between osteo-differentiated DPSCs and non-differentiated DPSCs. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, Gene ontology (GO) analyses, and the mRNA-lncRNA co-expression analyses were performed for functional annotation of differentially expressed RNAs. Small interfering RNA (siRNA) was used to interfere the expression of lncRNA ENST00000533992 (also named smooth muscle-induced lncRNA or SMILR), a candidate regulator, then the osteogenic differentiation potential of DPSCs was analyzed. Results DPSCs were isolated and cultured successfully. The expression of 273 mRNAs and 184 lncRNAs changed significantly in DPSCs after osteogenic induction. KEGG analyses and GO analyses showed that the differentially expressed RNAs were enriched in several pathways and biological processes. The mRNA-lncRNA co-expression network was constructed to reveal the potential relationships between mRNAs and lncRNAs. The osteogenic differentiation potential of DPSCs decreased when SMILR was interfered. Conclusion The present study provides clues for seeking for lncRNAs that participate in the regulation of osteogenic differentiation in DPSCs. LncRNA SMILR could play a role in regulating osteogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- Xinyu Hao
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongfang Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Linglu Jia
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Corresponding author. School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China. Fax: +86 531 88382923.
| |
Collapse
|
29
|
Xu S, Xie X, Li C, Liu Z, Zuo D. Micromolar sodium fluoride promotes osteo/odontogenic differentiation in dental pulp stem cells by inhibiting PI3K/AKT pathway. Arch Oral Biol 2021; 131:105265. [PMID: 34601318 DOI: 10.1016/j.archoralbio.2021.105265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/19/2021] [Accepted: 09/12/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Sodium fluoride (NaF) plays an important role in preventing dental caries. However, the regulatory effect of NaF on the committed differentiation of DPSCs is not fully understood. In this study, we characterized the impact of micromolar levels of NaF on the osteo/odontogenic differentiation of DPSCs. DESIGN DPSCs were isolated from healthy human third molars and were cultured in conditioned media with different concentrations of NaF. RNA sequencing (RNA-seq) combined with Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was used to assess the pathways regulated by NaF. Alkaline phosphatase activity, Alizarin red staining, Western blotting, and real-time qRT-PCR were used to determine the osteo/odontogenic differentiation in DPSCs treated with NaF. RESULTS NaF significantly promoted the osteo/odontogenic differentiation of DPSCs at micromolar levels. Furthermore, RNA-seq and KEGG pathway enrichment analysis indicated that the PI3K/AKT pathway was involved in the pro-osteoclastogenesis effect of NaF. Western blotting analysis exhibited that the phosphorylation of AKT was decreased in NaF-treated DPSCs. Chemical inhibition of the PI3K/AKT pathway abrogated the NaF-promoted DPSCs osteo/odontogenic differentiation. CONCLUSION Micromolar NaF can promote the osteo/odontogenic differentiation of DPSCs by inhibiting the PI3K/AKT pathway. DATA AVAILABILITY The data used to support the findings of this study are available from the corresponding author upon request.
Collapse
Affiliation(s)
- Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xinghuan Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Changzhou Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Daming Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
30
|
Wang C, Dong L, Wang Y, Jiang Z, Zhang J, Yang G. Bioinformatics Analysis Identified miR-584-5p and Key miRNA-mRNA Networks Involved in the Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. Front Genet 2021; 12:750827. [PMID: 34646313 PMCID: PMC8503254 DOI: 10.3389/fgene.2021.750827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human periodontal ligament cells (PDLCs) play an important role in periodontal tissue stabilization and function. In the process of osteogenic differentiation of PDLSCs, the regulation of molecular signal pathways are complicated. In this study, the sequencing results of three datasets on GEO were used to comprehensively analyze the miRNA-mRNA network during the osteogenic differentiation of PDLSCs. Using the GSE99958 and GSE159507, a total of 114 common differentially expressed genes (DEGs) were identified, including 62 up-regulated genes and 52 down-regulated genes. GO enrichment analysis was performed. The up-regulated 10 hub genes and down-regulated 10 hub genes were screened out by protein-protein interaction network (PPI) analysis and STRING in Cytoscape. Similarly, differentially expressed miRNAs (DEMs) were selected by limma package from GSE159508. Then, using the miRwalk website, we further selected 11 miRNAs from 16 DEMs that may have a negative regulatory relationship with hub genes. In vitro RT-PCR verification revealed that nine DEMs and 18 hub genes showed the same trend as the RNA-seq results during the osteogenic differentiation of PDLSCs. Finally, using miR-584-5p inhibitor and mimics, it was found that miR-584-5p negatively regulates the osteogenic differentiation of PDLSCs in vitro. In summary, the present results found several potential osteogenic-related genes and identified candidate miRNA-mRNA networks for the further study of osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoli Yang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Khatun MS, Alam MA, Shoombuatong W, Mollah MNH, Kurata H, Hasan MM. Recent development of bioinformatics tools for microRNA target prediction. Curr Med Chem 2021; 29:865-880. [PMID: 34348604 DOI: 10.2174/0929867328666210804090224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are central players that regulate the post-transcriptional processes of gene expression. Binding of miRNAs to target mRNAs can repress their translation by inducing the degradation or by inhibiting the translation of the target mRNAs. High-throughput experimental approaches for miRNA target identification are costly and time-consuming, depending on various factors. It is vitally important to develop the bioinformatics methods for accurately predicting miRNA targets. With the increase of RNA sequences in the post-genomic era, bioinformatics methods are being developed for miRNA studies specially for miRNA target prediction. This review summarizes the current development of state-of-the-art bioinformatics tools for miRNA target prediction, points out the progress and limitations of the available miRNA databases, and their working principles. Finally, we discuss the caveat and perspectives of the next-generation algorithms for the prediction of miRNA targets.
Collapse
Affiliation(s)
- Mst Shamima Khatun
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Ashad Alam
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112. United States
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700. Thailand
| | - Md Nurul Haque Mollah
- Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh. 5Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083. Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| |
Collapse
|
32
|
Wang J, Liu X, Wang Y, Xin B, Wang W. The role of long noncoding RNA THAP9-AS1 in the osteogenic differentiation of dental pulp stem cells via the miR-652-3p/VEGFA axis. Eur J Oral Sci 2021; 129:e12790. [PMID: 34288157 DOI: 10.1111/eos.12790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
Dental pulp stem cells (DPSCs) are multipotent and may play crucial roles in dentin-pulp regeneration. Recent studies have revealed that long noncoding RNAs (lncRNAs) are implicated in the osteogenic differentiation of DPSCs. However, the specific role and potential mechanisms of the lncRNA trihydroxyacetophenone domain containing nine antisense RNA 1 (THAP9-AS1) during osteogenic differentiation of DPSCs remain unknown. In the present study, we determined that THAP9-AS1 expression was upregulated during osteogenic differentiation of DPSCs. Moreover, we investigated the biological functions of THAP9-AS1 during osteogenic differentiation of DPSCs by loss-of-function assays. THAP9-AS1 knockdown inhibited osteogenic differentiation of DPSCs by decreasing alkaline phosphatase activity, alkaline phosphatase-positive cell ratio, mineralizing matrix and mRNA, and protein levels of early osteogenic-markers. We also found that THAP9-AS1 interacted with miR-652-3p, whose downstream gene target is vascular endothelial growth factor A (VEGFA). In addition, rescue assays indicated that VEGFA rescued the effects of THAP9-AS1 knockdown during osteogenic differentiation of DPSCs. In summary, we verified that knockdown of THAP9-AS1 inhibits osteogenic differentiation of DPSCs via the miR-652-3p/VEGFA axis. Our findings may be helpful to extend research on the mechanisms underlying osteogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- Jia Wang
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Xueyu Liu
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Yue Wang
- Department of Stomatology, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| | - Bingchang Xin
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Wei Wang
- Department of Prosthodontics, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
33
|
Yin JY, Luo XH, Feng WQ, Miao SH, Ning TT, Lei Q, Jiang T, Ma DD. Multidifferentiation potential of dental-derived stem cells. World J Stem Cells 2021; 13:342-365. [PMID: 34136070 PMCID: PMC8176842 DOI: 10.4252/wjsc.v13.i5.342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.
Collapse
Affiliation(s)
- Jing-Yao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xing-Hong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Wei-Qing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng-Hong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ting-Ting Ning
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qian Lei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Tao Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dan-Dan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| |
Collapse
|
34
|
Hu X, Wang L, He Y, Wei M, Yan H, Zhu H. Chlorogenic Acid Promotes Osteogenic Differentiation of Human Dental Pulp Stem Cells Through Wnt Signaling. Stem Cells Dev 2021; 30:641-650. [PMID: 33789447 DOI: 10.1089/scd.2020.0193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Periodontal disease (PD) is one of the main causes of periodontal bone resorption and tooth loss in adults. How to repair the alveolar bone effectively has always been a challenge. This study was designed to clarify the effects and the underlying molecular mechanisms of chlorogenic acid (CGA) on osteogenic differentiation of human dental pulp stem cells (hDPSCs). In this study, we used CGA to treat hDPSCs. The osteogenic experiment showed that CGA can promote hDPSCs osteogenic differentiation. RNA-Seq and quantitative real-time polymerase chain reaction showed that CGA treatment enhanced the expression of the osteogenesis genes for frizzled-related protein (FRZB) and pyruvate dehydrogenase kinase 4 (PDK4) and inhibit the expression of the osteoclastogenesis genes such as those for asporin (ASPN) and cytokine-like 1 (CYTL1). Western blot analysis showed that besides FRZB, CGA treatment also caused reduction of both active and total β-catenin, while increased the total calcium/calmodulin-dependent kinase II (CamKII), the phosphorylated CamKII (pCamKII) and the phosphorylated cAMP-response element-binding protein (pCREB). Likely, the increased osteogenesis was associated with reduced canonical Wnt/β-catenin signaling but increased noncanonical Wnt/Ca2+ signaling. The results suggested that CGA can promote the osteogenic differentiation of hDPSCs by regulating Wnt signaling. These findings will serve as a foundation for further studies on how to repair defective alveolar bone for the patients with PD.
Collapse
Affiliation(s)
- Xiaoping Hu
- The Key Laboratory of Oral Biomedicine, Affiliated Stomatological Hospital of Nanchang University, Nanchang, P.R. China
| | - Li Wang
- Affiliated Stomatological Hospital of Nanchang University, Jiangxi Medical College of Nanchang University, Nanchang, P.R. China
| | - Yuanqiao He
- Department of Laboratory Animal Science, Nanchang University, Nanchang, P.R. China.,Jiangxi Province Key Laboratory of Laboratory Animal Nanchang Royo Biotech Co., Ltd., Nanchang, P.R. China
| | - Minli Wei
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Jiangxi Medical College of Nanchang University, Nanchang, P.R. China
| | - Huilin Yan
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Jiangxi Medical College of Nanchang University, Nanchang, P.R. China
| | - Hongshui Zhu
- The Key Laboratory of Oral Biomedicine, Affiliated Stomatological Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
35
|
Key Markers and Epigenetic Modifications of Dental-Derived Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:5521715. [PMID: 34046069 PMCID: PMC8128613 DOI: 10.1155/2021/5521715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
As a novel research hotspot in tissue regeneration, dental-derived mesenchymal stromal cells (MSCs) are famous for their accessibility, multipotent differentiation ability, and high proliferation. However, cellular heterogeneity is a major obstacle to the clinical application of dental-derived MSCs. Here, we reviewed the heterogeneity of dental-derived MSCs firstly and then discussed the key markers and epigenetic modifications related to the proliferation, differentiation, immunomodulation, and aging of dental-derived MSCs. These messages help to control the composition and function of dental-derived MSCs and thus accelerate the translation of cell therapy into clinical practice.
Collapse
|
36
|
Li C, Liu H, Wei R, Liu Z, Chen H, Guan X, Zhao Z, Wang X, Jiang Z. LncRNA EGOT/miR-211-5p Affected Radiosensitivity of Rectal Cancer by Competitively Regulating ErbB4. Onco Targets Ther 2021; 14:2867-2878. [PMID: 33953571 PMCID: PMC8091867 DOI: 10.2147/ott.s256989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS Long non-coding ribonucleic acids (lncRNAs) are involved in the progression of cancers and affect the response to radiation therapy. This study was to investigate the mechanism of lncRNA EGOT in the radiosensitivity of rectal cancer. METHODS The mRNA expression of EGOT, miR-211-5p and ErbB4 in rectal cancer tissues and cells was detected by qRT-PCR. The protein expression of ErbB4 was detected by Western blot. Dual-luciferase reporter assay and ribonucleic acid immunoprecipitation (RIP) were used to confirm the interaction between EGOT and miR-211-5p or miR-211-5p and ErbB4. Transfection technology was used to down-regulate and up-regulate the expression of EGOT and miR-211-5p in rectal cancer cells, respectively. MTT, colony formation and flow cytometry were used to detect the effect of EGOT and miR-211-5p on proliferation, invasion, migration and apoptosis of rectal cancer cells. RESULTS The expression of EGOT was up-regulated in rectal cancer tissues and cells, and the expression of EGOT was related to the late stage of pathology. EGOT knockdown inhibited the proliferation and colony formation of rectal cancer cells and induced the apoptosis of rectal cancer cells. Moreover, EGOT knockdown was significantly enhanced the effects of radiotherapy on rectal cancer in vivo and in vitro. Furthermore, EGOT was found to serve as a sponge of miR-211-5p, and ErbB4 was a downstream target of miR-211-5p. EGOT enhanced the expression of ErbB4 by regulating miR-211-5p. MiR-211-5p inhibitor restored the effect of EGOT knockdown on the radiosensitivity of rectal cancer. CONCLUSION Down-regulation of EGOT could inhibit the growth of rectal cancer cells by regulating the miR-211-5p/ErbB4 axis and improve the radiosensitivity of rectal cancer cells. EGOT may be a new therapeutic target for rectal cancer.
Collapse
Affiliation(s)
- Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ran Wei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Haipeng Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xu Guan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhixun Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
37
|
Bae S, Kang B, Lee H, Luu H, Mullins E, Kingsley K. Characterization of Dental Pulp Stem Cell Responses to Functional Biomaterials Including Mineralized Trioxide Aggregates. J Funct Biomater 2021; 12:jfb12010015. [PMID: 33668171 PMCID: PMC8006251 DOI: 10.3390/jfb12010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Many studies in stem cell biology have demonstrated that dental pulp stem cells (DPSC) may be highly proliferative and capable of pluripotent differentiation into many different tissue types. Recent advances in stem cell research have outlined methods for directing in vitro or in vivo growth, viability, and proliferation, as well as differentiation of DPSC-although much remains to be discovered. Based upon this information, the primary objective of this study was to understand the functional biomaterials needed to more effectively direct DPSC viability, growth, and proliferation. METHODS Using an approved protocol, previously collected and isolated samples of DPSC from an existing repository were used. Previously established stem cell biomarkers (Sox-2, Oct-4, NANOG) from each isolate were correlated with their proliferation rates or doubling times to categorize them into rapid, intermediate, or slow-dividing multipotent DPSC. Growth factors and other functional dental biomaterials were subsequently tested to evaluate DPSC responses in proliferation, viability, and morphology. RESULTS Differential responses were observed among DPSC isolates to growth factors, including vascular endothelial growth factor (VEGF) and bone morphogenic protein (BMP-2), and functional biomaterials such as mineralized trioxide aggregates (MTA). The responsiveness of DPSC isolates did not correlate with any single factor but rather with a combination of proliferation rate and biomarker expression. CONCLUSIONS These data strongly suggest that some, but not all, DPSC isolates are capable of a robust and significant in vitro response to differentiation stimuli, although this response is not universal. Although some biomarkers and phenotypes that distinguish and characterize these DPSC isolates may facilitate the ability to predict growth, viability, and differentiation potential, more research is needed to determine the other intrinsic and extrinsic factors that may contribute to and modulate these DPSC responses to these functional biomaterials for biotechnology and bioengineering applications.
Collapse
Affiliation(s)
- Sejin Bae
- Department of Clinical Sciences, School of Dental Medicine, University of Nevada, 1700 W. Charleston, Las Vegas, NV 89106, USA; (S.B.); (B.K.); (H.L.); (H.L.); (E.M.)
| | - Bueonguk Kang
- Department of Clinical Sciences, School of Dental Medicine, University of Nevada, 1700 W. Charleston, Las Vegas, NV 89106, USA; (S.B.); (B.K.); (H.L.); (H.L.); (E.M.)
| | - Hyungbin Lee
- Department of Clinical Sciences, School of Dental Medicine, University of Nevada, 1700 W. Charleston, Las Vegas, NV 89106, USA; (S.B.); (B.K.); (H.L.); (H.L.); (E.M.)
| | - Harrison Luu
- Department of Clinical Sciences, School of Dental Medicine, University of Nevada, 1700 W. Charleston, Las Vegas, NV 89106, USA; (S.B.); (B.K.); (H.L.); (H.L.); (E.M.)
| | - Eric Mullins
- Department of Clinical Sciences, School of Dental Medicine, University of Nevada, 1700 W. Charleston, Las Vegas, NV 89106, USA; (S.B.); (B.K.); (H.L.); (H.L.); (E.M.)
| | - Karl Kingsley
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, 1001 Shadow Lane, Las Vegas, NV 89106, USA
- Correspondence: ; Tel.: +1-702-774-24623; Fax: +1-702-774-2721
| |
Collapse
|
38
|
Xu F, Li W, Yang X, Na L, Chen L, Liu G. The Roles of Epigenetics Regulation in Bone Metabolism and Osteoporosis. Front Cell Dev Biol 2021; 8:619301. [PMID: 33569383 PMCID: PMC7868402 DOI: 10.3389/fcell.2020.619301] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a metabolic disease characterized by decreased bone mineral density and the destruction of bone microstructure, which can lead to increased bone fragility and risk of fracture. In recent years, with the deepening of the research on the pathological mechanism of osteoporosis, the research on epigenetics has made significant progress. Epigenetics refers to changes in gene expression levels that are not caused by changes in gene sequences, mainly including DNA methylation, histone modification, and non-coding RNAs (lncRNA, microRNA, and circRNA). Epigenetics play mainly a post-transcriptional regulatory role and have important functions in the biological signal regulatory network. Studies have shown that epigenetic mechanisms are closely related to osteogenic differentiation, osteogenesis, bone remodeling and other bone metabolism-related processes. Abnormal epigenetic regulation can lead to a series of bone metabolism-related diseases, such as osteoporosis. Considering the important role of epigenetic mechanisms in the regulation of bone metabolism, we mainly review the research progress on epigenetic mechanisms (DNA methylation, histone modification, and non-coding RNAs) in the osteogenic differentiation and the pathogenesis of osteoporosis to provide a new direction for the treatment of bone metabolism-related diseases.
Collapse
Affiliation(s)
- Fei Xu
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhui Li
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiao Yang
- Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Na
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Linjun Chen
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guobin Liu
- Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Tu S, Wu J, Chen L, Tian Y, Qin W, Huang S, Wang R, Lin Z, Song Z. LncRNA CALB2 sponges miR-30b-3p to promote odontoblast differentiation of human dental pulp stem cells via up-regulating RUNX2. Cell Signal 2020; 73:109695. [PMID: 32565162 DOI: 10.1016/j.cellsig.2020.109695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022]
Abstract
Illuminating the mechanisms of odontoblast differentiation of human dental pulp stem cells (hDPSCs) is the key to find therapeutic clues to promote odontogenesis. LncRNAs play a regulatory role in odontoblast differentiation. Here, we identified a novel lncRNA, named lncRNA CALB2. It was up-regulated in odontoblast-differentiated hDPSCs and potentially interacted with miR-30b-3p and RUNX2. Via gain- and loss-of-function approaches, we found lncRNA CALB2 significantly promoted the odontoblast differentiation of hDPSCs. Then, dual luciferase reporter assay and RNA immunoprecipitation assay revealed that both lncRNA CALB2 and RUNX2 mRNA could directly bind to miR-30b-3p via the same binding sites. Interestingly, miR-30b-3p in hDPSCs was down-regulated and RUNX2 was up-regulated during odontoblast differentiation. Moreover, lncRNA CALB2 knockdown significantly reduced the protein level of RUNX2, DSPP and DMP-1, while miR-30b-3p inhibitor rescued the reduction. Furthermore, miR-30b-3p exerted an inhibitory effect on odontoblast differentiation, which could be reversed by lncRNA CALB2. Collectively, these findings indicate that the newly identified lncRNA CALB2 acts as a miR-30b-3p sponge to regulate RUNX2 expression, thus promoting the odontoblast differentiation of hDPSCs. LncRNA CALB2/miR-30b-3p/RUNX2 axis could be a novel therapeutic target for accelerating odontogenesis.
Collapse
Affiliation(s)
- Shaoqin Tu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Jinyan Wu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Lingling Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Yaguang Tian
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Wei Qin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Shuheng Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Runfu Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Zhi Song
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| |
Collapse
|