1
|
Urbaniak MM, Rudnicka K, Płociński P, Chmiela M. Exploring the Osteoinductive Potential of Bacterial Pyomelanin Derived from Pseudomonas aeruginosa in a Human Osteoblast Model. Int J Mol Sci 2024; 25:13406. [PMID: 39769171 PMCID: PMC11678243 DOI: 10.3390/ijms252413406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Alkaptonuria (AKU) is a genetically determined disease associated with disorders of tyrosine metabolism. In AKU, the deposition of homogentisic acid polymers contributes to the pathological ossification of cartilage tissue. The controlled use of biomimetics similar to deposits observed in cartilage during AKU potentially may serve the development of new bone regeneration therapy based on the activation of osteoblasts. The proposed biomimetic is pyomelanin (PyoM), a polymeric biomacromolecule synthesized by Pseudomonas aeruginosa. This work presents comprehensive data on the osteoinductive, pro-regenerative, and antibacterial properties, as well as the cytocompatibility, of water-soluble (PyoMsol) or water-insoluble (PyoMinsol) PyoM. Both variants of PyoM support osteoinductive processes as well as the maturation of osteoblasts in cell cultures in vitro due to the upregulation of bone-formation markers, osteocalcin (OC), and alkaline phosphatase (ALP). Furthermore, the cytokines involved in these processes were elevated in cell cultures of osteoblasts exposed to PyoM: tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10. The PyoM variants are cytocompatible in a wide concentration range and limit the doxorubicin-induced apoptosis of osteoblasts. This cytoprotective PyoM activity is correlated with an increased migration of osteoblasts. Moreover, PyoMsol and PyoMinsol exhibit antibacterial activity against staphylococci isolated from infected bones. The osteoinductive, pro-regenerative, and antiapoptotic effects achieved through PyoM stimulation prompt the development of new biocomposites modified with this bacterial biopolymer for medical use.
Collapse
Affiliation(s)
- Mateusz M. Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St, 91-403 Łódź, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| |
Collapse
|
2
|
Milella MS, Geminiani M, Trezza A, Visibelli A, Braconi D, Santucci A. Alkaptonuria: From Molecular Insights to a Dedicated Digital Platform. Cells 2024; 13:1072. [PMID: 38920699 PMCID: PMC11201470 DOI: 10.3390/cells13121072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Alkaptonuria (AKU) is a genetic disorder that affects connective tissues of several body compartments causing cartilage degeneration, tendon calcification, heart problems, and an invalidating, early-onset form of osteoarthritis. The molecular mechanisms underlying AKU involve homogentisic acid (HGA) accumulation in cells and tissues. HGA is highly reactive, able to modify several macromolecules, and activates different pathways, mostly involved in the onset and propagation of oxidative stress and inflammation, with consequences spreading from the microscopic to the macroscopic level leading to irreversible damage. Gaining a deeper understanding of AKU molecular mechanisms may provide novel possible therapeutical approaches to counteract disease progression. In this review, we first describe inflammation and oxidative stress in AKU and discuss similarities with other more common disorders. Then, we focus on HGA reactivity and AKU molecular mechanisms. We finally describe a multi-purpose digital platform, named ApreciseKUre, created to facilitate data collection, integration, and analysis of AKU-related data.
Collapse
Affiliation(s)
- Maria Serena Milella
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (M.S.M.); (A.T.); (A.V.); (D.B.); (A.S.)
| | - Michela Geminiani
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (M.S.M.); (A.T.); (A.V.); (D.B.); (A.S.)
- SienabioACTIVE-SbA, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alfonso Trezza
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (M.S.M.); (A.T.); (A.V.); (D.B.); (A.S.)
| | - Anna Visibelli
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (M.S.M.); (A.T.); (A.V.); (D.B.); (A.S.)
| | - Daniela Braconi
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (M.S.M.); (A.T.); (A.V.); (D.B.); (A.S.)
| | - Annalisa Santucci
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (M.S.M.); (A.T.); (A.V.); (D.B.); (A.S.)
- SienabioACTIVE-SbA, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- ARTES 4.0, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
3
|
Bernardini G, Braconi D, Zatkova A, Sireau N, Kujawa MJ, Introne WJ, Spiga O, Geminiani M, Gallagher JA, Ranganath LR, Santucci A. Alkaptonuria. Nat Rev Dis Primers 2024; 10:16. [PMID: 38453957 DOI: 10.1038/s41572-024-00498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Alkaptonuria is a rare inborn error of metabolism caused by the deficiency of homogentisate 1,2-dioxygenase activity. The consequent homogentisic acid (HGA) accumulation in body fluids and tissues leads to a multisystemic and highly debilitating disease whose main features are dark urine, ochronosis (HGA-derived pigment in collagen-rich connective tissues), and a painful and severe form of osteoarthropathy. Other clinical manifestations are extremely variable and include kidney and prostate stones, aortic stenosis, bone fractures, and tendon, ligament and/or muscle ruptures. As an autosomal recessive disorder, alkaptonuria affects men and women equally. Debilitating symptoms appear around the third decade of life, but a proper and timely diagnosis is often delayed due to their non-specific nature and a lack of knowledge among physicians. In later stages, patients' quality of life might be seriously compromised and further complicated by comorbidities. Thus, appropriate management of alkaptonuria requires a multidisciplinary approach, and periodic clinical evaluation is advised to monitor disease progression, complications and/or comorbidities, and to enable prompt intervention. Treatment options are patient-tailored and include a combination of medications, physical therapy and surgery. Current basic and clinical research focuses on improving patient management and developing innovative therapies and implementing precision medicine strategies.
Collapse
Affiliation(s)
- Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
| | - Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Andrea Zatkova
- Institute of Clinical and Translational Research, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
- Geneton Ltd, Bratislava, Slovakia
| | | | - Mariusz J Kujawa
- 2nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
| | - Wendy J Introne
- Human Biochemical Genetics Section, Medical Genetics Branch, Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Michela Geminiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - James A Gallagher
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences University of Liverpool, Liverpool, UK
| | - Lakshminarayan R Ranganath
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences University of Liverpool, Liverpool, UK
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, UK
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Li G, Huang P, Cui S, He Y, Jiang Q, Li B, Li Y, Xu J, Wang Z, Tan Y, Chen S. Tai Chi improves non-motor symptoms of Parkinson's disease: One-year randomized controlled study with the investigation of mechanisms. Parkinsonism Relat Disord 2024; 120:105978. [PMID: 38244460 DOI: 10.1016/j.parkreldis.2023.105978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Tai Chi was found to improve motor symptoms in Parkinson's disease (PD). Whether long-term Tai Chi training could improve non-motor symptoms (NMS) and the related mechanisms were unknown. OBJECTIVE To investigate Tai Chi's impact on non-motor symptoms in PD and related mechanisms. METHODS 95 early-stage PD patients were recruited and randomly divided into Tai Chi (N = 32), brisk walking (N = 31), and no-exercise groups (N = 32). All subjects were evaluated at baseline, 6 months, and 12 months within one-year intervention. Non-motor symptoms (including cognition, sleep, autonomic symptoms, anxiety/depression, and quality of life) were investigated by rating scales. fMRI, plasma cytokines and metabolomics, and blood Huntingtin interaction protein 2 (HIP2) mRNA levels were detected to observe changes in brain networks and plasma biomarkers. RESULTS Sixty-six patients completed the study. Non-motor functions assessed by rating scales, e.g. PD cognitive rating scale (PDCRS) and Epworth Sleepiness scale (ESS), were significantly improved in the Tai Chi group than the control group. Besides, Tai Chi had advantages in improving NMS-Quest and ESS than brisk walking. Improved brain function was seen in the somatomotor network, correlating with improved PDCRS (p = 0.003, respectively). Downregulation of eotaxin and upregulation of BDNF demonstrated a positive correlation with improvement of PDCRS and PDCRS-frontal lobe scores (p ≤ 0.037). Improvement of energy and immune-related metabolomics (p ≤ 0.043), and elevation of HIP2 mRNA levels (p = 0.003) were also found associated with the improvement of PDCRS. CONCLUSIONS Tai Chi improved non-motor symptoms in PD, especially in cognition and sleep. Enhanced brain network function, downregulation of inflammation, and enhanced energy metabolism were observed after Tai Chi training.
Collapse
Affiliation(s)
- Gen Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China; Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, People's Republic of China.
| | - Shishuang Cui
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yachao He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Qinying Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yuxin Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Jin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Zheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China; Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, People's Republic of China.
| |
Collapse
|
5
|
Zaib S, Rana N, Hussain N, Ogaly HA, Dera AA, Khan I. Identification of Potential Inhibitors for the Treatment of Alkaptonuria Using an Integrated In Silico Computational Strategy. Molecules 2023; 28:molecules28062623. [PMID: 36985595 PMCID: PMC10058836 DOI: 10.3390/molecules28062623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Alkaptonuria (AKU) is a rare genetic autosomal recessive disorder characterized by elevated serum levels of homogentisic acid (HGA). In this disease, tyrosine metabolism is interrupted because of the alterations in homogentisate dioxygenase (HGD) gene. The patient suffers from ochronosis, fractures, and tendon ruptures. To date, no medicine has been approved for the treatment of AKU. However, physiotherapy and strong painkillers are administered to help mitigate the condition. Recently, nitisinone, an FDA-approved drug for type 1 tyrosinemia, has been given to AKU patients in some countries and has shown encouraging results in reducing the disease progression. However, this drug is not the targeted treatment for AKU, and causes keratopathy. Therefore, the foremost aim of this study is the identification of potent and druggable inhibitors of AKU with no or minimal side effects by targeting 4-hydroxyphenylpyruvate dioxygenase. To achieve our goal, we have performed computational modelling using BioSolveIT suit. The library of ligands for molecular docking was acquired by fragment replacement of reference molecules by ReCore. Subsequently, the hits were screened on the basis of estimated affinities, and their pharmacokinetic properties were evaluated using SwissADME. Afterward, the interactions between target and ligands were investigated using Discovery Studio. Ultimately, compounds c and f were identified as potent inhibitors of 4-hydroxyphenylpyruvate dioxygenase.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
- Correspondence: (S.Z.); (I.K.)
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 144534, United Arab Emirates
| | - Hanan A. Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Correspondence: (S.Z.); (I.K.)
| |
Collapse
|
6
|
Chen L, Tao D, Yu F, Wang T, Qi M, Xu S. Cineole regulates Wnt/β-catenin pathway through Nrf2/keap1/ROS to inhibit bisphenol A-induced apoptosis, autophagy inhibition and immunosuppression of grass carp hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 131:30-41. [PMID: 36195267 DOI: 10.1016/j.fsi.2022.09.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA), an environmental pollutant, can cause multiple organ tissue damage by inducing oxidative stress. Cineole (CIN) is a terpene oxide existing in a variety of plant essential oils, which has anti-inflammatory, analgesic, and antioxidant effects. This study examined the effects of 200 nM BPA and 20 μM CIN on apoptosis, autophagy, and immunology in grass carp hepatocytes (L8824). The treatments were categorized as NC, CIN, BPA + CIN, and BPA. The findings demonstrated that BPA exposure could increase ROS levels and oxidative stress-related indicators, decrease the expression of the Nrf2/keap1 pathway and the Wnt/β-catenin pathway, increase the expression of genes involved in the apoptotic pathway (Bax and Caspase3), and decrease the expression of the anti-apoptotic gene Bcl-2 by lowering mitochondrial membrane potential. BPA also reduced the expression of genes linked to autophagy (ATG5, Beclin1, LC3). Changes in immunological function after BPA exposure were also shown by changes in the amounts of antimicrobial peptides (HEPC, β-defensin, LEAP2) and cytokines (INF-γ, IL-1β, IL-2, and TNF-α). After the co-treatment of CIN and BPA, CIN can inhibit BPA-induced apoptosis and recover from autophagy and immune function to a certain extent by binding to keap1 to exert an anti-oxidative regulatory effect of Nrf2 incorporation into the nucleus. Molecular docking provides strong evidence for the interaction of CIN ligands with keap1 receptors. Therefore, these results indicated that CIN could inhibit BPA-induced apoptosis, autophagy inhibition and immunosuppression in grass carp hepatocytes by regulating the Wnt/β-catenin pathway with Nrf2/keap1/ROS. This study provided further information to the risk assessment of the neuroendocrine disruptor BPA on aquatic organisms and offered suggestions and resources for further research into the function of natural extracts in the body's detoxification process.
Collapse
Affiliation(s)
- Lu Chen
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Dayong Tao
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Tian Wang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China.
| | - Shiwen Xu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China; Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production & Construction Corps, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China.
| |
Collapse
|
7
|
Single nucleotide polymorphisms (rs3736228 and rs4988321) in low-density lipoprotein receptor-related protein-5 gene with predisposition to rheumatoid arthritis. Gene X 2022; 851:147025. [DOI: 10.1016/j.gene.2022.147025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 10/26/2022] [Indexed: 11/04/2022] Open
|
8
|
Vitali E, Palagano E, Schiavone ML, Mantovani G, Sobacchi C, Mazziotti G, Lania A. Direct effects of octreotide on osteoblast cell proliferation and function. J Endocrinol Invest 2022; 45:1045-1057. [PMID: 35020172 DOI: 10.1007/s40618-022-01740-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE Octreotide (OCT) is a first-generation somatostatin analog (SSA) used in the treatment of acromegaly and neuroendocrine tumors (NETs). In both diseases, OCT interacts with somatostatin receptors 2 and 5 (SSTR2 and SSTR5), inhibiting hormone hypersecretion and cell proliferation. Skeletal health is an important clinical concern in acromegaly and NETs, since acromegalic osteopathy and NET bone metastasis occur in a remarkable number of patients. While OCT's effect on NET and pituitary cells has been extensively investigated, its direct action on bone cells remains unknown. METHODS Here, we investigated OCT direct effects on cell proliferation, differentiation, mineralization, and chemoattractant capacity of murine primary osteoblasts and osteoblast cell line MC3T3-E1. RESULTS OCT inhibited osteoblasts and MC3T3-E1 cell proliferation (- 30 ± 16%, and - 22 ± 4%, both p < 0.05 vs control) and increased MC3T3-E1 cell apoptosis (+ 76 ± 32%, p < 0.05 vs control). The anti-proliferative action of OCT was mediated by SSTR2 and SSTR5 in MC3T3-E1, while its pro-apoptotic effect was abrogated in SSTR2-silenced cells. The analysis of genes related to the early and late phases of osteoblast differentiation showed that OCT did not affect Alp, Runx2, Bglap, Spp1, and Sost levels in MC3T3-E1 cells. Similarly, OCT did not affect ALP activity, mineralization, and osteoclastogenic induction. Finally, Vegfa expression decreased in OCT-treated MC3T3-E1 cells and OCT inhibited pancreatic NET cell migration toward the osteoblast-conditioned medium. CONCLUSION This study provides the first evidence of the direct action of OCT on osteoblasts which may have clinically relevant implications for the management of skeletal health in subjects with acromegaly and metastatic NETs.
Collapse
Affiliation(s)
- E Vitali
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - E Palagano
- National Research Council, Institute of Biosciences and BioResources (CNR-IBBR), Via Madonna del Piano-Polo Scientifico CNR 10, 50019, Sesto Fiorentino, FI, Italy
| | - M L Schiavone
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - G Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - C Sobacchi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
- National Research Council, Institute of Genetic and Biomedical Research (CNR-IRGB), Via Fantoli 16/15, 20138, Milan, Italy
| | - G Mazziotti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy.
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy.
| | - A Lania
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| |
Collapse
|
9
|
The Interaction between microRNAs and the Wnt/β-Catenin Signaling Pathway in Osteoarthritis. Int J Mol Sci 2021; 22:ijms22189887. [PMID: 34576049 PMCID: PMC8470786 DOI: 10.3390/ijms22189887] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a chronic disease affecting the whole joint, which still lacks a disease-modifying treatment. This suggests an incomplete understanding of underlying molecular mechanisms. The Wnt/β-catenin pathway is involved in different pathophysiological processes of OA. Interestingly, both excessive stimulation and suppression of this pathway can contribute to the pathogenesis of OA. microRNAs have been shown to regulate different cellular processes in different diseases, including the metabolic activity of chondrocytes and osteocytes. To bridge these findings, here we attempt to give a conclusive overview of microRNA regulation of the Wnt/β-catenin pathway in bone and cartilage, which may provide insights to advance the development of miRNA-based therapeutics for OA treatment.
Collapse
|
10
|
Abstract
AbstractThe success of implant performance and arthroplasty is based on several factors, including oxidative stress-induced osteolysis. Oxidative stress is a key factor of the inflammatory response. Implant biomaterials can release wear particles which may elicit adverse reactions in patients, such as local inflammatory response leading to tissue damage, which eventually results in loosening of the implant. Wear debris undergo phagocytosis by macrophages, inducing a low-grade chronic inflammation and reactive oxygen species (ROS) production. In addition, ROS can also be directly produced by prosthetic biomaterial oxidation. Overall, ROS amplify the inflammatory response and stimulate both RANKL-induced osteoclastogenesis and osteoblast apoptosis, resulting in bone resorption, leading to periprosthetic osteolysis. Therefore, a growing understanding of the mechanism of oxidative stress-induced periprosthetic osteolysis and anti-oxidant strategies of implant design as well as the addition of anti-oxidant agents will help to improve implants’ performances and therapeutic approaches.
Collapse
|
11
|
Ranganath LR, Milan AM, Bay-Jensen AC, Thudium CS. A case report of pregnancy in untreated alkaptonuria - Focus on urinary tissue remodelling markers. Mol Genet Metab Rep 2021; 27:100766. [PMID: 33996493 PMCID: PMC8102796 DOI: 10.1016/j.ymgmr.2021.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/13/2022] Open
Abstract
A 34-year old woman with alkaptonuria had an elective pregnancy, during which she collected urine samples over the duration of her pregnancy until parturition. She had been attending the National Alkaptonuria Centre from the age of 31 years and continued to attend after delivery for a further three annual visits. Data from her NAC visits as well as urine samples collected during pregnancy were analysed. Urine CTX-1/urine creatinine, urine αCTX-I/ urine creatinine, urine CTX-II/ urine creatinine, and urine C3M/urine creatinine all showed a rapid increase early in pregnancy, returning to baseline before increasing in late pregnancy, indicating significant remodelling of bone, subchondral bone, cartilage and other organs and connective tissue rich in collagens I, II and III. The pattern of tissue remodelling in AKU pregnancy has been described for the very first time. Further research is needed to understand pregnancy in AKU.
Collapse
Affiliation(s)
- L R Ranganath
- Departments of Clinical Biochemistry and Metabolic Medicine, Herlev, Denmark
| | - A M Milan
- Departments of Clinical Biochemistry and Metabolic Medicine, Herlev, Denmark
| | | | | |
Collapse
|
12
|
Yuce Inel T, Kisa PT, Balci A, Uslu S, Arslan Z, Hismi BO, Ucar U, Arslan N, Onen F, Sari I. Inflammatory rheumatic diseases in patients with ochronotic arthropathy. Mod Rheumatol 2021; 31:1031-1037. [PMID: 33427541 DOI: 10.1080/14397595.2020.1868121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ochronotic arthropathy (OcA) refers to excessive homogentisic acid (HGA) deposition in the musculoskeletal system. Our current understanding of OcA is limited, as there are less than a thousand alkaptonuria (AKU) cases reported in the literature. Herein, we investigated the rheumatological manifestations of OcA in a group of adult AKU patients. METHODS Adult AKU patients with symptoms suggestive of OcA were included. Patients underwent a detailed rheumatological assessment. Laboratory testing, including autoantibodies and radiological investigations such as conventional X-rays, and magnetic resonance imaging (MRI) were performed. RESULTS Eight out of 12 (66%) patients had symptoms consistent with OcA. The median age at OcA symptoms was 36 (27-48) years, and the presenting symptom was back pain in 87.5% of the patients. All patients had chronic back pain, and three (37.5%) had an inflammatory type of pain character. Radiographic sacroiliitis based on X-rays was present in 2 (25%) cases. MRI of the sacroiliac joints documented bone marrow edema in five (62.5%), and spinal MRI identified corner inflammatory lesions in three patients (37.5%). One patient (12.5%) had rheumatoid arthritis. Extra-articular involvement, including enthesitis (n = 1; 12.5%), interstitial lung disease (n = 1; 12.5%), and scleritis (n = 1; 12.5%), was also noted. CONCLUSION The frequent occurrence of OcA-related inflammatory manifestations in our patients contradicts the conventional concept of OcA as a non-inflammatory disorder. The activation of inflammatory pathways, possibly by the HGA products, may responsible for this condition.Significance and innovationsAbout three-fourths of adult ochronotic arthropathy (OcA) patients in our group had associated inflammatory disease.OcA associated inflammatory diseases were showing a severe phenotypeNearly half of the OcA patients required early prosthesis operations compared to their healthy counterparts.
Collapse
Affiliation(s)
- Tuba Yuce Inel
- Faculty of Medicine, Division of Rheumatology, Dokuz Eylul University, Izmir, Turkey
| | - Pelin Teke Kisa
- Faculty of Medicine, Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University, Izmir, Turkey
| | - Ali Balci
- Faculty of Medicine, Department of Radiology, Dokuz Eylul University, Izmir, Turkey
| | - Sadettin Uslu
- Faculty of Medicine, Division of Rheumatology, Dokuz Eylul University, Izmir, Turkey
| | - Zumrut Arslan
- Faculty of Medicine, Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University, Izmir, Turkey
| | - Burcu Ozturk Hismi
- Division of Pediatric Metabolism and Nutrition, Tepecik Education and Research Hospital, Izmir, Turkey
| | - Ulku Ucar
- Division of Rheumatology, Antalya Educatıon And Research Hospıtal, Antalya, Turkey
| | - Nur Arslan
- Faculty of Medicine, Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University, Izmir, Turkey
| | - Fatos Onen
- Faculty of Medicine, Division of Rheumatology, Dokuz Eylul University, Izmir, Turkey
| | - Ismail Sari
- Faculty of Medicine, Division of Rheumatology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
13
|
Xu J, Taubert S. Beyond Proteostasis: Lipid Metabolism as a New Player in ER Homeostasis. Metabolites 2021; 11:52. [PMID: 33466824 PMCID: PMC7830277 DOI: 10.3390/metabo11010052] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Biological membranes are not only essential barriers that separate cellular and subcellular structures, but also perform other critical functions such as the initiation and propagation of intra- and intercellular signals. Each membrane-delineated organelle has a tightly regulated and custom-made membrane lipid composition that is critical for its normal function. The endoplasmic reticulum (ER) consists of a dynamic membrane network that is required for the synthesis and modification of proteins and lipids. The accumulation of unfolded proteins in the ER lumen activates an adaptive stress response known as the unfolded protein response (UPR-ER). Interestingly, recent findings show that lipid perturbation is also a direct activator of the UPR-ER, independent of protein misfolding. Here, we review proteostasis-independent UPR-ER activation in the genetically tractable model organism Caenorhabditis elegans. We review the current knowledge on the membrane lipid composition of the ER, its impact on organelle function and UPR-ER activation, and its potential role in human metabolic diseases. Further, we summarize the bi-directional interplay between lipid metabolism and the UPR-ER. We discuss recent progress identifying the different respective mechanisms by which disturbed proteostasis and lipid bilayer stress activate the UPR-ER. Finally, we consider how genetic and metabolic disturbances may disrupt ER homeostasis and activate the UPR and discuss how using -omics-type analyses will lead to more comprehensive insights into these processes.
Collapse
Affiliation(s)
- Jiaming Xu
- Graduate Program in Cell and Developmental Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Healthy Starts Theme, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Stefan Taubert
- Graduate Program in Cell and Developmental Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Healthy Starts Theme, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
14
|
Liu H, Guo Y, Zhu R, Wang L, Chen B, Tian Y, Li R, Ma R, Jia Q, Zhang H, Xia B, Li Y, Wang X, Zhu X, Zhang R, Brӧmme D, Gao S, Zhang D, Pei X. Fructus Ligustri Lucidi
preserves bone quality through induction of canonical Wnt/β‐catenin signaling pathway in ovariectomized rats. Phytother Res 2020; 35:424-441. [DOI: 10.1002/ptr.6817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/09/2020] [Accepted: 07/02/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Haixia Liu
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Yubo Guo
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Ruyuan Zhu
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Lili Wang
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Beibei Chen
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Yimiao Tian
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Rui Li
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Rufeng Ma
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Qiangqiang Jia
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Hao Zhang
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Bingke Xia
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Yu Li
- Department of Histology and Embryology, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
- Sino‐Canada Anti‐Fibrosis Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Xinxiang Wang
- Center for Experimental Medicine The Second Affiliated Hospital of Beijing University of Chinese Medicine Beijing China
| | - Xiaofeng Zhu
- Department of Chinese Medicine The First Affiliated Hospital of Jinan University Guangzhou China
| | - Ronghua Zhang
- Department of Chinese Medicine The First Affiliated Hospital of Jinan University Guangzhou China
| | - Dieter Brӧmme
- Faculty of Dentistry University of British Columbia Vancouver British Columbia Canada
| | - Sihua Gao
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
- Sino‐Canada Anti‐Fibrosis Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Xiaohua Pei
- The Fangshan Hospital of BUCM Beijing University of Chinese Medicine Beijing China
| |
Collapse
|