1
|
Hänze J, Mengen LM, Mernberger M, Tiwari DK, Plagge T, Nist A, Subtil FSB, Theiss U, Eberle F, Roth K, Lauth M, Hofmann R, Engenhart-Cabillic R, Stiewe T, Hegele A. Transcriptomic response of prostate cancer cells to carbon ion and photon irradiation with focus on androgen receptor and TP53 signaling. Radiat Oncol 2024; 19:85. [PMID: 38956684 PMCID: PMC11218163 DOI: 10.1186/s13014-024-02480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Radiotherapy is essential in the treatment of prostate cancer. An alternative to conventional photon radiotherapy is the application of carbon ions, which provide a superior intratumoral dose distribution and less induced damage to adjacent healthy tissue. A common characteristic of prostate cancer cells is their dependence on androgens which is exploited therapeutically by androgen deprivation therapy in the advanced prostate cancer stage. Here, we aimed to analyze the transcriptomic response of prostate cancer cells to irradiation by photons in comparison to carbon ions, focusing on DNA damage, DNA repair and androgen receptor signaling. METHODS Prostate cancer cell lines LNCaP (functional TP53 and androgen receptor signaling) and DU145 (dysfunctional TP53 and androgen receptor signaling) were irradiated by photons or carbon ions and the subsequent DNA damage was assessed by immuno-cytofluorescence. Furthermore, the cells were treated with an androgen-receptor agonist. The effects of irradiation and androgen treatment on the gene regulation and the transcriptome were investigated by RT-qPCR and RNA sequencing, followed by bioinformatic analysis. RESULTS Following photon or carbon ion irradiation, both LNCaP and DU145 cells showed a dose-dependent amount of visible DNA damage that decreased over time, indicating occurring DNA repair. In terms of gene regulation, mRNAs involved in the TP53-dependent DNA damage response were significantly upregulated by photons and carbon ions in LNCaP but not in DU145 cells, which generally showed low levels of gene regulation after irradiation. Both LNCaP and DU145 cells responded to photons and carbon ions by downregulation of genes involved in DNA repair and cell cycle, partially resembling the transcriptome response to the applied androgen receptor agonist. Neither photons nor carbon ions significantly affected canonical androgen receptor-dependent gene regulation. Furthermore, certain genes that were specifically regulated by either photon or carbon ion irradiation were identified. CONCLUSION Photon and carbon ion irradiation showed a significant congruence in terms of induced signaling pathways and transcriptomic responses. These responses were strongly impacted by the TP53 status. Nevertheless, irradiation mode-dependent distinct gene regulations with undefined implication for radiotherapy outcome were revealed. Androgen receptor signaling and irradiations shared regulation of certain genes with respect to DNA-repair and cell-cycle.
Collapse
Affiliation(s)
- Jörg Hänze
- Department of Urology, Faculty of Medicine, Philipps University Marburg, Baldingerstraße, 35043, Marburg, Germany.
| | - Lilly M Mengen
- Department of Urology, Faculty of Medicine, Philipps University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Dinesh Kumar Tiwari
- Department of Radiotherapy and Radiooncology, Philipps University Marburg, Marburg, Germany
| | - Thomas Plagge
- Department of Urology, Faculty of Medicine, Philipps University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Andrea Nist
- Institute of Molecular Oncology, Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Florentine S B Subtil
- Department of Radiotherapy and Radiooncology, Philipps University Marburg, Marburg, Germany
| | - Ulrike Theiss
- Department of Radiotherapy and Radiooncology, Philipps University Marburg, Marburg, Germany
- Marburg Ion-Beam Therapy Center (MIT), Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, Marburg, Germany
| | - Fabian Eberle
- Department of Radiotherapy and Radiooncology, Philipps University Marburg, Marburg, Germany
- Marburg Ion-Beam Therapy Center (MIT), Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, Marburg, Germany
| | - Katrin Roth
- Core Facility Cellular Imaging, Philipps University Marburg, Marburg, Germany
| | - Matthias Lauth
- Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany
| | - Rainer Hofmann
- Department of Urology, Faculty of Medicine, Philipps University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiooncology, Philipps University Marburg, Marburg, Germany
- Marburg Ion-Beam Therapy Center (MIT), Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Axel Hegele
- Department of Radiotherapy and Radiooncology, Philipps University Marburg, Marburg, Germany
- Urological Center Mittelhessen, DRK Hospital Biedenkopf, Biedenkopf, Germany
| |
Collapse
|
2
|
Wang D, Luo H, Chen Y, Ou Y, Dong M, Chen J, Liu R, Wang X, Zhang Q. 14-3-3σ downregulation sensitizes pancreatic cancer to carbon ions by suppressing the homologous recombination repair pathway. Aging (Albany NY) 2024; 16:9727-9752. [PMID: 38843383 PMCID: PMC11210243 DOI: 10.18632/aging.205896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/15/2024] [Indexed: 06/22/2024]
Abstract
This study explored the role of 14-3-3σ in carbon ion-irradiated pancreatic adenocarcinoma (PAAD) cells and xenografts and clarified the underlying mechanism. The clinical significance of 14-3-3σ in patients with PAAD was explored using publicly available databases. 14-3-3σ was silenced or overexpressed and combined with carbon ions to measure cell proliferation, cell cycle, and DNA damage repair. Immunoblotting and immunofluorescence (IF) assays were used to determine the underlying mechanisms of 14-3-3σ toward carbon ion radioresistance. We used the BALB/c mice to evaluate the biological behavior of 14-3-3σ in combination with carbon ions. Bioinformatic analysis revealed that PAAD expressed higher 14-3-3σ than normal pancreatic tissues; its overexpression was related to invasive clinicopathological features and a worse prognosis. Knockdown or overexpression of 14-3-3σ demonstrated that 14-3-3σ promoted the survival of PAAD cells after carbon ion irradiation. And 14-3-3σ was upregulated in PAAD cells during DNA damage (carbon ion irradiation, DNA damaging agent) and promotes cell recovery. We found that 14-3-3σ resulted in carbon ion radioresistance by promoting RPA2 and RAD51 accumulation in the nucleus in PAAD cells, thereby increasing homologous recombination repair (HRR) efficiency. Blocking the HR pathway consistently reduced 14-3-3σ overexpression-induced carbon ion radioresistance in PAAD cells. The enhanced radiosensitivity of 14-3-3σ depletion on carbon ion irradiation was also demonstrated in vivo. Altogether, 14-3-3σ functions in tumor progression and can be a potential target for developing biomarkers and treatment strategies for PAAD along with incorporating carbon ion irradiation.
Collapse
Affiliation(s)
- Dandan Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yanliang Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Yuhong Ou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Meng Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Junru Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Park S, Choi C, Kim H, Shin YJ, Oh Y, Park W, Cho WK, Kim N. Olaparib enhances sensitization of BRCA-proficient breast cancer cells to x-rays and protons. Breast Cancer Res Treat 2024; 203:449-461. [PMID: 37902934 DOI: 10.1007/s10549-023-07150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
PURPOSE This study aimed to compare the radiosensitizing effect of the PARP inhibitor, Olaparib, between proton and X-rays irradiations in BRCA-proficient breast cancer (BC) cells. METHODS Two BRCA-proficient BC cell lines, MDA-MB-231 and T47D BC, were used. Cell proliferation was assessed using the CCK-8 assay, and radiosensitivity was determined through the clonogenic survival assay. Flow cytometry was employed to analyze cell cycle distribution and apoptosis. The kinetics of DNA damage repair were evaluated using γH2AX immunofluorescence imaging and the comet assay. Tumor spheroid assays were conducted to test radiosensitivity in a three-dimensional culture condition. RESULTS Olaparib sensitized both MDA-MB-231 and T47D cells to proton and X-ray irradiation in the clonogenic assay. MDA-MB-231 cells exhibited a higher dose enhancement factor for Olaparib than T47D cells. Olaparib increased radiation-induced G2/M cell cycle arrest and apoptosis specifically in MDA-MB-231 cells. γH2AX immunostaining and the comet assay showed Olaparib augmented radiation-induced DNA damage and apoptosis. The enhancement effect of Olaparib was more pronounced in proton irradiation than in X-ray irradiation, particularly in MDA-MB-231 cells than T47D cells. Both radiation and Olaparib dose-dependently inhibited spheroid growth in both cell lines. The synergy scores demonstrated that Olaparib interacted more strongly with protons than X-rays. The addition of an ATR inhibitor further enhanced Olaparib-induced proton radiosensitization in MDA-MB-231 cells. CONCLUSION This study found that Olaparib enhanced radiation efficacy in BRCA-proficient breast cancer cells, with a more pronounced effect observed with proton irradiation compared to X-ray irradiation. Combining Olaparib with an ATR inhibitor increased the radiosensitizing effect of protons.
Collapse
Affiliation(s)
- Sohee Park
- Department of Radiation Oncology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| | - Haeyoung Kim
- Department of Radiation Oncology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Yong Jae Shin
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yunjeong Oh
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Won Park
- Department of Radiation Oncology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Kyung Cho
- Department of Radiation Oncology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| |
Collapse
|
4
|
Mladenov E, Mladenova V, Stuschke M, Iliakis G. New Facets of DNA Double Strand Break Repair: Radiation Dose as Key Determinant of HR versus c-NHEJ Engagement. Int J Mol Sci 2023; 24:14956. [PMID: 37834403 PMCID: PMC10573367 DOI: 10.3390/ijms241914956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Radiation therapy is an essential component of present-day cancer management, utilizing ionizing radiation (IR) of different modalities to mitigate cancer progression. IR functions by generating ionizations in cells that induce a plethora of DNA lesions. The most detrimental among them are the DNA double strand breaks (DSBs). In the course of evolution, cells of higher eukaryotes have evolved four major DSB repair pathways: classical non-homologous end joining (c-NHEJ), homologous recombination (HR), alternative end-joining (alt-EJ), and single strand annealing (SSA). These mechanistically distinct repair pathways have different cell cycle- and homology-dependencies but, surprisingly, they operate with widely different fidelity and kinetics and therefore contribute unequally to cell survival and genome maintenance. It is therefore reasonable to anticipate tight regulation and coordination in the engagement of these DSB repair pathway to achieve the maximum possible genomic stability. Here, we provide a state-of-the-art review of the accumulated knowledge on the molecular mechanisms underpinning these repair pathways, with emphasis on c-NHEJ and HR. We discuss factors and processes that have recently come to the fore. We outline mechanisms steering DSB repair pathway choice throughout the cell cycle, and highlight the critical role of DNA end resection in this process. Most importantly, however, we point out the strong preference for HR at low DSB loads, and thus low IR doses, for cells irradiated in the G2-phase of the cell cycle. We further explore the molecular underpinnings of transitions from high fidelity to low fidelity error-prone repair pathways and analyze the coordination and consequences of this transition on cell viability and genomic stability. Finally, we elaborate on how these advances may help in the development of improved cancer treatment protocols in radiation therapy.
Collapse
Affiliation(s)
- Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Veronika Mladenova
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
5
|
Zhang J, Xie Y, Liu X, Gan L, Li P, Dou Z, Di C, Zhang H, Si J. Carbon ions trigger DNA damage response to overcome radioresistance by regulating β-catenin signaling in quiescent HeLa cells. J Cell Physiol 2023; 238:1836-1849. [PMID: 37334439 DOI: 10.1002/jcp.31052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 06/20/2023]
Abstract
Quiescent cancer cells are major impediments to effective radiotherapy (RT) and exhibit limited sensitivity to traditional photon therapy. Herein, the functional role and underlying mechanism of carbon ions in overcoming the radioresistance of quiescent cervical cancer HeLa cells were determined. Briefly, serum withdrawal was used to induce synchronized quiescence in HeLa cells. Quiescent HeLa cells displayed strong radioresistance and DNA repair potential. After irradiation with carbon ions, the DNA damage repair pathway may markedly rely on error-prone nonhomologous end-joining in proliferating cells, whereas the high-precision homologous recombination pathway is more relevant in quiescent cells. This phenomenon could be explained by the ionizing radiation (IR)-induced cell cycle re-entry of quiescent cancer cells. There are three strategies for eradicating quiescent cancer cells using high-linear energy transfer (LET) carbon ions: direct cell death through complex DNA damage; apoptosis via an enhanced mitochondria-mediated intrinsic pathway; forced re-entry of quiescent cancer cells into the cell cycle, thereby improving their susceptibility to IR. Silencing β-catenin signaling is essential for maintaining the dormant state in quiescent cells. Herein, carbon ions activated the β-catenin pathway in quiescent cells, and inhibition of this pathway improved the resistance of quiescent HeLa cells to carbon ions by alleviating DNA damage, improving DNA damage repair, maintaining quiescent depth, and inhibiting apoptosis. Collectively, carbon ions conquer the radioresistance of quiescent HeLa cells by activating β-catenin signaling, which provides a theoretical basis for improved therapeutic effects in patients with middle-advanced-stage cervical cancer with radioresistance.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Yi Xie
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Xiaoyi Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lu Gan
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Pingping Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Zhihui Dou
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| |
Collapse
|
6
|
Vaniqui A, Vaassen F, Di Perri D, Eekers D, Compter I, Rinaldi I, van Elmpt W, Unipan M. Linear Energy Transfer and Relative Biological Effectiveness Investigation of Various Structures for a Cohort of Proton Patients With Brain Tumors. Adv Radiat Oncol 2023; 8:101128. [PMID: 36632089 PMCID: PMC9827037 DOI: 10.1016/j.adro.2022.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose The current knowledge on biological effects associated with proton therapy is limited. Therefore, we investigated the distributions of dose, dose-averaged linear energy transfer (LETd), and the product between dose and LETd (DLETd) for a patient cohort treated with proton therapy. Different treatment planning system features and visualization tools were explored. Methods and Materials For a cohort of 24 patients with brain tumors, the LETd, DLETd, and dose was calculated for a fixed relative biological effectiveness value and 2 variable models: plan-based and phenomenological. Dose threshold levels of 0, 5, and 20 Gy were imposed for LETd visualization. The relationship between physical dose and LETd and the frequency of LETd hotspots were investigated. Results The phenomenological relative biological effectiveness model presented consistently higher dose values. For lower dose thresholds, the LETd distribution was steered toward higher values related to low treatment doses. Differences up to 26.0% were found according to the threshold. Maximum LETd values were identified in the brain, periventricular space, and ventricles. An inverse relationship between LETd and dose was observed. Frequency information to the domain of dose and LETd allowed for the identification of clusters, which steer the mean LETd values, and the identification of higher, but sparse, LETd values. Conclusions Identifying, quantifying, and recording LET distributions in a standardized fashion is necessary, because concern exists over a link between toxicity and LET hotspots. Visualizing DLETd or dose × LETd during treatment planning could allow for clinicians to make informed decisions.
Collapse
Affiliation(s)
- Ana Vaniqui
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Femke Vaassen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Dario Di Perri
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daniëlle Eekers
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
7
|
Lohberger B, Glänzer D, Eck N, Kerschbaum-Gruber S, Mara E, Deycmar S, Madl T, Kashofer K, Georg P, Leithner A, Georg D. Activation of efficient DNA repair mechanisms after photon and proton irradiation of human chondrosarcoma cells. Sci Rep 2021; 11:24116. [PMID: 34916568 PMCID: PMC8677811 DOI: 10.1038/s41598-021-03529-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Although particle therapy with protons has proven to be beneficial in the treatment of chondrosarcoma compared to photon-based (X-ray) radiation therapy, the cellular and molecular mechanisms have not yet been sufficiently investigated. Cell viability and colony forming ability were analyzed after X-ray and proton irradiation (IR). Cell cycle was analyzed using flow cytometry and corresponding regulator genes and key players of the DNA repair mechanisms were measured using next generation sequencing, protein expression and immunofluorescence staining. Changes in metabolic phenotypes were determined with nuclear magnetic resonance spectroscopy. Both X-ray and proton IR resulted in reduced cell survival and a G2/M phase arrest of the cell cycle. Especially 1 h after IR, a significant dose-dependent increase of phosphorylated γH2AX foci was observed. This was accompanied with a reprogramming in cellular metabolism. Interestingly, within 24 h the majority of clearly visible DNA damages were repaired and the metabolic phenotype restored. Involved DNA repair mechanisms are, besides the homology directed repair (HDR) and the non-homologous end-joining (NHEJ), especially the mismatch mediated repair (MMR) pathway with the key players EXO1, MSH3, and PCNA. Chondrosarcoma cells regenerates the majority of DNA damages within 24 h. These molecular mechanisms represent an important basis for an improved therapy.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5-7, 8036, Graz, Austria.
| | - Dietmar Glänzer
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5-7, 8036, Graz, Austria
| | - Nicole Eck
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5-7, 8036, Graz, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, 1090, Vienna, Austria
- MedAustron Ion Therapy Center, 2700, Wiener Neustadt, Austria
| | - Elisabeth Mara
- MedAustron Ion Therapy Center, 2700, Wiener Neustadt, Austria
- University of Applied Science, 2700, Wiener Neustadt, Austria
| | - Simon Deycmar
- Laboratory for Applied Radiobiology, University Zurich, 8006, Zurich, Switzerland
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, Austria
- BioTechMed-Graz, 8010, Graz, Austria
| | - Karl Kashofer
- Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Petra Georg
- MedAustron Ion Therapy Center, 2700, Wiener Neustadt, Austria
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5-7, 8036, Graz, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, 1090, Vienna, Austria
- MedAustron Ion Therapy Center, 2700, Wiener Neustadt, Austria
| |
Collapse
|