1
|
Ou Z, Cheng Y, Ma H, Chen K, Lin Q, Chen J, Guo R, Huang Z, Cheng Q, Alaeiilkhchi N, Zhu Q, Huang Z, Jiang H. miR-223 accelerates lipid droplets clearance in microglia following spinal cord injury by upregulating ABCA1. J Transl Med 2024; 22:659. [PMID: 39010173 PMCID: PMC11247820 DOI: 10.1186/s12967-024-05480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is characterized by extensive demyelination and inflammatory responses. Facilitating the clearance of lipid droplets (LDs) within microglia contributes to creating a microenvironment that favors neural recovery and provides essential materials for subsequent remyelination. Therefore, investigating MicroRNAs (miRNAs) that regulate lipid homeostasis after SCI and elucidating their potential mechanisms in promoting LDs clearance in microglia have become focal points of SCI research. METHODS We established a subacute C5 hemicontusion SCI model in mice and performed transcriptomic sequencing on the injury epicenter to identify differentially expressed genes and associated pathways. Confocal imaging was employed to observe LDs accumulation. Multi-omics analyses were conducted to identify differentially expressed mRNA and miRNA post-SCI. Pathway enrichment analysis and protein-protein interaction network construction were performed using bioinformatics methods, revealing miR-223-Abca1 as a crucial miRNA-mRNA pair in lipid metabolism regulation. BV2 microglia cell lines overexpressing miR-223 were engineered, and immunofluorescence staining, western blot, and other techniques were employed to assess LDs accumulation, relevant targets, and inflammatory factor expression, confirming its role in regulating lipid homeostasis in microglia. RESULTS Histopathological results of our hemicontusion SCI model confirmed LDs aggregation at the injury epicenter, predominantly within microglia. Our transcriptomic analysis during the subacute phase of SCI in mice implicated ATP-binding cassette transporter A1 (Abca1) as a pivotal gene in lipid homeostasis, cholesterol efflux and microglial activation. Integrative mRNA-miRNA multi-omics analysis highlighted the crucial role of miR-223 in the neuroinflammation process following SCI, potentially through the regulation of lipid metabolism via Abca1. In vitro experiments using BV2 cells overexpressing miR-223 demonstrated that elevated levels of miR-223 enhance ABCA1 expression in myelin debris and LPS-induced BV2 cells. This promotes myelin debris degradation and LDs clearance, and induces a shift toward an anti-inflammatory M2 phenotype. CONCLUSIONS In summary, our study unveils the critical regulatory role of miR-223 in lipid homeostasis following SCI. The mechanism by which this occurs involves the upregulation of ABCA1 expression, which facilitates LDs clearance and myelin debris degradation, consequently alleviating the lipid burden, and inhibiting inflammatory polarization of microglia. These findings suggest that strategies to enhance miR-223 expression and target ABCA1, thereby augmenting LDs clearance, may emerge as appealing new clinical targets for SCI treatment.
Collapse
Affiliation(s)
- Zhilin Ou
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yongquan Cheng
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hao Ma
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kai Chen
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiong Lin
- School of Anesthesiology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiayu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ruqin Guo
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qixian Cheng
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Nima Alaeiilkhchi
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, Vancouver, Canada
| | - Qingan Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zucheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Hui Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
2
|
Li Z, Guo Z, Xiao H, Chen X, Liu W, Zhou H. Simulating neuronal development: exploring potential mechanisms for central nervous system metastasis in acute lymphoblastic leukemia. Front Oncol 2024; 13:1331802. [PMID: 38239636 PMCID: PMC10794646 DOI: 10.3389/fonc.2023.1331802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is prone to metastasize to the central nervous system (CNS), which is an important cause of poor treatment outcomes and unfavorable prognosis. However, the pathogenesis of CNS metastasis of ALL cells has not been fully illuminated. Recent reports have shed some light on the correlation between neural mechanisms and ALL CNS metastasis. These progressions prompt us to study the relationship between ALL central nervous system metastasis and neuronal development, exploring potential biomarkers and therapeutic targets of CNS metastasis. Materials and methods ALL central nervous system metastasis- and neuronal development-related differentially expressed genes (DEGs) were identified by analyzing gene expression datasets GSE60926 and GSE13715. Target prediction and network analysis methods were applied to assess protein-protein interaction networks. Gene Ontology (GO) terms and pathway enrichment for DEGs were assessed. Co-expressed differentially expressed genes (co-DEGs) coupled with corresponding predicted microRNAs (miRNAs) were studied as well. Reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry were employed for the validation of key co-DEGs in primary ALL cells. Furthermore, ALL cells were treated with a vascular endothelial growth factor (VEGF) inhibitor to block neuronal development and assess changes in the co-DEGs. Results We identified 216, 208, and 204 DEGs in ALL CNS metastasis specimens and neuronal development samples (GSE60926 and GSE13715). CD2, CD3G, CD3D, and LCK may be implicated in ALL CNS metastasis. LAMB1, MATN3, IGFBP3, LGALS1, and NEUROD1 may be associated with neuronal development. Specifically, four co-DEGs (LGALS1, TMEM71, SHISA2, and S100A11) may link ALL central nervous system metastasis and neuronal development process. The miRNAs for each co-DEG could be potential biomarkers or therapeutic targets for ALL central nervous system metastasis, especially hsa-miR-22-3p, hsa-miR-548t-5p, and hsa-miR-6134. Additionally, four co-DEGs (LGALS1, TMEM71, SHISA2, and S100A11) were validated in CNS-infiltrated ALL cells. The VEGF inhibitor demonstrated a suppressive effect on mRNA and protein expression of key co-DEGs. Conclusion The bioinformatic survey and key gene validation suggest a possible correlation between ALL CNS metastasis and the neuronal development process. Simulating the neuronal development process might be a possible strategy for CNS metastasis in ALL. LGALS1, TMEM71, SHISA2, and S100A11 genes are promising and novel biomarkers and targets in ALL CNS metastasis.
Collapse
Affiliation(s)
- Ziping Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Haitao Xiao
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuexing Chen
- Institute of Hematology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Wei Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, Yuan Y, Wang C. Macrophage polarization in spinal cord injury repair and the possible role of microRNAs: A review. Heliyon 2023; 9:e22914. [PMID: 38125535 PMCID: PMC10731087 DOI: 10.1016/j.heliyon.2023.e22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The prevention, treatment, and rehabilitation of spinal cord injury (SCI) have always posed significant medical challenges. After mechanical injury, disturbances in microcirculation, edema formation, and the generation of free radicals lead to additional damage, impeding effective repair processes and potentially exacerbating further dysfunction. In this context, inflammatory responses, especially the activation of macrophages, play a pivotal role. Different phenotypes of macrophages have distinct effects on inflammation. Activation of classical macrophage cells (M1) promotes inflammation, while activation of alternative macrophage cells (M2) inhibits inflammation. The polarization of macrophages is crucial for disease healing. A non-coding RNA, known as microRNA (miRNA), governs the polarization of macrophages, thereby reducing inflammation following SCI and facilitating functional recovery. This study elucidates the inflammatory response to SCI, focusing on the infiltration of immune cells, specifically macrophages. It examines their phenotype and provides an explanation of their polarization mechanisms. Finally, this paper introduces several well-known miRNAs that contribute to macrophage polarization following SCI, including miR-155, miR-130a, and miR-27 for M1 polarization, as well as miR-22, miR-146a, miR-21, miR-124, miR-223, miR-93, miR-132, and miR-34a for M2 polarization. The emphasis is placed on their potential therapeutic role in SCI by modulating macrophage polarization, as well as the present developments and obstacles of miRNA clinical therapy.
Collapse
Affiliation(s)
- Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Feng Tian
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Ruochen Du
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Jiahui Tong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Xueting Ding
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Yitong Yuan
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Chunfang Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| |
Collapse
|
4
|
Vogt M, Unnikrishnan MK, Heinig N, Schumann U, Schmidt MHH, Barth K. c-Cbl Regulates Murine Subventricular Zone-Derived Neural Progenitor Cells in Dependence of the Epidermal Growth Factor Receptor. Cells 2023; 12:2400. [PMID: 37830613 PMCID: PMC10572332 DOI: 10.3390/cells12192400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
The localization, expression, and physiological role of regulatory proteins in the neurogenic niches of the brain is fundamental to our understanding of adult neurogenesis. This study explores the expression and role of the E3-ubiquitin ligase, c-Cbl, in neurogenesis within the subventricular zone (SVZ) of mice. In vitro neurosphere assays and in vivo analyses were performed in specific c-Cbl knock-out lines to unravel c-Cbl's role in receptor tyrosine kinase signaling, including the epidermal growth factor receptor (EGFR) pathway. Our findings suggest that c-Cbl is significantly expressed within EGFR-expressing cells, playing a pivotal role in neural stem cell proliferation and differentiation. However, c-Cbl's function extends beyond EGFR signaling, as its loss upon knock-out stimulated progenitor cell proliferation in neurosphere cultures. Yet, this effect was not detected in hippocampal progenitor cells, reflecting the lack of the EGFR in the hippocampus. In vivo, c-Cbl exerted only a minor proneurogenic influence with no measurable impact on the formation of adult-born neurons. In conclusion, c-Cbl regulates neural stem cells in the subventricular zone via the EGFR pathway but, likely, its loss is compensated by other signaling modules in vivo.
Collapse
|
5
|
Chen N, Wang YL, Sun HF, Wang ZY, Zhang Q, Fan FY, Ma YC, Liu FX, Zhang YK. Potential regulatory effects of stem cell exosomes on inflammatory response in ischemic stroke treatment. World J Stem Cells 2023; 15:561-575. [PMID: 37424949 PMCID: PMC10324506 DOI: 10.4252/wjsc.v15.i6.561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 06/26/2023] Open
Abstract
The high incidence and disability rates of stroke pose a heavy burden on society. Inflammation is a significant pathological reaction that occurs after an ischemic stroke. Currently, therapeutic methods, except for intravenous thrombolysis and vascular thrombectomy, have limited time windows. Mesenchymal stem cells (MSCs) can migrate, differentiate, and inhibit inflammatory immune responses. Exosomes (Exos), which are secretory vesicles, have the characteristics of the cells from which they are derived, making them attractive targets for research in recent years. MSC-derived exosomes can attenuate the inflammatory response caused by cerebral stroke by modulating damage-associated molecular patterns. In this review, research on the inflammatory response mechanisms associated with Exos therapy after an ischemic injury is discussed to provide a new approach to clinical treatment.
Collapse
Affiliation(s)
- Na Chen
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Yan-Lin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hui-Fang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhuo-Ya Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qi Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Fei-Yan Fan
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Yu-Cheng Ma
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Fei-Xiang Liu
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Yun-Ke Zhang
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou 450008, Henan Province, China
| |
Collapse
|
6
|
Yuan W, Liu W, Zhan X, Zhou Y, Ma R, Liang S, Wang T, Ge Z. Inhibition of miR-221-3p promotes axonal regeneration and repair of primary sensory neurons via regulating p27 expression. Neuroreport 2023; 34:471-484. [PMID: 37161985 PMCID: PMC10292576 DOI: 10.1097/wnr.0000000000001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
This study aimed to explore the key microRNA (miRNA) playing a vital role in axonal regeneration with a hostile microenvironment after spinal cord injury. Based on the theory that sciatic nerve conditioning injury (SNCI) could promote the repair of the injured dorsal column. Differentially expressed miRNAs were screened according to the microarray, revealing that 47 known miRNAs were differentially expressed after injury and perhaps involved in nerve regeneration. Among the 47 miRNAs, the expression of miR-221-3p decreased sharply in the SNCI group compared with the simple dorsal column lesion (SDCL) group. Subsequently, it was confirmed that p27 was the target gene of miR-221-3p from luciferase reporter assay. Further, we found that inhibition of miR-221-3p expression could specifically target p27 to upregulate the expression of growth-associated protein 43 (GAP-43), α-tubulin acetyltransferase (α-TAT1) together with α-tubulin, and advance the regeneration of dorsal root ganglion (DRG) neuronal axons. Chondroitin sulfate proteoglycans (CSPGs) are the main components of glial scar, which can hinder the extension and growth of damaged neuronal axons. After CSPGs were used in this study, the results demonstrated that restrained miR-221-3p expression also via p27 promoted the upregulation of GAP-43, α-TAT1, and α-tubulin and enhanced the axonal growth of DRG neurons. Hence, miR-221-3p could contribute significantly to the regeneration of DRG neurons by specifically regulating p27 in the p27/CDK2/GAP-43 and p27/α-TAT1/α-tubulin pathways even in the inhibitory environment with CSPGs.
Collapse
Affiliation(s)
- Wenqi Yuan
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Wei Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region
| | - Xuehua Zhan
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Yueyong Zhou
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region
| | - Rong Ma
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Simin Liang
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Tianyi Wang
- Department of Spine Surgery, 981st Hospital of the Chinese People’s Liberation Army Joint Logistics Support Force, Chengde, China
| | - Zhaohui Ge
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| |
Collapse
|
7
|
Han T, Song P, Wu Z, Wang C, Liu Y, Ying W, Li K, Shen C. Inflammatory stimulation of astrocytes affects the expression of miRNA-22-3p within NSCs-EVs regulating remyelination by targeting KDM3A. Stem Cell Res Ther 2023; 14:52. [PMID: 36959678 PMCID: PMC10035185 DOI: 10.1186/s13287-023-03284-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Endogenous neural stem cells (NSCs) are critical for the remyelination of axons following spinal cord injury (SCI). Cell-cell communication plays a key role in the regulation of the differentiation of NSCs. Astrocytes act as immune cells that encounter early inflammation, forming a glial barrier to prevent the spread of destructive inflammation following SCI. In addition, the cytokines released from astrocytes participate in the regulation of the differentiation of NSCs. The aim of this study was to investigate the effects of cytokines released from inflammation-stimulated astrocytes on the differentiation of NSCs following SCI and to explore the influence of these cytokines on NSC-NSC communication. RESULTS Lipopolysaccharide stimulation of astrocytes increased bone morphogenetic protein 2 (BMP2) release, which not only promoted the differentiation of NSCs into astrocytes and inhibited axon remyelination in SCI lesions but also enriched miRNA-22-3p within extracellular vesicles derived from NSCs. These miRNA-22 molecules function as a feedback loop to promote NSC differentiation into oligodendrocytes and the remyelination of axons following SCI by targeting KDM3A. CONCLUSIONS This study revealed that by releasing BMP2, astrocytes were able to regulate the differentiation of NSCs and NSC-NSC communication by enriching miRNA-22 within NSC-EVs, which in turn promoted the regeneration and remyelination of axons by targeting the KDM3A/TGF-beta axis and the recovery of neurological outcomes following SCI.
Collapse
Affiliation(s)
- Tianyu Han
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Peiwen Song
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Zuomeng Wu
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Cancan Wang
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Yunlei Liu
- Department of Clinical Laboratory, No.2 People's Hospital of Fuyang, Fuyang city, China
| | - Wang Ying
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei city, China
| | - Kaixuan Li
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Cailiang Shen
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China.
| |
Collapse
|
8
|
Cui S, Chen Y, Guo Y, Wang X, Chen D. Hsa-miR-22-3p inhibits liver cancer cell EMT and cell migration/ invasion by indirectly regulating SPRY2. PLoS One 2023; 18:e0281536. [PMID: 36749775 PMCID: PMC9904474 DOI: 10.1371/journal.pone.0281536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The general mechanism for microRNAs to play biological function is through their inhibition on the expression of their target genes. In cancer, microRNAs may accelerate cell senescence, block angiogenesis, decrease energy supplies, repress tumor cell cycle and promote apoptosis to function as the tumor repressors. On the other hand, microRNAs can modulate tumor suppressor molecules to activate oncogene relevant signaling pathway to initiate tumorigenesis and promote tumor progression. By targeting different genes, miR-22 can function as either a tumor suppressor or a tumor promoter in different types of cancer. In liver cancer, miR-22 mainly functions as a tumor suppressor via its regulation on different genes. In this study, we demonstrated that miR-22 indirectly regulates SPRY2 by inhibiting CBL, an E3 ligase for SPRY2 that has been confirmed. As one of the modulators of the MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated kinase) signaling pathway, SPRY2 plays important roles in many developmental and physiological processes, and its deregulation has been reported in different types of cancer and shown to affect cancer development, progression, and metastasis. By inhibiting the expression of CBL, which stabilizes SPRY2, miR-22 indirectly upregulates SPRY2, thereby suppressing the epithelial-mesenchymal transition (EMT), cell migration, and invasion and decreasing the expression of liver cancer stem cell (CSC) marker genes. The inhibitory effects of miR-22 on EMT, cell migration, and invasion can be blocked by the knockdown of SPRY2 expression in miR-22 overexpressing cells. Additionally, we demonstrated that miR-22 expression inhibits the ERK signaling pathway and that this effect is due to its upregulation of SPRY2. Overall, our study revealed a novel miR-22-3p/CBL/SPRY2/ERK axis that plays an important role in EMT, cell migration, and invasion of liver cancer cells.
Collapse
Affiliation(s)
- Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuanyuan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yunfei Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xing Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Dahu Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- * E-mail:
| |
Collapse
|
9
|
YB-1 Expression Is Associated with Lymph Node Metastasis and Drug Resistance to Adriamycin in Breast Cancer. DISEASE MARKERS 2023; 2023:4667089. [PMID: 36785738 PMCID: PMC9922184 DOI: 10.1155/2023/4667089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023]
Abstract
Background Breast cancer (BC) is the most common malignant tumor among females. Although there are multiple treatments for breast cancer, many patients still face the dilemma of drug resistance after multiline treatment. It would be greatly helpful for clinical work to identify additional and improved prognostic predictors. Y-box binding protein-1 (YB-1) is a member of the cold shock protein family, and patients with overexpression of YB-1 have a worse prognosis. Methods This study collected 48 specimens from 48 patients with breast cancer and analyzed the clinicopathological characteristics of the patients. Immunohistochemistry, immunofluorescence, cell viability analysis, tumor spheroid formation and cell morphology, cell invasion, cycle analysis, qRT-PCR, Western blot, and tumorigenicity in BALB/c nude mice were performed to verify the results. Results We found that patients with overexpression of YB-1 were related to lymph node metastasis and the patients' age tended to be young. Because of the short follow-up time, a survival analysis could not be performed. Based on the results of in vitro and in vivo experiments, this study indicated that breast cancer cells with overexpression of YB-1 had stronger proliferation, migration, and invasion abilities than cells with low expression of YB-1. Compared with cells with low expression of YB-1, the proliferation, migration, and invasion abilities of YB-1 overexpressed cells were not significantly affected by adriamycin. Conclusion This suggested that breast cancer cells with overexpression of YB-1 were resistant to adriamycin. Therefore, YB-1 is associated with lymph node metastasis of breast cancer cell. YB-1 could be a prognostic, predictive factor and a novel therapeutic target of BC.
Collapse
|
10
|
The Effects of circ_000558/miR-1225-5p/ARL4C on Regulating the Proliferation of Renal Cell Carcinoma Cells. JOURNAL OF ONCOLOGY 2023; 2023:1303748. [PMID: 36778920 PMCID: PMC9911241 DOI: 10.1155/2023/1303748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023]
Abstract
Renal cell carcinoma (RCC) is one of the top ten tumors over the world. RCC is not sensitive to radiotherapy and chemotherapy. Therefore, it is necessary to find new targets for the treatment. CircRNAs are a special type of noncoding RNAs, which play important roles in many types of cancer. In this study, we found circ_000558 was upregulated in RCC cells, and it elevated the proliferation ability of RCC cells. The relationship between miR-1225-5p and circ_000558 or ARL4C was predicted via circBank and circular RNA interactome and confirmed by dual-luciferase reporter assay. Then, the effects of circ_000558/miR-1225-5p/ARL4C on RCC cell proliferation and apoptosis were assessed by CCK-8 assay. The results revealed that the knockdown of ARL4C significantly reduced RCC cell proliferation and overexpression of circ_000558 could significantly induce RCC cell proliferation after miR-1225-5p treatment further promoted the inhibitory ability of ARL4C knockdown. Overall, our study suggested that circ_000558/miR-1225-5p/ARL4C network was related to the RCC cell proliferation. This finding could provide new targets for the treatment and prognosis of RCC.
Collapse
|
11
|
Peng Z, Xiong J, Dong H. Valproic Acid Inhibits Peripheral T Cell Lymphoma Cells Behaviors via Restraining PI3K/AKT Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7350489. [PMID: 35966721 PMCID: PMC9374556 DOI: 10.1155/2022/7350489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Objective Alproic acid (VPA) is a clinic antiepileptic drug. Antitumor role of VPA has been studied. The aim of this study was to clarify the treatment effect and potential mechanism of VPA on peripheral T cell lymphomas (PTCLs). Materials and Methods Hut 78 cells were obtained from the Shanghai Cell Bank, Chinese Academy of Sciences, and randomly divided into six groups: control, VPA (8 mM), empty vector (NC), miR-3196 mimics, miR-3196 inhibitor, and VPA + miR-3196 mimics groups. CCK-8 assay was performed to clarify the regulative role of VPA on cell proliferation. Flow cytometry was applied to determine the apoptotic rate and ROS levels. miR-3196 was tested by RT-qPCR. Western blot was used to test the level of p-PI3K and p-AKT. Biochemical experiments were used to detect changes in the content of ATP, lactate level, and glucose content. Electron microscopy was used to show the structure of mitochondria in Hut 78 cells. Results VPA greatly promoted the expression of miR-3196 and inhibited cell proliferation in a dose-dependent manner. Compared with the NC group, the cell apoptosis rate, Bax and cleaved-caspase-3 expression, lactate level, ROS expression, and glucose content in the VPA group were significantly increased (P < 0.05), and cell proliferation, ATP production, and the expression of Bcl-2, p-PI3K and p-AKT was decreased significantly (P < 0.05). The role of mir-3196 mimics is similar to VPA. While, the miR-3196 inhibitor had the opposite effect to VPA and mimics. The combination of VPA and miR-3196 mimics has the most obvious effect. Conclusion VPA can inhibit the proliferation of Hut 78 cells and promote cell apoptosis and the structure and dysfunction of mitochondria by regulating the activity of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Zhiqiang Peng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Department of Lymphatic Hematology and Oncology, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hanzhi Dong
- General Department of Oncology, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, China
| |
Collapse
|
12
|
Ma H, Duan X, Zhang R, Li H, Guo Y, Tian Y, Huang M, Chen G, Wang Z, Li L. Loureirin A Exerts Antikeloid Activity by Antagonizing the TGF- β1/Smad Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8661288. [PMID: 35873644 PMCID: PMC9307331 DOI: 10.1155/2022/8661288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
It has been recently shown that loureirin A (LA), a major active component of resina draconis, might be effective in the prevention and treatment of liver fibrosis. We examined whether LA could inhibit the formation of keloids. To investigate the pharmacological effects of loureirin A on keloid formation and the underlying mechanisms. CellTiter-Blue viability assays were used to examine the proliferation of keloid fibroblasts (KFs) that were treated with LA. Fibroblast migration was evaluated using a cell migration assay. Immunofluorescence staining was used to measure the expression of α-SMA in KFs. RT-qPCR was used to evaluate the mRNA expression of Col-I, Col-III, α-SMA, Bax, and Caspase-3, while Western blotting was used to evaluate the protein expression of Col-I, Col-III, α-SMA, Bax, Caspase-3, p-Smad2, and p-Smad3. LA inhibited the proliferation of KFs and suppressed the migration and TGF-β1-induced myofibroblast differentiation of KFs. In addition, LA downregulated the mRNA and protein levels of Col-I, Col-III, and α-SMA while promoting the mRNA and protein levels of Bax and Caspase-3. Moreover, LA downregulated the protein levels of p-Smad2 and p-Smad3 in cultured TGF-β1-treated KFs ex vivo. These results show that LA has an antikeloid effect on KFs by suppressing the TGF-β1/Smad signalling pathway. Our findings suggest that LA may be a potential candidate drug for the prevention and treatment of keloids.
Collapse
Affiliation(s)
- Hui Ma
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Back Street, Art Museum, Dongcheng District, Beijing 100010, China
| | - Xingwu Duan
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| | - Runtian Zhang
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| | - Hang Li
- Department of Dermatology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Yang Guo
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| | - Ye Tian
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| | - Min Huang
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| | - Guangshan Chen
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| | - Zi Wang
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| | - Lingling Li
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| |
Collapse
|
13
|
MiRNAs as Promising Translational Strategies for Neuronal Repair and Regeneration in Spinal Cord Injury. Cells 2022; 11:cells11142177. [PMID: 35883621 PMCID: PMC9318426 DOI: 10.3390/cells11142177] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 12/10/2022] Open
Abstract
Spinal cord injury (SCI) represents a devastating injury to the central nervous system (CNS) that is responsible for impaired mobility and sensory function in SCI patients. The hallmarks of SCI include neuroinflammation, axonal degeneration, neuronal loss, and reactive gliosis. Current strategies, including stem cell transplantation, have not led to successful clinical therapy. MiRNAs are crucial for the differentiation of neural cell types during CNS development, as well as for pathological processes after neural injury including SCI. This makes them ideal candidates for therapy in this condition. Indeed, several studies have demonstrated the involvement of miRNAs that are expressed differently in CNS injury. In this context, the purpose of the review is to provide an overview of the pre-clinical evidence evaluating the use of miRNA therapy in SCI. Specifically, we have focused our attention on miRNAs that are widely associated with neuronal and axon regeneration. “MiRNA replacement therapy” aims to transfer miRNAs to diseased cells and improve targeting efficacy in the cells, and this new therapeutic tool could provide a promising technique to promote SCI repair and reduce functional deficits.
Collapse
|
14
|
Li J, Yao Y, Wang Y, Xu J, Zhao D, Liu M, Shi S, Lin Y. Modulation of the Crosstalk between Schwann Cells and Macrophages for Nerve Regeneration: A Therapeutic Strategy Based on a Multifunctional Tetrahedral Framework Nucleic Acids System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202513. [PMID: 35483031 DOI: 10.1002/adma.202202513] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/17/2022] [Indexed: 02/05/2023]
Abstract
Peripheral nerve injury (PNI) is currently recognized as one of the most significant public health issues and affects the general well-being of millions of individuals worldwide. Despite advances in nerve tissue engineering, nerve repair still cannot guarantee complete functional recovery. In the present study, an innovative approach is adopted to establish a multifunctional tetrahedral framework nucleic acids (tFNAs) system, denoted as MiDs, which can integrate the powerful programmability, permeability, and structural stability of tFNAs, with the nerve regeneration potential of microRNA-22 to enhance the communication between Schwann cells (SCs) and macrophages for more effective functional rehabilitation of peripheral nerves. Relevant results demonstrate that MiDs can amplify the ability of SCs to recruit macrophages and facilitate their polarization into the pro-healing M2 phenotype to reconstruct the post-injury microenvironment. Furthermore, MiDs can initiate the adaptive intracellular reprogramming of SCs within a short period to further promote axon regeneration and remyelination. MiDs represent a new possibility for enhancing nerve repair and may have critical clinical applications in the future.
Collapse
Affiliation(s)
- Jiajie Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yangxue Yao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yun Wang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Jiangshan Xu
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
15
|
Zeng X, Yu J, Zeng T, Liu Y, Li B. 3'-daidzein sulfonate protects myocardial cells from hypoxic-ischemic injury via the NRF2/HO-1 signaling pathway. J Thorac Dis 2022; 13:6897-6910. [PMID: 35070374 PMCID: PMC8743394 DOI: 10.21037/jtd-21-1909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
Background Myocardial infarction (MI) has a high mortality and disability rate and greatly affects human health. This study sought to explore the therapeutic effect and molecular mechanism of 3'-daidzein sulfonate (DSS) on MI. Methods A rat MI model was established and low and high doses of DSS were administered to the rats. An in vitro oxygen glucose deprivation model was used to verify the treatment role and mechanism of DSS. The establishment of the rat MI model was confirmed by electrocardiogram. The tissue changes were detected by HE, Masson’s trichrome, TUNEL and TTC staining. Cell viability was detected by CCK-8. The viable and dead cells were detected by Calcein-AM/PI. Apoptotic cells, ROS and JC-1 were detected by flow cytometry apoptosis. The level of proteins was detected by western blotting. MDA, SOD and GSH were detected by ELISA. Results The results of Hematoxylin and eosin, TUNEL, and Masson staining showed that the myocardial tissue of the MI group was repaired by DSS. The serum levels of cardiac troponin I (CTnI), lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and malondialdehyde (MDA) were decreased by DSS, while the serum levels of superoxide dismutase and glutathione were promoted by DSS. The treatment of DSS activated the Nuclear Factor Erythroid 2-Related Factor 2 (NRF-2)/Heme Oxygenase 1 (HO-1) pathway and inhibited the caspase-3 apoptosis pathway. The in vitro experiment showed that DSS greatly restored cell viability and reduced cell apoptosis. DSS also greatly inhibited mitochondrial membrane potential depolarization, reactive oxygen species production, and oxidative stress. The application of the NRF-2 inhibitor, C29H25N3O4S (ML385), greatly inhibited the treatment role of DSS and the NRF-2/HO-1 pathway, and activated the caspase-3 apoptosis pathway. Conclusions In conclusion, this study first identified the beneficial role of DSS in MI. DSS protected myocardial cells by activating the NRF-2/HO-1 pathway and inhibiting cell apoptosis. DSS could be used as a novel drug in the treatment of MI.
Collapse
Affiliation(s)
- Xueliang Zeng
- Department of pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junjian Yu
- Cardiovascular and Thoracic Surgery Department 2, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Taohui Zeng
- Department of pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yuan Liu
- Department of pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Bei Li
- Department of pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
16
|
Exosomal microRNA-22-3p alleviates cerebral ischemic injury by modulating KDM6B/BMP2/BMF axis. Stem Cell Res Ther 2021; 12:111. [PMID: 33546766 PMCID: PMC7863295 DOI: 10.1186/s13287-020-02091-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cerebral ischemia-reperfusion (I/R) injury, the most common form of stroke, has high mortality and often brings persistent and serious brain dysfunction among survivors. Administration of adipose-derived mesenchymal stem cells (ASCs) has been suggested to alleviate the I/R brain injury, but the mechanism remains uncharacterized. Here, we aimed at investigating the mechanism of ASCs and their extracellular vesicles (EVs) in the repair of or protection from I/R injury. Methods We established the middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation/reperfusion (OGD/RP) neuron model. ASCs or ASC-derived EVs (ASC-EVs) were co-cultured with neurons. RT-qPCR and Western blot analyses determined microRNA (miRNA)-22-3p, BMP2, BMF, and KDM6B expression in neurons upon treatment with ASC-EVs. Bioinformatics analysis predicted the binding between miR-22-3p and KDM6B. Using gain- and loss-of-function methods, we tested the impact of these molecules on I/R injury in vivo and in vitro. Results Treatment with ASCs and ASC-derived EVs significantly alleviated the I/R brain injury in vivo, elevated neuron viability in vitro, and decreased apoptosis. Interestingly, miR-22-3p was upregulated in ASC-EVs, and treatment with EV-miR-22-3p inhibitor led to increased apoptosis and decreased neuronal. Of note, miR-22-3p bound to and inhibited KDM6B, as demonstrated by dual-luciferase reporter gene assay and Western blot assay. Overexpression of KDM6B enhanced apoptosis of neurons in the OGD/RP model, and KDM6B bound to BMB2 and promoted its expression by binding to BMP2. Silencing of BMF reduced infarct volume and apoptosis in the stroke model. Conclusion Results support a conclusion that ASC-EV-derived miR-22-3p could alleviate brain ischemic injury by inhibiting KDM6B-mediated effects on the BMP2/BMF axis. These findings compelling indicate a novel treatment strategy for cerebral ischemic injury.
Collapse
|
17
|
Zhang H, Piao M, Guo M, Meng L, Yu H. MicroRNA-211-5p attenuates spinal cord injury via targeting of activating transcription factor 6. Tissue Cell 2021; 68:101459. [PMID: 33238217 DOI: 10.1016/j.tice.2020.101459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
The recovery of spinal cord injury (SCI) involves multiple factors, of which miRNAs take an important part. In this study, we evaluated the function of microRNA-211-5p (miR-211-5p) on SCI in a rat model. SCI model was established using modified Allen's weight-drop method and Basso-Bcattie-Bresnahan score was applied to assess the locomotor function. MiR-211-5p agomir was utilized to increase miR-211-5p expression and endoplasmic reticulum (ER) stress inhibitor, 4-PBA (4-phenylbutyric acid), was utilized to suppress ER stress. Neuron apoptosis and the expressions of miR-211-5p, activating transcription factor 6 (ATF6), apoptosis-related proteins, pro-inflammatory cytokines and endoplasmic reticulum stress-related proteins were detected. Dual luciferase reporter gene assay was performed to verify the binding between miR-211-5p and ATF6. The results showed that miR-211-5p directly targeted ATF6. MiR-211-5p was down-regulated and ATF6 was up-regulated in SCI rats. Both interferences with miR-211-5p agomir and 4-PBA effectively attenuated neuron apoptosis and reversed the expressions of apoptosis, inflammation and endoplasmic reticulum stress-related molecules post SCI in rats. These findings demonstrated that miR-211-5p could effectively alleviate SCI-induced neuron apoptosis and inflammation via directly targeting ATF-6 and regulating ER stress.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Meihui Piao
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Mingming Guo
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Lingzhi Meng
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Hailong Yu
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
18
|
Wang Y, Tao B, Li J, Mao X, He W, Chen Q. Melatonin Inhibits the Progression of Oral Squamous Cell Carcinoma via Inducing miR-25-5p Expression by Directly Targeting NEDD9. Front Oncol 2020; 10:543591. [PMID: 33344223 PMCID: PMC7738623 DOI: 10.3389/fonc.2020.543591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Melatonin exerts anti-cancer roles in various types of cancers. However, to the best of our knowledge, its role in oral squamous cell carcinoma (OSCC) is unknown. The present study aimed to investigate the role of melatonin and its underlying mechanism in OSCC. MTT, colony formation, wound healing, and transwell invasion assays proved that melatonin played anti-tumor effects in OSCC cells by inhibiting cell viability, proliferation, migration, and invasion in a concentration-dependent manner. The RT-qPCR analysis showed that miR-25-5p was significantly upregulated after melatonin treatment. Further, miR-25-5p might be involved in melatonin-induced inhibitory effects on the biological behavior of OSCC. The expression of miR-25-5p was decreased in tumor tissues and OSCC cells detected by RT-qPCR. MTT assay, colony formation assay, and TUNEL staining indicated miR-25-5p overexpression inhibited OSCC cell viability, proliferation, and induced OSCC cell apoptosis. Furthermore, wound healing, transwell invasion assay, and animal experiments suggested that miR-25-5p might exert suppressive effects on the migration, invasion, and tumor formation of OSCC cells, while miR-25-5p knockdown exhibited the opposite effects in OSCC cells. Bioinformatics analysis, western blot analysis, and luciferase reporter assay suggested that neural precursor cell expressed developmentally downregulated protein 9 (NEDD9) was proved to be a putative target for miR-25-5p. The role of NEDD9 in inhibiting OSCC cell proliferation, invasion, and migration was verified with NEDD9 siRNA transfection. Thus, melatonin exerted anti-proliferative, anti-invasive, and anti-migrative effects on OSCC via miR-25-5p/NEDD9 pathway. Melatonin could be applied as a potential novel drug on treating OSCC.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Stomatology, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Bo Tao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaying Li
- Huiqiao Medical Center, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Xiaoqun Mao
- Nursing Department, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qinbiao Chen
- Neurosurgery Department, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
19
|
Corrigendum. J Cell Physiol 2020; 235:10116. [PMID: 32989867 DOI: 10.1002/jcp.29734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|