1
|
Maghsoudloo M, Mokhtari K, Jamali B, Gholamzad A, Entezari M, Hashemi M, Fu J. Multifaceted role of TRIM28 in health and disease. MedComm (Beijing) 2024; 5:e790. [PMID: 39534556 PMCID: PMC11554878 DOI: 10.1002/mco2.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
The TRIM (tripartite motif) family, with TRIM28 as a key member, plays a vital role in regulating health and disease. TRIM28 contains various functional domains essential for transcriptional regulation, primarily through its interaction with KRAB-ZNF proteins, which influence chromatin remodeling and gene expression. Despite extensive research, the precise mechanisms by which TRIM28 impacts health and disease remain elusive. This review delves into TRIM28's multifaceted roles in maintaining health, contributing to a variety of diseases, and influencing cancer progression. In cancers, TRIM28 exhibits a dual nature, functioning as both a tumor promoter and suppressor depending on the cellular context and cancer type. The review also explores its critical involvement in processes such as DNA repair, cell cycle regulation, epithelial-to-mesenchymal transition, and the maintenance of stem cell properties. By uncovering TRIM28's complex roles across different cancers and other diseases, this review underscores its potential as a therapeutic target. The significance of TRIM28 as a versatile regulator opens the door to innovative therapeutic strategies, particularly in cancer treatment and the management of other diseases. Ongoing research into TRIM28 may yield key insights into disease progression and novel treatment options.
Collapse
Affiliation(s)
- Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Behdokht Jamali
- Department of Microbiology and GeneticKherad Institute of Higher EducationBusheherIran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
2
|
Wu T, Zhou H, Wang L, Tan J, Gao W, Wu Y, Zhao D, Shen C, Zheng B, Huang X, Shao B. TRIM59 is required for mouse GC-1 cell maintenance through modulating the ubiquitination of AXIN1. Heliyon 2024; 10:e36744. [PMID: 39263074 PMCID: PMC11387378 DOI: 10.1016/j.heliyon.2024.e36744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Tripartite motif-containing protein 59 (TRIM59) is a biomarker for multiple tumors with crucial roles. However, the specific role of TRIM59 in germ cells remains largely unknown. Here, we investigated the effects and underlying regulatory mechanisms of TRIM59 on germ cells using the mouse spermatogonial cell line GC-1. Our results demonstrated that TRIM59 promoted proliferation and inhibited apoptosis of GC-1 cells. Mechanistically, TRIM59 maintained GC-1 cell behaviors through ubiquitination of AXIN1 to activate β-catenin signaling. Furthermore, activation of β-catenin signaling reversed the effects mediated by Trim59 knockdown in GC-1 cells. Collectively, our study revealed a major role and regulatory mechanism of TRIM59 in GC-1 cells, which sheds new light on the molecular pathogenesis of defects in spermatogenesis and may provide therapeutic targets for treatment of male infertility.
Collapse
Affiliation(s)
- Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Lulu Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Jianxin Tan
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Wenxin Gao
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Dan Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Xiaoyan Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Binbin Shao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| |
Collapse
|
3
|
Liu Y, Jiang N, Chen W, Zhang W, Shen X, Jia B, Chen G. TRIM59-mediated ferroptosis enhances neuroblastoma development and chemosensitivity through p53 ubiquitination and degradation. Heliyon 2024; 10:e26014. [PMID: 38434050 PMCID: PMC10906161 DOI: 10.1016/j.heliyon.2024.e26014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Neuroblastoma, predominantly afflicting young individuals, is characterized as an embryonal tumor, with poor prognosis primarily attributed to chemoresistance. This study delved into the impact of tripartite motif (TRIM) 59, an E3 ligase, on neuroblastoma development and chemosensitivity through mediating ferroptosis and the involvement of the tumor suppressor p53. Clinical samples were assessed for TRIM59 and p53 levels to explore their correlation with neuroblastoma differentiation. In neuroblastoma cells, modulation of TRIM59 expression, either through overexpression or knockdown, was coupled with doxorubicin hydrochloride (DOX) or ferrostatin-1 (Fer-1) therapy. In vivo assessments examined the influence of TRIM59 knockdown on neuroblastoma chemosensitivity to DOX. Co-immunoprecipitation and ubiquitination assays investigated the association between TRIM59 and p53. Proliferation was gauged with Cell Counting Kit-8, lipid reactive oxygen species (ROS) were assessed via flow cytometry, and protein levels were determined by Western blotting. TRIM59 expression was inversely correlated with neuroblastoma differentiation and positively linked to cell proliferation in response to DOX. Moreover, TRIM59 impeded lipid ROS generation and ferroptosis by directly interacting with p53, promoting its ubiquitination and degradation in DOX-exposed neuroblastoma cells. Fer-1 countered the impact of TRIM59 knockdown on neuroblastoma, while TRIM59 knockdown enhanced the therapeutic efficacy of DOX in xenograph mice. This study underscores TRIM59 as an oncogene in neuroblastoma, fostering growth and chemoresistance by suppressing ferroptosis through p53 ubiquitination and degradation. TRIM59 emerges as a potential strategy for neuroblastoma therapy.
Collapse
Affiliation(s)
| | | | - Weicheng Chen
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Wenbo Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Xiao Shen
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Bing Jia
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Gang Chen
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| |
Collapse
|
4
|
Miao C, He X, Chen G, Kahlert UD, Yao C, Shi W, Su D, Hu L, Zhang Z. Seven oxidative stress-related genes predict the prognosis of hepatocellular carcinoma. Aging (Albany NY) 2023; 15:15050-15063. [PMID: 38097352 PMCID: PMC10781471 DOI: 10.18632/aging.205330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/06/2023] [Indexed: 01/07/2024]
Abstract
Predicting the prognosis of hepatocellular carcinoma (HCC) is a major medical challenge and of guiding significance for treatment. This study explored the actual relevance of RNA expression in predicting HCC prognosis. Cox's multiple regression was used to establish a risk score staging classification and to predict the HCC patients' prognosis on the basis of data in the Cancer Genome Atlas (TCGA). We screened seven gene biomarkers related to the prognosis of HCC from the perspective of oxidative stress, including Alpha-Enolase 1(ENO1), N-myc downstream-regulated gene 1 (NDRG1), nucleophosmin (NPM1), metallothionein-3, H2A histone family member X, Thioredoxin reductase 1 (TXNRD1) and interleukin 33 (IL-33). Among them we measured the expression of ENO1, NGDP1, NPM1, TXNRD1 and IL-33 to investigate the reliability of the multi-index prediction. The first four markers' expressions increased successively in the paracellular tissues, the hepatocellular carcinoma samples (from patients with better prognosis) and the hepatocellular carcinoma samples (from patients with poor prognosis), while IL-33 showed the opposite trend. The seven genes increased the sensitivity and specificity of the predictive model, resulting in a significant increase in overall confidence. Compared with the patients with higher-risk scores, the survival rates with lower-risk scores are significantly increased. Risk score is more accurate in predicting the prognosis HCC patients than other clinical factors. In conclusion, we use the Cox regression model to identify seven oxidative stress-related genes, investigate the reliability of the multi-index prediction, and develop a risk staging model for predicting the prognosis of HCC patients and guiding precise treatment strategy.
Collapse
Affiliation(s)
- Chen Miao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao He
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ulf D. Kahlert
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Chenchen Yao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Shi
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, China
- Department of Pathology and Clinical Laboratory, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Hu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Liu T, Chen J, Wu J, Du Q, Liu J, Tan S, Pan Y, Yao S. Role of the tripartite motif (TRIM) family in female genital neoplasms. Pathol Res Pract 2023; 250:154811. [PMID: 37713735 DOI: 10.1016/j.prp.2023.154811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The tripartite motif proteins (TRIMs) family represents a class of highly conservative proteins which play a large regulatory role in molecular processes. Recently, increasing evidence has demonstrated a role of TRIMs in female genital neoplasms. Our review thereby aimed to provide an overview of the biological involvement of TRIMs in female genital neoplasms, to provide a better understanding of its role in the development and progression of such diseases, and emphasize its potential as targeted cancer therapy. Overall, our review highlighted that the wide-ranging roles of TRIMs, in not only target protein ubiquitination, tumor migration and/or invasion, epithelial-mesenchymal transition, stemness, cell adhesion, proliferation, cell cycle regulation, and apoptosis, but also in influencing estrogenic, and chemotherapy response.
Collapse
Affiliation(s)
- Tianyu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Jian Chen
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jinjie Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Silu Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
7
|
Chen Y, Jiang L, Xia L, Zhang G, Chen L. ThPOK inhibits the immune escape of gastric cancer cells by inducing STPG1 to inactivate the ERK pathway. BMC Immunol 2022; 23:16. [PMID: 35379170 PMCID: PMC8981657 DOI: 10.1186/s12865-022-00485-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer is the second most frequently diagnosed cancer worldwide. Weak immunogenicity helps cancer cells escape from immune elimination and grow into predominant subpopulations. This study aimed to investigate the effect of Zinc finger and BTB domain containing 7B (Zbtb7b, Alias ThPOK) on T cell activation after coculture with gastric cancer cells. Methods Cell Counting Kit-8 assay (CCK-8) was performed to explore the viability of gastric cancer cells. Flow cytometry analysis was used to measure CD3+ T cell proliferation and the ratio of activated IFN-γ+ T cells which were co-incubated with gastric cancer cells (HGC-27, SNU-1). The binding between ThPOK and the promoter of its target sperm tail PG-rich repeat containing 1 (STPG1) was explored using ChIP and luciferase reporter assays. Relative gene expression was quantified using RT-qPCR. Results ThPOK was expressed at a low level in gastric cancer tissues and cells at mRNA and protein levels. Gastric cancer patients with lower ThPOK expression had poorer prognosis. ThPOK overexpression suppressed gastric cancer cell viability and increased T cell activation. ThPOK served as a transcription factor for STPG1. STPG1 expression was also at a low level in the tissues and cells of gastric cancer. ThPOK positively regulated the mRNA and protein levels of STPG1 in gastric cancer cells. Moreover, ThPOK was demonstrated to bind with STPG1 promoter. STPG1 upregulation also exerted inhibitory effects on gastric cancer cell viability and T cell activation. Additionally, ThPOK and STPG1 were revealed to inactivate the ERK pathway in gastric cancer cells. Conclusion ThPOK inhibits gastric cancer cell viability and increases T cell activation by inducing STPG1 to inactivate the ERK pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00485-5.
Collapse
Affiliation(s)
- Ying Chen
- Department of Gastroenterology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, 168 Hongkong Road, Jiang'an District, Wuhan, 430015, Hubei, China
| | - Lili Jiang
- Department of Gastroenterology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, 168 Hongkong Road, Jiang'an District, Wuhan, 430015, Hubei, China
| | - Lingli Xia
- Department of Gastroenterology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, 168 Hongkong Road, Jiang'an District, Wuhan, 430015, Hubei, China
| | - Gang Zhang
- Department of Gastroenterology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, 168 Hongkong Road, Jiang'an District, Wuhan, 430015, Hubei, China
| | - Lan Chen
- Department of Gastroenterology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, 168 Hongkong Road, Jiang'an District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
8
|
Xu G, Ma Z, Yang F, Bai Y, Li J, Luo W, Zhong J. TRIM59 promotes osteosarcoma progression via activation of STAT3. Hum Cell 2021; 35:250-259. [PMID: 34625908 DOI: 10.1007/s13577-021-00615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Osteosarcoma (OS) is a common, highly malignant bone tumor. Tripartite motif-containing protein 59 (TRIM59) has been identified as a potential oncogenic protein involved in the initiation and progression of various human carcinomas. Nonetheless, the possible roles and molecular mechanisms of action of TRIM59 in OS remain unclear. In this study, we found that TRIM59 expression levels were frequently upregulated in OS tissues and cell lines. TRIM59 knockdown significantly suppressed the proliferation, migration, and invasion of OS cells and promoted OS cell apoptosis, whereas TRIM59 overexpression had the opposite effects. In vivo experiments demonstrated that TRIM59 knockdown suppressed OS tumor growth and metastasis in vivo. Furthermore, we found that TRIM59 directly interacted with phospho-STAT3 in OS cells. The downregulation of STAT3 levels attenuated TRIM59-induced cell proliferation and invasion. Taken together, our results indicate that TRIM59 promoted OS progression via STAT3 activation. Therefore, our study may provide a novel therapeutic target for OS.
Collapse
Affiliation(s)
- Guoxing Xu
- Department of Orthopaedics, Jiading District Anting Hospital of Shanghai, Shanghai, 201805, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Fei Yang
- Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Yanqiang Bai
- Department of Orthopaedics, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan, 250013, Shandong, China
| | - Jian Li
- Department of Orthopaedics, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan, 250013, Shandong, China
| | - Wanglin Luo
- Department of Orthopaedics, Jiading District Anting Hospital of Shanghai, Shanghai, 201805, China
| | - Jiangbo Zhong
- Department of Orthopaedics, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan, 250013, Shandong, China.
| |
Collapse
|
9
|
Zhao G, Liu C, Wen X, Luan G, Xie L, Guo X. The translational values of TRIM family in pan-cancers: From functions and mechanisms to clinics. Pharmacol Ther 2021; 227:107881. [PMID: 33930453 DOI: 10.1016/j.pharmthera.2021.107881] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death across the world. Tripartite motif (TRIM) family, with E3 ubiquitin ligase activities in majority of its members, is reported to be involved in multiple cellular processes and signaling pathways. TRIM proteins have critical effects in the regulation of biological behaviors of cancer cells. Here, we discussed the current understanding of the molecular mechanism of TRIM proteins regulation of cancer cells. We also comprehensively reviewed published studies on TRIM family members as oncogenes or tumor suppressors in the oncogenesis, development, and progression of a variety of types of human cancers. Finally, we highlighted that certain TRIM family members are potential molecular biomarkers for cancer diagnosis and prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Chuan Liu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Gan Luan
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
10
|
Liu G, Song J, Zhao Y, Zhang L, Qin J, Cui Y. Tripartite motif containing 59 (TRIM59) promotes esophageal cancer progression via promoting MST4 expression and ERK pathway. J Recept Signal Transduct Res 2020; 40:471-478. [PMID: 32340525 DOI: 10.1080/10799893.2020.1756327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: To detect the expression of tripartite motif containing 59 (TRIM59) in human esophageal cancer (EC) tissues and explore whether TRIM59 could affect the progression of EC.Methods: Quantitative PCR and immunohistochemistry assays were performed to detect the expression of TRIM59 in 40 human EC tissues and corresponding non-tumor tissues. The correlations between TRIM59 expression and clinical pathological features of patients with EC were also investigated. CCK-8, colony formation, wound closure, and transwell assays were performed to detect the effects of TRIM59 on EC cells in vitro., Immunoblotting assays were performed to detect the effects of TRIM59 on the expression of mammalian sterile-20-like kinase 4 (MST4) and ERK pathway.Results: We reported increased expression of TRIM59 in human EC tissues, and its expression was correlated with clinical features, including metastasis (p = .011*) and maximum diameter (p = .027*), in patients with EC. We further found that TRIM59 contributed to the proliferation and invasion of EC cells via regulating mammalian sterile-20-like kinase 4 (MST4) expression and ERK pathway.Conclusion: Our data confirmed the involvement of TRIM59 in EC progression and proposed that TRIM59 could serve as a promising therapeutic target for the treatment of EC.
Collapse
Affiliation(s)
- Guangming Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Jinying Song
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Yong Zhao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Lianjie Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Junjie Qin
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Youbin Cui
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|