1
|
Si W, Wei H, Chen W, Chen B, Zhou Y, Zhang H. Exosomal microRNA-363 mediates the destructive effect of M1 macrophages on chondrocytes by repressing G3BP2. Exp Cell Res 2024; 442:114276. [PMID: 39413984 DOI: 10.1016/j.yexcr.2024.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
M1 polarization of synovial macrophages contributes to cartilage degeneration and osteoarthritis (OA) development. However, limited knowledge is available about how M1 macrophages affect the biological properties of chondrocytes. This study aimed to explore the role of exosomal microRNAs (miRs) released from M1 macrophages in modulating the proliferation and survival of chondrocytes. Through bioinformatic analysis and experimental validation, we indicated that miR-363 was selectively induced in M1 macrophages (CD68+CD80+) but not M2 macrophages (CD68+CD206+). The upregulation of miR-363 in M1 macrophages depended on the activation of STAT1 signaling. Clinically, OA patients had a significantly higher miR-363 level in synovial fluid than control individuals without OA. Functional studies revealed that inhibition of miR-363 blocked the M1 macrophage polarization induced by lipopolysaccharide and IFN-γ. Moreover, exosomal miR-363 released from M1 macrophages significantly suppressed the proliferation and survival and induced inflammatory gene expression in chondrocytes. G3BP2 was identified as a target gene for miR-363 and could be negatively regulated by miR-363. Knockdown of G3BP2 recapitulated the effect of miR-363 overexpression on chondrocytes. Most importantly, enforced expression of G3BP2 attenuated miR-363-induced apoptosis and inflammatory response in chondrocytes. In conclusion, miR-363 plays an indispensable role in M1 macrophage polarization and can be released from M1 macrophages via exosomes to cause chondrocyte injury and inflammation. The miR-363/G3BP2 axis may represent a promising target for the prevention of OA development.
Collapse
Affiliation(s)
- Wenteng Si
- Department of Joint Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, China
| | - Hongchao Wei
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenzhong Chen
- Department of Joint Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, China
| | - Bin Chen
- Department of Joint Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, China
| | - Yu Zhou
- Department of Joint Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, China
| | - Huaguo Zhang
- Department of Nursing, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Nasimi Shad A, Akhlaghipour I, Alshakarchi HI, Saburi E, Moghbeli M. Role of microRNA-363 during tumor progression and invasion. J Physiol Biochem 2024; 80:481-499. [PMID: 38691273 DOI: 10.1007/s13105-024-01022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Recent progresses in diagnostic and therapeutic methods have significantly improved prognosis in cancer patients. However, cancer is still considered as one of the main causes of human deaths in the world. Late diagnosis in advanced tumor stages can reduce the effectiveness of treatment methods and increase mortality rate of cancer patients. Therefore, investigating the molecular mechanisms of tumor progression can help to introduce the early diagnostic markers in these patients. MicroRNA (miRNAs) has an important role in regulation of pathophysiological cellular processes. Due to their high stability in body fluids, they are always used as the non-invasive markers in cancer patients. Since, miR-363 deregulation has been reported in a wide range of cancers, we discussed the role of miR-363 during tumor progression and metastasis. It has been reported that miR-363 has mainly a tumor suppressor function through the regulation of transcription factors, apoptosis, cell cycle, and structural proteins. MiR-363 also affected the tumor progression via regulation of various signaling pathways such as WNT, MAPK, TGF-β, NOTCH, and PI3K/AKT. Therefore, miR-363 can be introduced as a probable therapeutic target as well as a non-invasive diagnostic marker in cancer patients.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hawraa Ibrahim Alshakarchi
- Al-Zahra Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Karbala, Iraq
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Chen Y, Hu D, Wang F, Huang C, Xie H, Jin L. A systematic framework for identifying prognostic necroptosis-related lncRNAs and verification of lncRNA CRNDE/miR-23b-3p/IDH1 regulatory axis in glioma. Aging (Albany NY) 2023; 15:12296-12313. [PMID: 37934582 PMCID: PMC10683586 DOI: 10.18632/aging.205180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Glioma remains the most frequent malignancy of the central nervous system. Recently, necroptosis has been identified as a cell death process that mediates the proliferation and development of tumor cells. LncRNAs play a key role in the diagnosis and treatment of various diseases. However, the impact that necrosis-related lncRNAs (NRLs) have on glioma remains unclear. In our studies, we selected 9 NRLs to construct a prognostic model. Meanwhile, we assessed the survival curves of these 9 NRLs. Our findings found ADGRA1-AS1 and WAC-AS1 were protective lncRNAs, while MIR210HG, LINC01503, CRNDE, HOXC-AS1, ZIM2-AS1, MIR22HG and PLBD1-AS1 were risk lncRNAs. Specifically, 12 immune cells, 25 immune-correlated pathways, and TME score were differentially expressed in the both risk groups. Additionally, the study predicted and validated the necroptosis-related lncRNA CRNDE/miR-23b-3p/IDH1 axis. CRNDE was strongly expressed in glioma specimens and several cell lines. Inhibiting CRNDE resulted in a substantial reduction in the proliferation and migration of U-118MG and U251 cells. Furthermore, the study predicted that CRNDE may exhibit oncogenic features by adsorbing miR-23b-3p and positively regulating IDH1 expression. Overall, the study constructed a prognostic model in glioma, and predicted a lncRNA CRNDE/miR-23b-3p/IDH1 axis, which could potentially be useful for gene therapy of glioma.
Collapse
Affiliation(s)
- Yangxia Chen
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Di Hu
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Fang Wang
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Cheng Huang
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Hesong Xie
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ling Jin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Zhao Y, Nogueira MS, Milne GL, Guo X, Cai H, Lan Q, Rothman N, Cai Q, Gao YT, Chen Q, Shu XO, Yang G. Association between lipid peroxidation biomarkers and microRNA expression profiles. Redox Biol 2022; 58:102531. [PMID: 36335760 PMCID: PMC9641027 DOI: 10.1016/j.redox.2022.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/16/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND In-vitro and animal studies demonstrate that epigenetic regulation may play an important role in lipid peroxidation. No human study to date has directly evaluated microRNAs (miRNAs), as epigenetic modulators, in relation to systemic levels of lipid peroxidation. OBJECTIVES To evaluate associations between systemic levels of lipid peroxidation and miRNA expression profiles in women. METHODS Included in the analysis were 92 women aged 40-70 years, a subset of the Shanghai Women's Health Study (SWHS). Lipid peroxidation was assessed by urinary markers F2-isoprostanes (F2-IsoPs), the products of free radical-catalyzed peroxidation of arachidonic acid, and its major metabolite after β-oxidation, 2,3-dinor-5,6-dihydro-15-F2t-IsoP (F2-IsoP-M), with GC/NICI-MS assays. Expression levels of 798 miRNAs were quantified in peripheral plasma with NanoString nCounter assays. A multivariable linear regression model was used to examine the association between lipid peroxidation and miRNA expression. RESULTS After adjusting for potential confounders, 29 miRNAs and 213 miRNAs were associated with F2-IsoPs and F2-IsoP-M, respectively. When further controlling for multiple comparisons, none of these nominally significant associations with F2-IsoPs was retained, whereas 71 of 213 miRNAs associated with F2-IsoP-M remained. The predicted targets of the F2-IsoP-M associated miRNAs were enriched for several lipid peroxidation-related processes such as PI3K/AKT, MAPK, FOXO and HIF-1 signaling pathways. Moreover, 10 miRNAs (miR-93-5p, miR-761, miR-301b-3p, miR-497-5p, miR-141-3p, miR-186-5p, miR-126-3p, miR-200b-3p, miR-520d-3p, and miR-363-3p) exhibited functional interactions with 50 unique mRNAs targets involved in the regulation of β-oxidation. CONCLUSIONS To our knowledge, this study, for the first time, provides human data suggesting that miRNA expression may be linked to lipid peroxidation products and their metabolism.
Collapse
Affiliation(s)
- Yingya Zhao
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marina S. Nogueira
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu-Tang Gao
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qingxia Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA,Corresponding author. 2525 West End Avenue, Suite 600, Nashville, TN, 37203, USA.
| |
Collapse
|
5
|
Liu Y, Zhao F, Tan F, Tang L, Du Z, Mou J, Zhou G, Yuan C. HNF1A-AS1:A tumor-associated long non-coding RNA. Curr Pharm Des 2022; 28:1720-1729. [PMID: 35619319 DOI: 10.2174/1381612828666220520113846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatocyte nuclear factor 1 homeobox A antisense RNA 1 (HNF1A-AS1) is a Long non-coding RNA(LncRNA)that participates in the occurrence development of lots of tumors and is supposed to be a new biomarker. The text aims to illustrate the biological effect, specific mechanism and clinical significance of HNF1A-AS1 in various tumors. METHODS Via consulting the literature, analyze and summarize the relationship between HNF1A-AS1 and all kinds of tumors and the specific mechanism. RESULTS This is a review paper about the tumor-associated long non-coding RNA HNF1A-AS1. Many Researches show that LncRNA HNF1A-AS1 is related to the development of tumorous tumors. Its expression is up-regulated in numerous tumors, such as oral squamous cell carcinoma, hepatocellular carcinoma, breast cancer, osteosarcoma, lung cancer, cervical cancer, bladder cancer, colon cancer, colorectal cancer, oesophageal adenocarcinoma and laryngeal squamous cell carcinoma. However, HNF1A-AS1 is down-regulated in gastroenteropancreatic, neuroendocrine neoplasms, oral squamous cell carcinoma. Furthermore, HNF1A-AS1 can affect tumor proliferation, invasion, migration and apoptosis by targeting some microRNAs-miR-661 and miR-124. Or HNF1A-AS1 can also influence the development of tumors by regulating EMT. CONCLUSION These studies show that LncRNA-HNF1A-AS1 is closely related to the occurrence development of numerous cancers. Through various molecular mechanisms to regulate tumor growth, HNF1A-AS1 can possibly become the new biological biomarker and therapeutic target for many kinds of tumors.
Collapse
Affiliation(s)
- Yuling Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Fangnan Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Fangshun Tan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Lu Tang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Zhuoying Du
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Jie Mou
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.,Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine, Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China.,Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine, Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| |
Collapse
|
6
|
Xu LZ, Ning JZ, Ruan Y, Cheng F. MiR-363-3p promotes prostate cancer tumor progression by targeting Dickkopf 3. J Clin Lab Anal 2022; 36:e24360. [PMID: 35303365 PMCID: PMC8993605 DOI: 10.1002/jcla.24360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a frequent malignant tumor worldwide with high morbidity along with mortality. MicroRNAs (miRNAs) have been identified as key posttranscriptional modulators in diverse cancers. Herein, we purposed to explore the impacts of miR-363-3p on PCa growth, migration, infiltration along with apoptosis. METHODS The expressions of miR-363-3p along with Dickkopf 3 (DKK3) were assessed in clinical PCa specimens. We adopted the PCa cell line PC3 and transfected it using miR-363-3p repressors or mimic. The relationship of miR-363-3p with DKK3 was verified by a luciferase enzyme reporter assay. Cell viability along with apoptosis were determined by MTT assay coupled with flow cytometry analysis. Cell migration along infiltration were detected via wound healing, as well as Transwell assays. The contents of DKK3, E-cadherin, vimentin along with N-cadherin were analyzed via Western blotting accompanied with qRT-PCR. RESULTS MiR-363-3p was found to be inversely associated with the content of DKK3 in clinical PCa specimens. Further investigations revealed that DKK3 was miR-363-3p's direct target. Besides, overexpression of miR-363-3p decreased the contents of DKK3, promoted cell viability, migration coupled with infiltration, and reduced cell apoptosis, while silencing of miR-363-3p resulted in opposite influence. Upregulation of miR-363-3p diminished E-cadherin contents but increased vimentin along with N-cadherin protein contents in PC3 cells; in contrast, miR-363-3p downregulation produced the opposite result. CONCLUSION Our study indicates that miR-363-3p promotes PCa growth, migration coupled with invasion while dampening apoptosis by targeting DKK3.
Collapse
Affiliation(s)
- Li-Zhe Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Gui S, Chen P, Liu Y, Chen Q, Cheng T, Lv S, Zhou T, Song Z, Xiao J, He W, Yuan S, Cheng Z. TUBA1C expression promotes proliferation by regulating the cell cycle and indicates poor prognosis in glioma. Biochem Biophys Res Commun 2021; 577:130-138. [PMID: 34517210 DOI: 10.1016/j.bbrc.2021.08.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022]
Abstract
Gliomas are the major type of primary brain tumors. Accumulating research has demonstrated that tubulin is connected with the development and malignant progression of tumors. TUBA1C is a subtype of α-tubulin and is linked to prognosis in multiple cancers. In this study, the prognosis-related gene TUBA1C in glioma was identified and analyzed by bioinformatic approaches such as Kaplan-Meier (KM) survival time analysis, univariate and multivariate Cox analysis, receiver operating characteristic (ROC) analysis and functional enrichment analysis. Based on the above analyses, we found that glioma tissues had significantly higher expression of TUBA1C than normal brain tissues, and high expression of TUBA1C has worse prognosis in glioma. Gene set enrichment analysis (GSEA) revealed the signaling pathways related to the cell cycle. Furthermore, knockdown of TUBA1C also inhibited proliferation and migration and caused apoptosis and G2/M phase arrest in glioma cells. This study demonstrated that high TUBA1C expression correlated with poor outcomes in glioma patients and that knocking down TUBA1C suppressed glioma cell proliferation via cell cycle arrest. In addition, TUBA1C might be a therapeutic biomarker for gliomas.
Collapse
Affiliation(s)
- Shikai Gui
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, China; Nanchang University, Nanchang, Jiangxi Province, 330000, China
| | - Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, China
| | - Yu Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, China
| | - Qiaorong Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, China
| | - Tianxiang Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, China
| | - Shulong Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, China
| | - Tong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, China
| | - Zhen Song
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, China
| | - Juexian Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, China
| | - Wei He
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu Province, 210000, China
| | - Zujue Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, China; Nanchang University, Nanchang, Jiangxi Province, 330000, China.
| |
Collapse
|
8
|
Fan B, Su B, Song G, Liu X, Yan Z, Wang S, Hu F, Yang J. miR-363-3p induces EMT via the Wnt/β-catenin pathway in glioma cells by targeting CELF2. J Cell Mol Med 2021; 25:10418-10429. [PMID: 34636136 PMCID: PMC8581338 DOI: 10.1111/jcmm.16970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/05/2023] Open
Abstract
In our previous study, we reported that CELF2 has a tumour‐suppressive function in glioma. Here, we performed additional experiments to elucidate better its role in cancer. The expression profile of CELF2 was analysed by the GEPIA database, and Kaplan–Meier curves were used to evaluate the overall survival rates. Four different online databases were used to predict miRNAs targeting CELF2, and the luciferase assay was performed to identify the binding site. The biological effects of miR‐363‐3p and CELF2 were also investigated in vitro using MTT, Transwell, and flow cytometry assays. Western blotting, qPCR, and TOP/FOP flash dual‐luciferase assays were performed to investigate the impact of miR‐363‐3p and CELF2 on epithelial‐to‐mesenchymal transition (EMT) and the Wnt/β‐catenin pathway. The effect of miR‐363‐3p was also tested in vivo using a xenograft mouse model. We observed an abnormal expression pattern of CELF2 in glioma cells, and higher CELF2 expression correlated with better prognosis. We identified miR‐363‐3p as an upstream regulator of CELF2 and confirmed its direct binding to the 3′‐untranslated region of CELF2. Cell function experiments showed that miR‐363‐3p affected multiple aspects of glioma cells. Suppressing miR‐363‐3p expression inhibited glioma cell proliferation and invasion, as well as promoted cell death via attenuating EMT and blocking the Wnt/β‐catenin pathway. These effects could be abolished by the downregulation of CELF2. Treatment with ASO‐miR‐363‐3p decreased tumour size and weight in nude mice. In conclusion, miR‐363‐3p induced the EMT, which resulted in increased migration and invasion and reduced apoptosis in glioma cell lines, via the Wnt/β‐catenin pathway by targeting CELF2.
Collapse
Affiliation(s)
- Bo Fan
- Department of neurosurgery, The Second Affiliated Hospital, Hebei Medical University, Hebei, China
| | - Bolun Su
- Department of urology, The Second Hospital of Baoding, Hebei, China
| | - Guoqiang Song
- Department of neurosurgery, The Second Affiliated Hospital, Hebei Medical University, Hebei, China
| | - Xin Liu
- Department of neurosurgery, The Second Affiliated Hospital, Hebei Medical University, Hebei, China
| | - Zhongjie Yan
- Department of neurosurgery, The Second Affiliated Hospital, Hebei Medical University, Hebei, China
| | - Shuai Wang
- Department of neurosurgery, The Second Affiliated Hospital, Hebei Medical University, Hebei, China
| | - Fuguang Hu
- Department of neurosurgery, The Second Affiliated Hospital, Hebei Medical University, Hebei, China
| | - Jiankai Yang
- Department of neurosurgery, The Second Affiliated Hospital, Hebei Medical University, Hebei, China
| |
Collapse
|
9
|
Ghafouri-Fard S, Khoshbakht T, Taheri M, Khashefizadeh A. Hepatocyte nuclear factor 1A-antisense: Review of its role in the carcinogenesis. Pathol Res Pract 2021; 227:153623. [PMID: 34563755 DOI: 10.1016/j.prp.2021.153623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Hepatocyte nuclear factor 1A-antisense (HNF1A-AS) is an RNA gene classified as a long non-coding RNA (lncRNA). This gene is located on 12q24.31 and produces at least seven transcripts. This lncRNA contributes in the pathogenesis of cancer via HNF1A-dependent and -independent routes. Moreover, the role of this lncRNA in this process is context-dependent. The bulk of evidence from cell line, in vivo and clinical studies propose HNF1A-AS as an oncogenic lncRNA. However, in hepatic cancer, gastric cancer and laryngeal cancer, opposite results have been reported. In the current review, we explain the impact of HNF1A-AS in the pathoetiology of cancers. In order to appraise the importance of available evidence on this topic, we have classified evidence to preclinical models (cell liens and animal models) and investigations in tissues obtained from human subjects.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Khashefizadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Circulating Long Non-Coding RNAs as Novel Potential Biomarkers for Osteogenic Sarcoma. Cancers (Basel) 2021; 13:cancers13164214. [PMID: 34439367 PMCID: PMC8392488 DOI: 10.3390/cancers13164214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Circulating cell-free nucleic acids recently became attractive targets to develop non-invasive diagnostic tools for cancer detection. Along with DNA and mRNAs, transcripts lacking coding potential (non-coding RNAs, ncRNAs) directly involved in the process of tumor pathogenesis have been recently detected in liquid biopsies. Interestingly, circulating ncRNAs exhibit specific expression patterns associated with cancer and suggest their role as novel biomarkers. However, the potential of circulating long ncRNAs (c-lncRNAs) to be markers in osteosarcoma (OS) is still elusive. In this study we performed a systematic review to identify thirteen c-lncRNAs whose altered expression in blood associate with OS. We herein discuss the potential impact that these c-lncRNAs may have on clinical decision-making in the management of OS. Overall, we aimed to provide novel insights that can contribute to the development of future precision medicine in oncology.
Collapse
|
11
|
Cheng M, Sun L, Huang K, Yue X, Chen J, Zhang Z, Zhao B, Bian E. A Signature of Nine lncRNA Methylated Genes Predicts Survival in Patients With Glioma. Front Oncol 2021; 11:646409. [PMID: 33828990 PMCID: PMC8019920 DOI: 10.3389/fonc.2021.646409] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Glioma is one of the most common malignant tumors of the central nervous system, and its prognosis is extremely poor. Aberrant methylation of lncRNA promoter region is significantly associated with the prognosis of glioma patients. In this study, we investigated the potential impact of methylation of lncRNA promoter region in glioma patients to establish a signature of nine lncRNA methylated genes for determining glioma patient prognosis. Methylation data and clinical follow-up data were obtained from The Cancer Genome Atlas (TCGA). The multistep screening strategy identified nine lncRNA methylated genes that were significantly associated with the overall survival (OS) of glioma patients. Subsequently, we constructed a risk signature that containing nine lncRNA methylated genes. The risk signature successfully divided the glioma patients into high-risk and low-risk groups. Compared with the low-risk group, the high-risk group had a worse prognosis, higher glioma grade, and older age. Furthermore, we identified two lncRNAs termed PCBP1-AS1 and LINC02875 that may be involved in the malignant progression of glioma cells by using the TCGA database. Loss-of-function assays confirmed that knockdown of PCBP1-AS1 and LINC02875 inhibited the proliferation, migration, and invasion of glioma cells. Therefore, the nine lncRNA methylated genes signature may provide a novel predictor and therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Libo Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Kebing Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Jie Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhengwei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Interaction between non-coding RNAs and JNK in human disorders. Biomed Pharmacother 2021; 138:111497. [PMID: 33735819 DOI: 10.1016/j.biopha.2021.111497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
Jun N-terminal Kinase (JNK) signaling pathway is a conserved cascade among species with particular roles in diverse processes during embryogenesis and normal life. These kinases regulate functions of neurons and the immune system by affecting the expression of genes, modulating the arrangement of cytoskeletal proteins, and regulating apoptosis/survival pathways. They are also involved in carcinogenesis. Several miRNAs and lncRNAs have a functional relationship with JNKs. This interaction contributes to the pathogenesis of traumatic brain injury, ulcerative colitis, hepatic ischemia/ reperfusion injury, acute myocardial infarction, and a number of other disorders. Lung cancer, hepatocellular carcinoma, gall bladder cancer, melanoma, and colon cancer are among malignant conditions in which JNK-related miRNAs/ lncRNAs contribute. The current review aims at depicting the functional interaction between JNKs and lncRNAs/ miRNAs and describing the role of these regulatory transcripts in the pathobiology of human disorders.
Collapse
|