1
|
Salamini-Montemurri M, Lamas-Maceiras M, Lorenzo-Catoira L, Vizoso-Vázquez Á, Barreiro-Alonso A, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis. Int J Mol Sci 2023; 24:10798. [PMID: 37445988 PMCID: PMC10341812 DOI: 10.3390/ijms241310798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - María Quindós-Varela
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| |
Collapse
|
2
|
Lu Y, Yang C, Zhang L, Ding J. Ropivacaine Retards the Viability, Migration, and Invasion of Choriocarcinoma Cells by Regulating the Long Noncoding RNA OGFRP1/MicroRNA-4731-5p/HIF3A Axis. Mol Biotechnol 2021; 64:499-509. [PMID: 34855100 DOI: 10.1007/s12033-021-00429-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 11/22/2021] [Indexed: 12/01/2022]
Abstract
Choriocarcinoma is an aggressive gestational trophoblastic neoplasm. This study attempted to explore the biological functions and underlying mechanisms by which ropivacaine restrains the progression of choriocarcinoma. The expression of long noncoding RNA OGFRP1, microRNA-4731-5p (miR-4731-5p), and HIF3A in choriocarcinoma cells was assessed by qRT-PCR. Choriocarcinoma cells treated with ropivacaine at the concentration of 100, 500, and 1000 μM were cultured for 24, 48, and 72 h, respectively. Choriocarcinoma cell viability was evaluated by MTT assay. Transwell assay was conducted to examine choriocarcinoma cell migration and invasion. Additionally, the target relationship between OGFRP1 and miR-4731-5p or between miR-4731-5p and HIF3A was predicted by bioinformatics analysis and confirmed by dual-luciferase reporter assays. OGFRP1 and HIF3A expression were enhanced in choriocarcinoma cells, while miR-4731-5p expression was inhibited. Treatment with ropivacaine impeded choriocarcinoma cell viability, migration, and invasion. Choriocarcinoma cells treated with 1000 μM ropivacaine for 48 h were selected for subsequent experiments. OGFRP1 elevation or miR-4731-5p deficiency mitigated the reduction effect of ropivacaine on tumorigenesis of choriocarcinoma cells. Besides, miR-4731-5p was predicted as the potential OGFRP1 target by StarBase and LncBase, and HIF3A was predicted as the potential miR-4731-5p target by StarBase and TargetScan. Dual-luciferase reporter assays determined that miR-4731-5p was a target of OGFRP1 and HIF3A was a target of miR-4731-5p. Feedback experiments declared that miR-4731-5p elevation or HIF3A suppression reversed the promoting effect of OGFRP1 overexpression on the malignant behaviors of ropivacaine-treated choriocarcinoma cells. Ropivacaine constrained choriocarcinoma cell viability, migration, and invasion through modulating the OGFRP1/miR-4731-5p/HIF3A axis. Our study may provide a novel strategy for choriocarcinoma prevention and treatment.
Collapse
Affiliation(s)
- Yaojun Lu
- Department of Anaesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, No. 128, Shenyang Road, Shanghai City, 200090, China
| | - Chen Yang
- Department of Anaesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, No. 128, Shenyang Road, Shanghai City, 200090, China
| | - Le Zhang
- Department of Anaesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, No. 128, Shenyang Road, Shanghai City, 200090, China
| | - Juan Ding
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai City, 200032, China.
| |
Collapse
|
3
|
LINC01342 silencing upregulates microRNA-508-5p to inhibit progression of lung cancer by reducing cysteine-rich secretory protein 3. Cell Death Discov 2021; 7:238. [PMID: 34504061 PMCID: PMC8429695 DOI: 10.1038/s41420-021-00613-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are critical players during cancer progression. Nevertheless, the effect of most lncRNAs in lung cancer (LC) remains unclear. We aimed to explore the role of LINC01342 in LC development through the microRNA-508-5p (miR-508-5p)/cysteine-rich secretory protein 3 (CRISP3) axis. LINC01342, miR-508-5p, and CRISP3 expression in clinical samples and cell lines were determined, and their correlations in LC were analyzed. The prognostic role of LINC01342 in LC patients was evaluated. LC cells were screened and, respectively, transfected to alter the expression of LINC01342, miR-508-5p, and CRISP3. Then, proliferation, migration, invasion, and apoptosis of transfected LC cells were determined, and the in vivo tumor growth was observed as well. Binding relationships between LINC01342 and miR-508-5p, and between miR-508-5p and CRISP3 were identified. LINC01342 and CRISP3 were upregulated and miR-508-5p was downregulated in LC tissues and cells. High LINC01342 expression indicated a poor prognosis of LC patients. The LINC01342/CRISP3 silencing or miR-508-5p elevation inhibited proliferation, migration, and invasion of LC cells and promoted LC cell apoptosis, and also suppressed the in vivo tumor growth. LINC01342 bound to miR-508-5p and miR-508-5p targeted CRISP3. LINC01342 plays a prognostic role in LC and LINC01342 silencing upregulates miR-508-5p to inhibit the progression of LC by reducing CRISP3.
Collapse
|
4
|
lncRNA HEIH accelerates cell proliferation and inhibits cell senescence by targeting miR-3619-5p/CTTNBP2 axis in ovarian cancer. ACTA ACUST UNITED AC 2021; 27:1302-1314. [PMID: 33110047 DOI: 10.1097/gme.0000000000001655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Epithelial ovarian cancer is the most lethal malignancy in gynecology. Numerous studies have confirmed that long noncoding RNAs (lncRNAs) are abnormally expressed in ovarian cancer and are closely associated with the cell proliferation and senescence in cancers. However, the role and underlying molecular mechanism of long noncoding RNA high expression in hepatocellular carcinoma (HEIH) in ovarian cancer remain unknown. METHODS Experiments including Real-time quantitative polymerase chain reaction, RNA immunoprecipitation, luciferase reporter, Fluorescence in situ hybridization, western blot, colony formation assays, β-galactosidase senescence assay, cell apoptosis, proliferation, invasion, and migration assays were applied to investigate the role of HEIH in ovarian cancer. The data were expressed as the mean ± standard deviation. Student t test was used to compare the data between two groups. The one-way analysis of variance was applied to compare the data among multiple groups with Tukey post hoc test. All experiments were repeated three times. P < 0.05 was considered statistically significant. RESULTS Herein, HEIH expression was found to be up-regulated in ovarian cancer tissues (n = 25; twofold higher than normal tissues, P < 0.05) and cell lines (sixfold higher than normal ovarian epithelial cell line on average, P < 0.05), and high HEIH expression predicted poor prognosis (survival rate is about 25% after 40 mo; P < 0.05). Moreover, we found that HEIH accelerated proliferation, migration, and invasion, whereas inhibited cell senescence in ovarian cancer (P < 0.05). In mechanism, HEIH was confirmed to serve as a sponge for miR-3619-5p, and miR-3619-5p counteracted HEIH-mediated regulation of ovarian cancer (P < 0.05). Besides, cortactin-binding protein 2 (CTTNBP2) was found to be the downstream target of miR-3619-5p. Rescue assays validated that CTTNBP2 up-regulation significantly reversed the inhibitory effects of HEIH knockdown on ovarian cancer progression (P < 0.05). Furthermore, we found that HEIH facilitated tumor growth in vivo by regulating CTTNBP2 expression (P < 0.05). CONCLUSIONS In conclusion, our research revealed that HEIH accelerated cell proliferation, migration and invasion, whereas inhibited cell senescence in ovarian cancer via targeting the miR-3619-5p/CTTNBP2 axis. These findings may be valuable for finding new therapeutic targets to improve ovarian cancer treatment.
Collapse
|
5
|
Zhang J, An L, Zhou X, Shi R, Wang H. Analysis of tumor mutation burden combined with immune infiltrates in endometrial cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:551. [PMID: 33987249 PMCID: PMC8105813 DOI: 10.21037/atm-20-6049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/03/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Tumor mutational burden (TMB) is widely regarded as a predictor of response to immunotherapy. Few researchers have focused on the activity and prognosis of TMB in endometrial cancer (EC) and immune cells. Our study aimed to identify the prognostic role of TMB in EC. METHODS We downloaded transcriptome data from The Cancer Genome Atlas (TCGA) database. Kaplan-Meier analysis with log-rank test was conducted to assess the difference in overall survival (OS) between the high and low TMB groups. The "CIBERSORT" scripts were performed to evaluate the immune compositions of EC patients. Cox regression analysis and survival analysis were used to verify the prognostic value prognosis of TMB. RESULTS We obtained the single nucleotide mutation data for 529 EC patients. A missense mutation was the most common mutation type. TMB was associated with survival outcome, tumor grades, and pathological types. We identified 10 hub TMB-related signature and found that elevated T-cell subsets infiltrating density in the high TMB group revealed improved survival outcomes. According to Kaplan-Meier analysis, T cells gamma delta and T cells regulatory were prognostic immune cells in EC samples. Moreover, many top gene set enrichment analysis (GSEA) results, including amino sugar and nucleotide sugar metabolism, nucleotide excision repair, or p53 signaling pathway, were enriched significantly with TMB level as phenotype. CONCLUSIONS TMB is an important prognostic factor for EC, and TMB-related genes may be potential therapeutic targets for EC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lanfen An
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Knockdown of MALAT1 Inhibits the Progression of Chronic Periodontitis via Targeting miR-769-5p/HIF3A Axis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8899863. [PMID: 33604388 PMCID: PMC7870306 DOI: 10.1155/2021/8899863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 01/11/2023]
Abstract
Purpose Chronic periodontitis (CP) is a long-lasting inflammatory disease that seriously affects oral health. This study is aimed at investigating the regulatory mechanism of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in CP. Methods Primary human periodontal ligament cells (PDLCs) were treated with P. gingivalis lipopolysaccharide (LPS) to establish a CP model. Quantitative real-time PCR (qRT-PCR) was used to measure the expression of MALAT1 and miR-769-5p in gingival tissues of patients with CP and LPS-treated PDLCs. Cell viability was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of inflammatory cytokines. The protein levels of caspase-3, Bax, Bcl-2, and hypoxia-inducible factor (HIF) 3A were determined by western blot assay. Dual-luciferase reporter (DLR) assay was applied to validate the target relationships between miR-769-5p and MALAT1/HIF3A. Results The expression of MALAT1 and HIF3A was enhanced, and the expression of miR-769-5p was reduced in gingival tissues of patients with CP and LPS-treated PDLCs. MALAT1 knockdown promoted cell viability and inhibited inflammation and cell apoptosis in LPS-treated PDLCs. MALAT1 targeted miR-769-5p and negatively regulated miR-769-5p expression. miR-769-5p overexpression promoted cell viability and inhibited inflammation and cell apoptosis in LPS-treated PDLCs. Besides, miR-769-5p targeted HIF3A and negatively modulated HIF3A expression. Both miR-769-5p inhibition and HIF3A overexpression reversed the inhibitory effects of MALAT1 silencing on LPS-induced PDLC injury in vitro. Conclusion MALAT1 knockdown attenuated LPS-induced PDLC injury via regulating the miR-769-5p/HIF3A axis, which may supply a new target for CP treatment.
Collapse
|