1
|
Wang H, Han J, Dmitrii G, Zhang XA. Potential Targets of Natural Products for Improving Cardiac Ischemic Injury: The Role of Nrf2 Signaling Transduction. Molecules 2024; 29:2005. [PMID: 38731496 PMCID: PMC11085255 DOI: 10.3390/molecules29092005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Myocardial ischemia is the leading cause of health loss from cardiovascular disease worldwide. Myocardial ischemia and hypoxia during exercise trigger the risk of sudden exercise death which, in severe cases, will further lead to myocardial infarction. The Nrf2 transcription factor is an important antioxidant regulator that is extensively engaged in biological processes such as oxidative stress, inflammatory response, apoptosis, and mitochondrial malfunction. It has a significant role in the prevention and treatment of several cardiovascular illnesses, since it can control not only the expression of several antioxidant genes, but also the target genes of associated pathological processes. Therefore, targeting Nrf2 will have great potential in the treatment of myocardial ischemic injury. Natural products are widely used to treat myocardial ischemic diseases because of their few side effects. A large number of studies have shown that the Nrf2 transcription factor can be used as an important way for natural products to alleviate myocardial ischemia. However, the specific role and related mechanism of Nrf2 in mediating natural products in the treatment of myocardial ischemia is still unclear. Therefore, this review combs the key role and possible mechanism of Nrf2 in myocardial ischemic injury, and emphatically summarizes the significant role of natural products in treating myocardial ischemic symptoms, thus providing a broad foundation for clinical transformation.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Gorbachev Dmitrii
- General Hygiene Department, Samara State Medical University, Samara 443000, Russia;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| |
Collapse
|
2
|
Liu CX, Guo XY, Zhou YB, Wang H. Therapeutic Role of Chinese Medicine Targeting Nrf2/HO-1 Signaling Pathway in Myocardial Ischemia/Reperfusion Injury. Chin J Integr Med 2024:10.1007/s11655-024-3657-0. [PMID: 38329655 DOI: 10.1007/s11655-024-3657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
Acute myocardial infarction (AMI), characterized by high incidence and mortality rates, poses a significant public health threat. Reperfusion therapy, though the preferred treatment for AMI, often exacerbates cardiac damage, leading to myocardial ischemia/reperfusion injury (MI/RI). Consequently, the development of strategies to reduce MI/RI is an urgent priority in cardiovascular therapy. Chinese medicine, recognized for its multi-component, multi-pathway, and multi-target capabilities, provides a novel approach for alleviating MI/RI. A key area of interest is the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. This pathway is instrumental in regulating inflammatory responses, oxidative stress, apoptosis, endoplasmic reticulum stress, and ferroptosis in MI/RI. This paper presents a comprehensive overview of the Nrf2/HO-1 signaling pathway's structure and its influence on MI/RI. Additionally, it reviews the latest research on leveraging Chinese medicine to modulate the Nrf2/HO-1 pathway in MI/RI treatment.
Collapse
Affiliation(s)
- Chang-Xing Liu
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xin-Yi Guo
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Ya-Bin Zhou
- Department of Cardiology, the First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - He Wang
- Department of Cardiology, the First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
3
|
Chu H, Fan X, Zhang Z, Han L. miR-199a-5p inhibits aortic valve calcification by targeting ATF6 and GRP78 in valve interstitial cells. Open Med (Wars) 2023; 18:20230777. [PMID: 37693833 PMCID: PMC10487378 DOI: 10.1515/med-2023-0777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/25/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is an important cause of disease burden among aging populations. Excessive active endoplasmic reticulum stress (ERS) was demonstrated to promote CAVD. The expression level of miR-199a-5p in patients with CAVD was reported to be downregulated. In this article, we aimed to investigate the function and mechanism of miR-199a-5p in CAVD. The expression level of miR-199a-5p and ERS markers was identified in calcific aortic valve samples and osteogenic induction by real-time quantitative polymerase chain reaction (RT-qPCR), immunohistochemistry, and western blotting (WB). Alizarin red staining, RT-qPCR, and WB were used for the verification of the function of miR-199a-5p. The dual luciferase reporter assay and rescue experiment were conducted to illuminate the mechanism of miR-199a-5p. In our study, the expression level of miR-199a-5p was significantly decreased in calcified aortic valves and valve interstitial cells' (VICs) osteogenic induction model, accompanying with the upregulation of ERS markers. Overexpression of miR-199a-5p suppressed the osteogenic differentiation of VICs, while downregulation of miR-199a-5p promoted this function. 78 kDa glucose-regulated protein (GRP78) and activating transcription factor 6 (ATF6), both of which were pivotal modulators in ERS, were potential targets of miR-199a-5p. miR-199a-5p directly targeted GRP78 and ATF6 to modulate osteoblastic differentiation of VICs. miR-199a-5p inhibits osteogenic differentiation of VICs by regulating ERS via targeting GRP78 and ATF6.
Collapse
Affiliation(s)
- Heng Chu
- Department of Thoracic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, 266000, China
| | - XingLi Fan
- Department of Cardiovascular Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai200433, China
| | - Zhe Zhang
- Department of Thoracic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), No. 1 Jiaozhou Road, Shibei District,, Qingdao, Shandong, 266000, China
| | - Lin Han
- Department of Cardiovascular Surgery, Changhai Hospital Affiliated to Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai200433, China
| |
Collapse
|
4
|
Huang H, Tang N, Li Y, Huo Q, Chen Q, Meng Q. The role of CNPY2 in endothelial injury and inflammation during the progress of atherosclerosis. J Mol Histol 2023:10.1007/s10735-023-10122-z. [PMID: 37103758 DOI: 10.1007/s10735-023-10122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/02/2023] [Indexed: 04/28/2023]
Abstract
Vascular endothelial cells (VECs) injury is closely related to the occurrence and development of atherosclerosis. Canopy FGF signaling regulator 2 (CNPY2), a novel unfolded protein response promoter, has been reported to activate the PERK-CHOP pathway. This study aimed to explore whether CNPY2 is associated with atherosclerosis mediated by VEC injury. By establishing ApoE-/- mouse atherosclerosis model and oxidized low-density lipoprotein (ox-LDL) cell model, we found that CNPY2 was abnormally highly expressed in ApoE-/- mice and ox-LDL-induced mouse aortic endothelial cells (MAECs). Exogenous CNPY2 can significantly aggravate the activation, inflammation, and apoptosis of MAECs induced by ox-LDL and promote the activation of PERK/eIF2α/CHOP signal. The PERK inhibitor GSK2606414 can inhibit CNPY2-induced MAECs injury and PERK signal activation. In addition, in vivo animal experiments furtherly confirmed that CNPY2 could aggravate the process of atherosclerosis in ApoE-/- mice by activating PERK signaling. In conclusion, this study indicated that high level of CNPY2 induces VECs injury by activating PERK signaling and thus participating in the progress of atherosclerosis.
Collapse
Affiliation(s)
- Hong Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P.R. China
- Department of Geriatric Medicine, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, P.R. China
| | - Ning Tang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, 650032, P.R. China
| | - Yan Li
- Department of Geriatric Medicine, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, P.R. China
| | - Qian Huo
- Department of Geriatric Medicine, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, P.R. China
| | - Qiang Chen
- Department of Geriatric Medicine, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, P.R. China
| | - Qiang Meng
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, 650032, P.R. China.
- The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China.
| |
Collapse
|
5
|
Li K, Li Y, Ding H, Chen J, Zhang X. Metal-Binding Proteins Cross-Linking with Endoplasmic Reticulum Stress in Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:jcdd10040171. [PMID: 37103050 PMCID: PMC10143100 DOI: 10.3390/jcdd10040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
The endoplasmic reticulum (ER), an essential organelle in eukaryotic cells, is widely distributed in myocardial cells. The ER is where secreted protein synthesis, folding, post-translational modification, and transport are all carried out. It is also where calcium homeostasis, lipid synthesis, and other processes that are crucial for normal biological cell functioning are regulated. We are concerned that ER stress (ERS) is widespread in various damaged cells. To protect cells' function, ERS reduces the accumulation of misfolded proteins by activating the unfolded protein response (UPR) pathway in response to numerous stimulating factors, such as ischemia or hypoxia, metabolic disorders, and inflammation. If these stimulatory factors are not eliminated for a long time, resulting in the persistence of the UPR, it will aggravate cell damage through a series of mechanisms. In the cardiovascular system, it will cause related cardiovascular diseases and seriously endanger human health. Furthermore, there has been a growing number of studies on the antioxidative stress role of metal-binding proteins. We observed that a variety of metal-binding proteins can inhibit ERS and, hence, mitigate myocardial damage.
Collapse
Affiliation(s)
- Kejuan Li
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Hong Ding
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Jianshu Chen
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| |
Collapse
|
6
|
Fu W, Xiao Z, Chen Y, Pei J, Sun Y, Zhang Z, Wu H, Pei Y, Wei S, Wang Y, Wang D. Molecular integrative study on interaction domains of nuclear factor erythroid 2-related factor 2 with sirtuin 6. Biochimie 2023; 211:68-77. [PMID: 36924820 DOI: 10.1016/j.biochi.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Oxidative stress is one of the elements causing aging and related diseases. Inhibiting Nrf2 activity or increasing oxidative pressure can replicate the deficits of premature aging. SIRT6 is one of the few proteins that can regulate both life span and aging. Deletion of SIRT6 in human cells impairs the antioxidant capacity of cells, which results in the accumulation of intracellular reactive oxygen species and DNA oxidation products. Characterization of the binding of Nrf2 with SIRT6 is critical for understanding the modulation of Nrf2-correlated cell activities by SIRT6. The yeast two-hybrid experiments showed that the binding of Nrf2 with SIRT6 is mediated by Neh1 and Neh3 domains. The elimination of the Neh1 and Neh3 domains decreased the binding stability and free energy, according to the molecular dynamic analysis. The roles of theses domains in mediating the binding were confirmed by co-immunoprecipitation. In cells transfected with the small interfering RNA (siRNA) targeting the Nrf2 Neh1 domain and plasmids overexpressing domain-mutant Nrf2, it was discovered that Nrf2 lost its activity to stimulate the transcription of antioxidant genes in the absence of Neh1 and Neh3 domains.
Collapse
Affiliation(s)
- Wanmeng Fu
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Zhengpan Xiao
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Yibo Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jinli Pei
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yan Sun
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Zhuandan Zhang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Hao Wu
- Central Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315046, China
| | - Yechun Pei
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Shuangshuang Wei
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Yuerong Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Haikou, Hainan, 570228, China; One Health Collaborative Innovation Center, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
7
|
Zhou K, Xiao J, Wang H, Ni B, Huang J, Long X. Estradiol regulates oxidative stress and angiogenesis of myocardial microvascular endothelial cells via the CDK1/CDK2 pathway. Heliyon 2023; 9:e14305. [PMID: 36942258 PMCID: PMC10023923 DOI: 10.1016/j.heliyon.2023.e14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death, morbidity, and disability. Recently, it has been reported that gonadal hormones such as estradiol can act on membrane receptors and activate intracellular signaling mechanisms, thereby altering cellular function. This study aims to explore the function and molecular mechanism of estradiol on cardiac microvascular endothelial cells (CMVECs). Estradiol had low toxicity to CMVECs. Hypoxia/reoxygenation (H/R) stimulation inhibited the proliferation and migration of CMVECs, while estradiol significantly promoted proliferation and migration. Estradiol inhibited il-1, IL6, and TNF-α secretion levels after H/R stimulation. Meanwhile, estradiol inhibits oxidative stress and promotes angiogenesis. Further, estradiol upregulated the gene and protein levels of cyclin-dependent kinases 1 (CDK1) and CDK2 after H/R stimulation. When knocking down CDK1 and CDK2 of CMVECs, estradiol did not affect the protein expression of Cyclin E1 and Cyclin D1. Meanwhile, the regulatory effect of estradiol on oxidative stress, angiogenesis, and inflammatory response was significantly weakened or even disappeared. In conclusion, estradiol mediates oxidative stress and angiogenesis of myocardial microvascular endothelial cells by regulating the CDK/cyclin signaling pathway.
Collapse
Affiliation(s)
- Ke Zhou
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jun Xiao
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
- Corresponding author.
| | - Hao Wang
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Bing Ni
- Institute of Immunology of Army Medical University, Chongqing, 400014, China
| | - Jietao Huang
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xueyuan Long
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
| |
Collapse
|
8
|
Cardiac-specific overexpression of Claudin-5 exerts protection against myocardial ischemia and reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166535. [PMID: 36058416 DOI: 10.1016/j.bbadis.2022.166535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
Claudin-5 has recently attracted increasing attention by its potential as a novel treatment target in the early stage of heart failure. However, whether Claudin-5 produces beneficial effects on myocardial ischemia and reperfusion (IR) injury has not been elucidated yet. In this study, we identified reduced levels of Claudin-5 in the hearts of mice subjected to acute myocardial IR injury and murine HL-1 cardiomyocytes subjected to hypoxia and reoxygenation (HR). We then constructed cardiac-specific Cldn5-overexpressing mice using an adeno-associated virus (AAV9) vector and demonstrated that Cldn5 overexpression ameliorated cardiac dysfunction and myocardial damage in mice subjected to myocardial IR injury. Moreover, Cldn5 overexpression attenuated myocardial oxidative stress (DHE and protein levels of Nrf2, HO-1, and NQO1), inflammatory response (levels of MPO, F4/80, Ly6C, and circulating inflammatory cells), mitochondrial dysfunction (protein levels of PGC-1α, NRF1, and TFAM), endoplasmic reticulum stress (protein levels of GRP78, ATF6, and CHOP and p-PERK), energy metabolism disorder (p-AMPK and ACC), and apoptosis (TUNEL assay and protein levels of Bax and Bcl2) in mice subjected to myocardial IR. Next, we generated Cldn5 knockdown cells by lentiviral shRNA and observed that Cldn5 knockdown inhibited cell viability and affected the expression or activation of these IR-related signalings in HL-1 cardiomyocytes subjected to HR. Mechanistically, SIRT1 was proved to be involved in regulating the expression of Claudin-5 by co-immunoprecipitation analysis and Sirt1 knockdown experiments. Our data demonstrated that targeting Claudin-5 may represent a promising approach for preventing and treating acute myocardial IR injury.
Collapse
|
9
|
Yu Y, Sun Q, Li T, Ren X, Lin L, Sun M, Duan J, Sun Z. Adverse outcome pathway of fine particulate matter leading to increased cardiovascular morbidity and mortality: An integrated perspective from toxicology and epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128368. [PMID: 35149491 DOI: 10.1016/j.jhazmat.2022.128368] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Fine particulate matter (PM2.5) exposure is a major threat to public health, and is listed as one of the leading factors associated with global premature mortality. Among the adverse health effects on multiple organs or tissues, the influence of PM2.5 exposure on cardiovascular system has drawn more and more attention. Although numerous studies have investigated the mechanisms responsible for the cardiovascular toxicity of PM2.5, the various mechanisms have not been integrated due to the variety of the study models, different levels of toxicity assessment endpoints, etc. Adverse Outcome Pathway (AOP) framework is a useful tool to achieve this goal so as to facilitate comprehensive understanding of toxicity assessment of PM2.5 on cardiovascular system. This review aims to illustrate the causal mechanistic relationships of PM2.5-triggered cardiovascular toxicity from different levels (from molecular/cellular/organ to individual/population) by using AOP framework. Based on the AOP Wiki and published literature, we propose an AOP framework focusing on the cardiovascular toxicity induced by PM2.5 exposure. The molecular initiating event (MIE) is identified as reactive oxygen species generation, followed by the key events (KEs) of oxidative damage and mitochondria dysfunction, which induces vascular endothelial dysfunction via vascular endothelial cell autophagy dysfunction, vascular fibrosis via vascular smooth muscle cell activation, cardiac dysregulation via myocardial apoptosis, and cardiac fibrosis via fibroblast proliferation and myofibroblast differentiation, respectively; all of the above cardiovascular injuries ultimately elevate cardiovascular morbidity and mortality in the general population. As far as we know, this is the first work on PM2.5-related cardiovascular AOP construction. In the future, more work needs to be done to explore new markers in the safety assessment of cardiovascular toxicity induced by PM2.5.
Collapse
Affiliation(s)
- Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
10
|
Isoflavones from Semen Sojae Preparatum Improve Atherosclerosis and Oxidative Stress by Modulating Nrf2 Signaling Pathway through Estrogen-Like Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4242099. [PMID: 35432565 PMCID: PMC9010186 DOI: 10.1155/2022/4242099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022]
Abstract
Atherosclerosis (AS) often occurs in cardiovascular disease, which is a chronic vascular disease and is harmful to human health. Oxidative stress is involved in its etiology. This study aimed to determine the effectiveness of Isoflavones from semen sojae preparatum (ISSP) in inhibiting oxidative stress and its important molecular mechanisms through in vivo and in vitro experiments. ApoE−/− mice were used to establish atherosclerosis models through a high-fat diet, and endothelial cells were used to establish oxidative stress injury models through ox-LDL induction. The degree of oxidative stress damage was assessed by detecting changes in ET-1, LDH, SOD, and MDA indicators. It was observed that after ISSP treatment, the oxidative stress damage of mice and endothelial cells was improved. The Nrf2/AER signaling pathway is an important antioxidant pathway that has attracted our attention. Western blotting and qRT-PCR were used to detect the expression of Nrf2, HO-1, and NQO1 in mice aortae and endothelial cells. The results showed that the Nrf2 signaling pathway was activated after ISSP intervention. In addition, in this study, after preantagonizing the estrogen receptors GPR30 and ERβ, it was observed that the effects of ISSP in treating endothelial cell oxidative damage and activating the Nrf2 signaling pathway were weakened. After silencing Nrf2 by Nrf2-siRNA transfection, the effect of ISSP in treating endothelial cell oxidative damage was inhibited. This study shows that ISSP may reduce oxidative stress damage and atherosclerosis through the Nrf2 signaling pathway, and this effect may involve the GPR30 and ERβ estrogen receptors.
Collapse
|
11
|
Zhang S, Li J, Nong X, Zhan Y, Xu J, Zhao D, Ma C, Wang Y, Li Y, Li Z, Li J. Artesunate Combined With Metformin Ameliorate on Diabetes-Induced Xerostomia by Mitigating Superior Salivatory Nucleus and Salivary Glands Injury in Type 2 Diabetic Rats via the PI3K/AKT Pathway. Front Pharmacol 2022; 12:774674. [PMID: 34987398 PMCID: PMC8722737 DOI: 10.3389/fphar.2021.774674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
Polydipsia and xerostomia are the most common complications that seriously affect oral health in patients with diabetes. However, to date, there is no effective treatment for diabetic xerostomia. Recent studies have reported that artesunate (ART) and metformin (Met) improve salivary gland (SG) hypofunction in murine Sjögren's syndrome. Therefore, aim of this study was to investigate the effect and underlying mechanism of artesunate (ART) alone and in combination with metformin (Met) on hyposalivation in type 2 diabetes mellitus (T2DM) rats. T2DM rats were induced using a high-fat diet and streptozotocin. SPF male Sprague-Dawley rats were divided into the following five groups: normal control group, untreated diabetic group, ART-treated diabetic group (50 mg/kg), Met-treated diabetic group (150 mg/kg), and ART/Met co-treated diabetic group (50 mg/kg ART and 150 mg/kg Met). ART and Met were intragastrically administered daily for 4 weeks. The general conditions, diabetes parameters and serum lipids were evaluated after drug treatment. Furthermore, we observed changes in the central superior salivatory nucleus (SSN) and SG, and changes in the AQP5 expression, parasympathetic innervation (AChE and BDNF expression), and PI3K/AKT pathway- (p-AKT, and p-PI3K), apoptosis- (Bax, Bcl-2, and Caspase3), and autophagy- (LC3 and P62) related markers expression in T2DM rats after treatment. Our results showed that ART or Met alone and ART/Met combination attenuated a range of diabetic symptoms, including weight loss, urine volume increase, water consumption increase, hyperglycemia, insulin resistance, glucose intolerance and dyslipidemia. More importantly, we found that these three treatments, especially ART/Met combination, mitigated hyposalivation in the T2DM rats via improving the central SSN and SGs damage in hyperglycemia. Our data also indicated that ART/Met attenuated SG damage though regulating the PI3K/Akt pathway to inhibit apoptosis and autophagy of SGs in the T2DM rats. Moreover, ART/Met preserved parasympathetic innervation (AChE and BDNF expression) in SGs to alleviate diabetes-induced hyposalivation likely through rescuing central SSN damage. Taken together, these findings might provide a novel rationale and treatment strategy for future treatment of diabetes-induced xerostomia in the clinic.
Collapse
Affiliation(s)
- Siqin Zhang
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Jiarui Li
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Xiaolin Nong
- College of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Yuxiang Zhan
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Jiazhi Xu
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Danni Zhao
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Chubin Ma
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Yuchen Wang
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Yixing Li
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Zhan Li
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Jiaquan Li
- Medical Science Research Center, Guangxi Medical University, Nanning, China.,Life Science Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Wang M, Gao B, Wang X, Li W, Feng Y. Enzyme-responsive strategy as a prospective cue to construct intelligent biomaterials for disease diagnosis and therapy. Biomater Sci 2022; 10:1883-1903. [DOI: 10.1039/d2bm00067a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive materials have been widely studied and applied in biomedical field. Under the stimulation of enzymes, the enzyme-responsive materials (ERMs) can be triggered to change their structures, properties and functions....
Collapse
|
13
|
Wang X, Liu J, Tian R, Zheng B, Li C, Huang L, Lu Z, Zhang J, Mao W, Liu B, Bao K, Xu P. Sanqi Oral Solution Mitigates Proteinuria in Rat Passive Heymann Nephritis and Blocks Podocyte Apoptosis via Nrf2/HO-1 Pathway. Front Pharmacol 2021; 12:727874. [PMID: 34867334 PMCID: PMC8640486 DOI: 10.3389/fphar.2021.727874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
Idiopathic membranous nephropathy (IMN) is the most common pathological type in adult nephrotic syndrome where podocyte apoptosis was found to mediate the development of proteinuria. Sanqi oral solution (SQ), an effective Chinese herbal preparation clinically used in treatment of IMN for decades, plays an important role in reducing proteinuria, but the underlying mechanisms have not been fully elucidated yet. The current study tested the hypothesis that SQ directly lessens proteinuria in IMN by reducing podocyte apoptosis. To investigate the effects of SQ, we established the experimental passive Heymann nephritis (PHN) rat model induced by anti-Fx1A antiserum in vivo and doxorubicin hydrochloride (ADR)-injured apoptotic podocyte model in vitro. SQ intervention dramatically reduced the level of proteinuria, together with the rat anti-rabbit IgG antibodies, complement C3, and C5b-9 deposition in glomerulus of PHN rats, accompanied by an elevation of serum albumin. Protein expression of synaptopodin, marker of podocyte injury, restored after SQ administration, whereas the electron microscopic analysis indicated that fusion of foot processes, and the pachynsis of glomerular basement membrane was markedly diminished. Further studies showed that SQ treatment could significantly inhibit podocyte apoptosis in PHN rats and ADR-injured podocytes, and protein levels of Cleaved Caspase-3 or the ratio of Bax/Bcl-2 were significantly decreased with SQ treatment in vivo or in vitro. Moreover, we found that the nuclear factor erythroid 2–related factor-2/heme oxygenase 1 (Nrf2/HO-1) pathway mediated the anti-apoptosis effective of SQ in podocyte. Thus, SQ mitigates podocyte apoptosis and proteinuria in PHN rats via the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Xiaowan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Jinchu Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ruimin Tian
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Bidan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuang Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Lihua Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhisheng Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Bo Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Kun Bao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Peng Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
14
|
5-Aminolevulinic Acid Attenuates Glucose-Regulated Protein 78 Expression and Hepatocyte Lipoapoptosis via Heme Oxygenase-1 Induction. Int J Mol Sci 2021; 22:ijms222111405. [PMID: 34768836 PMCID: PMC8584191 DOI: 10.3390/ijms222111405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in the progression of steatohepatitis. 5-aminolevulinic acid (5-ALA), a precursor in the heme biosynthetic pathway, has recently been reported to induce heme oxygenase (HO)-1. HO-1 exerts important cytoprotective actions. In this study, we aimed to explore the therapeutic potential of 5-ALA on palmitate-induced ER stress and lipoapoptosis. Huh-7 cells were treated with palmitic acid (PA) (800 μM) to induce steatosis for eight hours. Steatosis was evaluated by Lipi-green staining. 5-ALA (200 μM) was added with PA. The gene expression levels of the nuclear factor erythroid 2-related factor 2 (NRF2), HO-1, Glucose-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), PKR-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), C/EBP homologous protein (CHOP), and B-cell lymphoma 2 (BCL-2) were evaluated by RT-PCR. Caspase-3/7 activity was evaluated by fluorescein active Caspase-3/7 staining. Cell death was evaluated by Annexin V/SYTOX green staining. PA significantly induced steatosis and increased GRP78 expression in Huh-7 cells. 5-ALA significantly induced HO-1 and decreased GRP78 expression. ATF6 was subsequently decreased. However, NRF2 and CHOP expression were not altered. Anti-apoptotic BCL-2 expression significantly increased, and Caspase 3/7 activity and cell death also decreased. 5-ALA has a therapeutic potential on hepatic steatosis by suppressing ER stress and lipoapoptosis by attenuating GRP78 via HO-1 induction.
Collapse
|
15
|
Sesamin Protects against and Ameliorates Rat Intestinal Ischemia/Reperfusion Injury with Involvement of Activating Nrf2/HO-1/NQO1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5147069. [PMID: 34630849 PMCID: PMC8494576 DOI: 10.1155/2021/5147069] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023]
Abstract
Intestinal ischemia-reperfusion (I/R) may induce cell/tissue injuries, leading to multiple organ failure. Based on our preexperiments, we proposed that sesamin could protect against and ameliorate intestinal I/R injuries and related disorders with involvement of activating Nrf2 signaling pathway. This proposal was evaluated using SD intestinal I/R injury rats in vivo and hypoxia/reoxygenation- (H/R-) injured rat small intestinal crypt epithelial cell line (IEC-6 cells) in vitro. Sesamin significantly alleviated I/R-induced intestinal histopathological injuries and significantly reduced serum biochemical indicators ALT and AST, alleviating I/R-induced intestinal injury in rats. Sesamin also significantly reversed I/R-increased TNF-α, IL-6, IL-1β, and MPO activity in serum and MDA in tissues and I/R-decreased GSH in tissues and SOD in both tissues and IEC-6 cells, indicating its anti-inflammatory and antioxidative stress effects. Further, sesamin significantly decreased TUNEL-positive cells, downregulated the increased Bax and caspase-3 protein expression, upregulated the decreased protein expression of Bcl-2 in I/R-injured intestinal tissues, and significantly reversed H/R-reduced IEC-6 cell viability as well as reduced the number of apoptotic cells among H/R-injured IEC-6 cell, showing antiapoptotic effects. Activation of Nrf2 is known to ameliorate tissue/cell injuries. Consistent with sesamin-induced ameliorations of both intestinal I/R injuries and H/R injuries, transfection of Nrf2 cDNA significantly upregulated the expression of Nrf2, HO-1, and NQO1, respectively. On the contrary, either Nrf2 inhibitor (ML385) or Nrf2 siRNA transfection significantly decreased the expression of these proteins. Our results suggest that activation of the Nrf2/HO-1/NQO1 signaling pathway is involved in sesamin-induced anti-inflammatory, antioxidative, and antiapoptotic effects in protection against and amelioration of intestinal I/R injuries.
Collapse
|
16
|
Aconitine Induces TRPV2-Mediated Ca 2+ Influx through the p38 MAPK Signal and Promotes Cardiomyocyte Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9567056. [PMID: 34512785 PMCID: PMC8426055 DOI: 10.1155/2021/9567056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022]
Abstract
Aconitine is the main effective component of traditional Chinese medicine Aconitum, which has been proved to have severe cardiovascular toxicity. The toxic effect of aconitine on cardiomyocytes is related to intracellular calcium overload, but the mechanism remains unclear. The aim of this study was to explore the mechanism of aconitine inducing intracellular Ca2+ overload and promoting H9c2 cardiomyocyte apoptosis through transient receptor potential cation channel subfamily V member 2 (TRPV2). After treated with different concentrations of aconitine, the level of cell apoptosis, intracellular Ca2+, and expression of p-p38 MAPK and TRPV2 of H9c2 cardiomyocytes were detected. The results showed that aconitine induced Ca2+ influx and H9c2 cardiomyocyte apoptosis in a dose-dependent manner and promoted p38 MAPK activation as well as TRPV2 expression and plasma membrane (PM) metastasis. siTRPV2, tranilast, and SB202190 reversed intracellular Ca2+ overload and H9c2 cardiomyocyte apoptosis induced by aconitine. These results suggested that aconitine promoted TRPV2 expression and PM metastasis through p38 MAPK signaling, thus inducing intracellular Ca2+ overload and cardiomyocyte apoptosis. Furthermore, TRPV2 is a potential molecular target for the treatment of aconitine poisoning.
Collapse
|
17
|
Wang N, Ma J, Ma Y, Lu L, Ma C, Qin P, Gao E, Zuo M, Yang J, Yang L. Electroacupuncture Pretreatment Mitigates Myocardial Ischemia/Reperfusion Injury via XBP1/GRP78/Akt Pathway. Front Cardiovasc Med 2021; 8:629547. [PMID: 34195232 PMCID: PMC8236521 DOI: 10.3389/fcvm.2021.629547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/09/2021] [Indexed: 11/29/2022] Open
Abstract
Myocardial ischemia/reperfusion injury is a common clinical problem and can result in severe cardiac dysfunction. Previous studies have demonstrated the protection of electroacupuncture against myocardial ischemia/reperfusion injury. However, the role of X-box binding protein I (XBP1) signaling pathway in the protection of electroacupuncture was still elusive. Thus, we designed this study and demonstrated that electroacupuncture significantly improved cardiac function during myocardial ischemia/reperfusion injury and reduced cardiac infarct size. Electroacupuncture treatment further inhibited cardiac injury manifested by the decrease of the activities of serum lactate dehydrogenase and creatine kinase-MB. The results also revealed that electroacupuncture elevated the expressions of XBP1, glucose-regulated protein 78 (GRP78), Akt, and Bcl-2 and decreased the Bax and cleaved Caspase 3 expressions. By using the inhibitor of XBP1 in vitro, the results revealed that suppression of XBP1 expression could markedly increase the activities of lactate dehydrogenase and creatine kinase-MB and cell apoptosis, thus exacerbating stimulated ischemia/reperfusion-induced H9c2 cell injury. Compared with stimulated ischemia/reperfusion group, inhibition of XBP1 inhibited the downstream GRP78 and Akt expressions during stimulated ischemia/reperfusion injury. Collectively, our data demonstrated that electroacupuncture treatment activated XBP1/GRP78/Akt signaling to protect hearts from myocardial ischemia/reperfusion injury. These findings revealed the underlying mechanisms of electroacupuncture protection against myocardial ischemia/reperfusion injury and may provide novel therapeutic targets for the clinical treatment of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Nisha Wang
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yan Ma
- Department of Anaesthesiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Linhe Lu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Chao Ma
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Pei Qin
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Mingzhang Zuo
- Department of Anaesthesiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Lifang Yang
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Li N, Zhang T, He M, Mu Y. MeCP2 attenuates cardiomyocyte hypoxia/reperfusion-induced injury via regulation of the SFRP4/Wnt/β-catenin axis. Biomarkers 2021; 26:363-370. [PMID: 33726573 DOI: 10.1080/1354750x.2021.1903999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objective: Methylated CpG binding protein 2 (MeCP2) is closely associated with heart failure, but its role in I/R injury remains unclear. The purpose of this study was to explore the role and underling mechanism of MeCP2 in myocardial I/R injury.Methods: Hypoxia/reperfusion (H/R)-induced H9c2 cardiomyocytes was used to establish an in vitro I/R injury model. Oxidative stress was assessed by measuring reactive oxygen species (ROS) generation, malondialdehyde (MDA) content and superoxide dismutase (SOD) activity. Cell viability and cell cycle arrest were evaluated by the Cell Counting Kit-8 assay and cell cycle assay, respectively. Apoptosis was determined using flow cytometry analysis.Results: The expression of MeCP2 in H9c2 cells was decreased after H/R treatment. The overexpression of MeCP2 inhibited H/R-induced oxidative stress, cell cycle arrest and apoptosis of H9c2 cells. Moreover, MeCP2 inhibited the activation of secreted frizzled related protein 4 (SFRP4)/Wnt/β-catenin axis, and SFRP4 relieved the effect of MeCP2 on oxidative stress, cell cycle arrest and apoptosis in H/R-induced H9c2 cells.Conclusions: MeCP2 attenuated H/R-induced injury in H9c2 cardiomyocytes by modulating the SFRP4/Wnt/β-catenin axis, which suggested that MeCP2 might serve as a therapeutic target of patients with AMI after reperfusion.
Collapse
Affiliation(s)
- Nan Li
- Department of Cardiology, Xi'an Central Hospital, Xi'an, China
| | - Tao Zhang
- Department of Cardiology, Xi'an Central Hospital, Xi'an, China
| | - Mengying He
- Department of Center sterile supply, Xi'an Hospital of Traditional Chinese Medicine, Shaanxi, China
| | - Yudong Mu
- Department of Clinical Laboratory, Shaanxi Provincial Tumor Hospital, Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Ji H, Xiao F, Li S, Wei R, Yu F, Xu J. GRP78 effectively protect hypoxia/reperfusion-induced myocardial apoptosis via promotion of the Nrf2/HO-1 signaling pathway. J Cell Physiol 2020; 236:1228-1236. [PMID: 32657424 PMCID: PMC7754434 DOI: 10.1002/jcp.29929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/04/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
Abstract
Myocardial infarction is a major cause of death worldwide. Despite our understanding of the pathophysiology of myocardial infarction and the therapeutic options for treatment have improved substantially, acute myocardial infarction remains a leading cause of morbidity and mortality. Recent findings revealed that GRP78 could protect myocardial cells against ischemia reperfusion injury‐induced apoptosis, but the exact function and molecular mechanism remains unclear. In this study, we aimed to explore the effects of GRP78 on hypoxia/reperfusion (H/R)‐induced cardiomyocyte injury. Intriguingly, we first observed that GRP78 overexpression significantly protected myocytes from H/R‐induced apoptosis. On mechanism, our work revealed that GRP78 protected myocardial cells from hypoxia/reperfusion‐induced apoptosis via the activation of the Nrf2/HO‐1 signaling pathway. We observed the enhanced expression of Nrf2/HO‐1 in GRP78 overexpressed H9c2 cell, while GRP78 deficiency dramatically antagonized the expression of Nrf2/HO‐1. Furthermore, we found that blocked the Nrf2/HO‐1 signaling by the HO‐1 inhibitor zinc protoporphyrin IX (Znpp) significantly retrieved H9c2 cells apoptosis that inhibited by GRP78 overexpression. Taken together, our findings revealed a new mechanism by which GRP78 alleviated H/R‐induced cardiomyocyte apoptosis in H9c2 cells via the promotion of the Nrf2/HO‐1 signaling pathway.
Collapse
Affiliation(s)
- Heyu Ji
- Department of Anesthesiology, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Feng Xiao
- Department of Anesthesiology, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Suobei Li
- Department of Anesthesiology, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ruan Wei
- Department of Anesthesiology, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Fei Yu
- Department of Anesthesiology, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Department of AnesthesiologyAffiliated Hospital of Binzhou Medical UniversityBinzhouShandongChina
| | - Junmei Xu
- Department of Anesthesiology, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|