1
|
Lai H, Yang Y, Zhang J. Advances in post-translational modifications and recurrent spontaneous abortion. Gene 2024; 927:148700. [PMID: 38880188 DOI: 10.1016/j.gene.2024.148700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Recurrent spontaneous abortion (RSA) is defined as two or more pregnancy loss, which affects approximately 1-2% of women's fertility. The etiology of RSA has not yet been fully revealed, which poses a great problem for clinical treatment. Post- translational modifications(PTMs) are chemical modifications that play a crucial role in the functional proteome. A considerable number of published studies have shown the relationship between post-translational modifications of various proteins and RSA. The study of PTMs contributes to elucidating the role of modified proteins in the pathogenesis of RSA, as well as the design of more effective diagnostic/prognostic tools and more targeted treatments. Most reviews in the field of RSA have only focused on RNA epigenomics research. The present review reports the latest research developments of PTMs related to RSA, such as glycosylation, phosphorylation, Methylation, Acetylation, Ubiquitination, etc.
Collapse
Affiliation(s)
- Hanhong Lai
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yi Yang
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Jun Zhang
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China.
| |
Collapse
|
2
|
Wang Z, Yan S, Liao S, Zhang Y, Wu S, Zhou M, Jin W, Zhang Y, Qi X, Yang C, Yang J, Ding J. Dysregulated lncSNHG12 suppresses the invasion and migration of trophoblasts by regulating Dio2/Snail axis to involve in recurrent spontaneous abortion. Biochem Pharmacol 2024; 229:116459. [PMID: 39098733 DOI: 10.1016/j.bcp.2024.116459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Recurrent spontaneous abortion (RSA) is a complex pathological process involving diverse factors, in which the dysregulated functions of trophoblasts cannot be ignored. Long noncoding RNA (lncRNA) has been reported to play a significant role in regulating the functions of trophoblasts in RSA. However, the impact and potential mechanism of lncRNA small nucleolar RNA host gene 12 (lncSNHG12) remain unclear. The role of lncSNHG12 in RSA was investigated through in vivo experiments and clinical samples. Co-IP and RNA pull down were conducted to explore the molecular mechanisms in trophoblasts. Our results showed that lncSNHG12 promoted the migration and invasion of trophoblasts by interacting with Iodothyronine deiodinase 2 (Dio2), which regulating the EMT process of trophoblasts by interacting with Snail. Moreover, in vivo experiments confirmed that lncSNHG12 could improve the fetal absorption rate of the abortion mice. The clinical samples revealed that lncSNHG12, Dio2 and Snail were down-regulated in the villous tissues of RSA patients, and positive correlations were confirmed between lncSNHG12 and Dio2, as well as Dio2 and Snail. In summary, the lncSNHG12/Dio2/Snail axis might be involved in the development of RSA by regulating the invasion and migration of trophoblasts. Abbreviations: RSA, recurrent spontaneous abortion; EVTs, extravillous trophoblasts; EMT, epithelial-to-mesenchymal transition; lncRNA, long non-coding RNA; Dio2, iodothyronine deiodinase 2; SNHGs, small nuclear RNA host genes; snoRNAs, small nuclear cell RNAs; LPS, lipopolysaccharide; De, derived decidua; Jz, junctional zone; Lz, labyrinth zones; RIP, RNA Binding Protein Immunoprecipitation; Co-IP, Co-Immunoprecipitation; RPISeq, RNA-Protein Interaction Prediction.
Collapse
Affiliation(s)
- Zehao Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China; Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Sisi Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China; Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shichong Liao
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shujuan Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Mengqi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Wenyi Jin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Yi Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Xinyu Qi
- China Department of Obstetrics and Gynecology, Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Third Hospital, Peking University, Beijing 100191, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center and The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan 430071, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China.
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China.
| |
Collapse
|
3
|
Xia S, Ye Y, Liu J, Qiu H, Lin M, He Z, Huang L, Wang M, Luo Y. The Role of MALAT1 in Regulating the Proangiogenic Functions, Invasion, and Migration of Trophoblasts in Selective Fetal Growth Restriction. Biomolecules 2024; 14:988. [PMID: 39199376 PMCID: PMC11352967 DOI: 10.3390/biom14080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Epigenetic regulation is an important entry point to study the pathogenesis of selective fetal growth restriction (sFGR), and an understanding of the role of long noncoding RNAs (lncRNAs) in sFGR is lacking. Our study aimed to investigate the potential role of a lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), in sFGR using molecular biology experiments and gain- or loss-of-function assays. We found that the levels of MALAT1, ERRγ, and HSD17B1 were downregulated and that of miR-424 was upregulated in the placental shares of the smaller twins. Moreover, angiogenesis was impaired in the placental share of the smaller fetus and MALAT1 could regulate the paracrine effects of trophoblasts on endothelium angiogenesis and proliferation by regulating miR-424. In trophoblasts, MALAT1 could competitively bind to miR-424 to regulate the expression of ERRγ and HSD17B1, thus regulating trophoblast invasion and migration. MALAT1 overexpression could decrease apoptosis and promote proliferation, alleviating cell damage induced by hypoxia. Taken together, the downregulation of MALAT1 can reduce the expression of ERRγ and HSD17B1 by competitively binding to miR-424, impairing the proangiogenic effect of trophoblasts, trophoblast invasion and migration, and the ability of trophoblasts to compensate for hypoxia, which may be involved in the pathogenesis of sFGR through various aspects.
Collapse
Affiliation(s)
- Shuting Xia
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Yingnan Ye
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Jialiu Liu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Hanfei Qiu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Minhuan Lin
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Zhiming He
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Linhuan Huang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Malie Wang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Yanmin Luo
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| |
Collapse
|
4
|
Chen Y, Ye Z, Lin M, Zhu L, Xu L, Wang X. Deciphering the Epigenetic Landscape: Placental Development and Its Role in Pregnancy Outcomes. Stem Cell Rev Rep 2024; 20:996-1014. [PMID: 38457061 DOI: 10.1007/s12015-024-10699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The placenta stands out as a unique, transitory, and multifaceted organ, essential to the optimal growth and maturation of the fetus. Functioning as a vital nexus between the maternal and fetal circulatory systems, it oversees the critical exchange of nutrients and waste. This exchange is facilitated by placental cells, known as trophoblasts, which adeptly invade and remodel uterine blood vessels. Deviations in placental development underpin a slew of pregnancy complications, notably fetal growth restriction (FGR), preeclampsia (PE), recurrent spontaneous abortions (RSA), and preterm birth. Central to placental function and development is epigenetic regulation. Despite its importance, the intricate mechanisms by which epigenetics influence the placenta are not entirely elucidated. Recently, the scientific community has turned its focus to parsing out the epigenetic alterations during placental development, such as variations in promoter DNA methylation, genomic imprints, and shifts in non-coding RNA expression. By establishing correlations between epigenetic shifts in the placenta and pregnancy complications, researchers are unearthing invaluable insights into the biology and pathophysiology of these conditions. This review seeks to synthesize the latest findings on placental epigenetic regulation, spotlighting its crucial role in shaping fetal growth trajectories and development. Through this lens, we underscore the overarching significance of the placenta in the larger narrative of gestational health.
Collapse
Affiliation(s)
- Yujia Chen
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Zhoujie Ye
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Meijia Lin
- Department of Pathology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Liping Zhu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China.
| |
Collapse
|
5
|
Lin Z, Wu S, Jiang Y, Chen Z, Huang X, Wen Z, Yuan Y. Unraveling the molecular mechanisms driving enhanced invasion capability of extravillous trophoblast cells: a comprehensive review. J Assist Reprod Genet 2024; 41:591-608. [PMID: 38315418 PMCID: PMC10957806 DOI: 10.1007/s10815-024-03036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Precise extravillous trophoblast (EVT) invasion is crucial for successful placentation and pregnancy. This review focuses on elucidating the mechanisms that promote heightened EVT invasion. We comprehensively summarize the pivotal roles of hormones, angiogenesis, hypoxia, stress, the extracellular matrix microenvironment, epithelial-to-mesenchymal transition (EMT), immunity, inflammation, programmed cell death, epigenetic modifications, and microbiota in facilitating EVT invasion. The molecular mechanisms underlying enhanced EVT invasion may provide valuable insights into potential pathogenic mechanisms associated with diseases characterized by excessive invasion, such as the placenta accreta spectrum (PAS), thereby offering novel perspectives for managing pregnancy complications related to deficient EVT invasion.
Collapse
Affiliation(s)
- Zihan Lin
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shuang Wu
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yinghui Jiang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Chen
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Xiaoye Huang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhuofeng Wen
- The Sixth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yi Yuan
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Wu S, Han L, Zhou M, Li X, Luo L, Wang Z, Yan S, Li F, Chen J, Yang J. LncRNA AOC4P recruits TRAF6 to regulate EZH2 ubiquitination and participates in trophoblast glycolysis and M2 macrophage polarization which is associated with recurrent spontaneous abortion. Int Immunopharmacol 2023; 125:111201. [PMID: 37951195 DOI: 10.1016/j.intimp.2023.111201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
During embryo implantation, trophoblast cells rely on large amounts of energy produced by glycolysis for their rapid growth and invasion. The disorder of trophoblast metabolism may lead to recurrent spontaneous abortion (RSA). Lactate, which is produced by the glycolysis of trophoblast cells during early pregnancy, can promote the polarization of M2 macrophages and maintain an anti-inflammatory environment at the maternal-fetal interface. Our study found that amine oxidase copper-containing 4 pseudogene (AOC4P) was abnormally increased in villi from RSA patients. It inhibited the glycolysis of trophoblast cells and thus hindered the polarization of M2 macrophages. Further studies showed that AOC4P combines with tumor necrosis factor receptor-associated factor 6 (TRAF6) to upregulate TRAF6 expression. TRAF6 acted as an E3 ubiquitin ligase to promote ubiquitination and degradation of zeste homolog 2 (EZH2). These results provided new insights into the important role played by AOC4P at the maternal-fetal interface.
Collapse
Affiliation(s)
- Shujuan Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China
| | - Lu Han
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China
| | - Mengqi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China
| | - Xing Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lingbo Luo
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China
| | - Zehao Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China
| | - Sisi Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China
| | - Faminzi Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China.
| |
Collapse
|
7
|
Ray A, Pradhan D, Arora R, Siraj F, Rastogi S. Microarray profiling of serum micro-RNAs in women with Chlamydia trachomatis-associated recurrent spontaneous abortion: A case control study. Microb Pathog 2023; 182:106273. [PMID: 37507027 DOI: 10.1016/j.micpath.2023.106273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Chlamydia trachomatis infection is a major cause of sexually transmitted diseases and adverse pregnancy outcomes such as recurrent spontaneous abortion (RSA). Micro-RNAs (miRNAs) have been known to be upregulated/downregulated in various reproductive-associated diseases such as ectopic pregnancy, preterm birth and pre-eclampsia. However, there is paucity of literature on miRNA profile in C. trachomatis-infected RSA. The present study aimed to determine the profile of serum miRNAs followed by their validation in C. trachomatis-infected RSA and to find target genes involved in biological pathways. Non-heparinized blood and first void urine were collected from 30 non-pregnant women with RSA and 30 non-pregnant women with ≥2 successful deliveries (controls) attending Department of Obstetrics and Gynaecology, Safdarjung hospital, New Delhi, India. C. trachomatis detection was done in urine by PCR and chlamydial load was determined by quantitative real-time PCR (qRT-PCR). miRNA expression was studied by microarray analysis followed by in vitro validation by qRT-PCR. Analysis of target genes/pathways was characterized in silico. 06 RSA patients were infected with C. trachomatis, while chlamydial load was found to be 6000-12,000 copies/ml. 110 circulating miRNAs were expressed differentially in infected RSA patients compared with controls. Of these, 16 were overexpressed and 94 downregulated. 06 differentially expressed circulating miRNAs were selected to validate the microarray results. qRT-PCR data confirmed the reliability of the microarray results: miR-4443, -5100, -7975 showed statistically significant upregulation, while miR-6808-5p, -3148, -6727-5p were significantly downregulated in infected RSA patients versus controls. Chlamydial load was positively correlated with these upregulated miRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that target genes of miRNAs in RSA are involved in AMPK, Akt and mTOR signaling pathways. Overall results indicate that differentially expressed circulating miRNAs are involved in pathogenesis of C. trachomatis-associated RSA and have the potential to be used as biomarkers for predicting RSA.
Collapse
Affiliation(s)
- Ankita Ray
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| | - Dibyabhaba Pradhan
- ICMR-AIIMS Computational Genomics Centre, Room No. 5001, Convergence Block, AIIMS, New Delhi, 110029, India.
| | - Renu Arora
- Department of Obstetrics and Gynecology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, New Delhi, 110029, India.
| | - Fouzia Siraj
- Pathology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| | - Sangita Rastogi
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| |
Collapse
|
8
|
Zhou M, Gao Y, Wu S, Chen J, Ding J, Wang Y, Yang J. Ubiquitin-specific protease 7 prevents recurrent spontaneous abortion by targeting enhancer of zeste homolog 2 to regulate trophoblast proliferation, apoptosis, migration, and invasion through the Wnt/β-catenin pathway†. Biol Reprod 2023; 109:204-214. [PMID: 37249558 DOI: 10.1093/biolre/ioad053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
Trophoblasts are significant components of the placenta and play crucial roles in maternal-fetal crosstalk. Adequate trophoblast migration and invasion are essential for embryo implantation and healthy pregnancy. Ubiquitin-specific protease 7 (USP7), a member of the deubiquitinating enzyme family, regulates the processes of migration and invasion in multiple tumor cells. However, the effects of USP7 on trophoblasts and its possible mechanism in the development of recurrent spontaneous abortion (RSA) are still unclear. In this study, we analyzed the expression of USP7 in villous tissues obtained from RSA patients and healthy controls, and then GNE-6776 (a USP7-specific inhibitor) and USP7 siRNA were used in a trophoblast cell line, HTR-8/SVneo, to further assess the effect of USP7 on the biological function of trophoblasts. Our results provide convincing evidence that USP7 is downregulated in the placental villous tissues of RSA patients. USP7 was found to have a crucial role in the proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT) process of trophoblast cells. Further experiments revealed that USP7 directly interacted with the enhancer of zeste homolog 2 (EZH2) and regulated the Wnt/β-catenin signaling pathway in trophoblasts. Taken together, these findings indicate the vital role of USP7 in regulating trophoblast proliferation, migration and invasion, thus affecting the pathogenesis of RSA, providing new insights into the important role of USP7 in the maternal-fetal interface.
Collapse
Affiliation(s)
- Mengqi Zhou
- Department of Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Yue Gao
- Department of Reproductive Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, China
| | - Shujuan Wu
- Department of Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Jiao Chen
- Department of Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Jinli Ding
- Department of Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Yaqin Wang
- Department of Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Jing Yang
- Department of Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| |
Collapse
|
9
|
Han Y, Wang Y, Zhang C, Li Y, Guo J, Tian C. Metastasis-associated lung adenocarcinoma transcript 1 induces methyl-CpG-binding domain protein 4 in mice with recurrent spontaneous abortion caused by anti-phospholipid antibody positivity. Placenta 2023; 137:38-48. [PMID: 37068447 DOI: 10.1016/j.placenta.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/27/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023]
Abstract
INTRODUCTION Antiphospholipid syndrome is an autoimmune disease characterized by pregnancy-related morbidity, related to persistent positivity of antiphospholipid antibodies (APL). One of the characteristics of pregnancy-related morbidity in patients with antiphospholipid syndrome is recurrent spontaneous abortion (RSA). This study aimed to examine the mechanism through which metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) regulates methyl-CpG-binding domain protein 4 (MBD4) expression in APL-positive RSA. METHODS Clinical samples were subjected to microarray analysis to filter differentially expressed genes. RSA mice with APL positivity were generated, followed by adenoviral vector injection to artificially upregulate MALAT1. The effects of MALAT1 on the biological behavior of trophoblast cells were assessed. The downstream mechanism of MALAT1 was analyzed using subcellular fractionation and bioinformatics prediction, and the relationship between MALAT1 and CREB binding protein (CREBBP) or MBD4 was investigated in trophoblast cells. RESULTS MALAT1 was downregulated in APL-positive RSA patients. MALAT1 was predominantly localized in the nucleus and recruited CREBBP to mediate the MBD4 transcription. In the APL-positive RSA mice overexpressing MALAT1, the expression of soluble Fms-related tyrosine kinase 1 and anticardiolipin antibody and the embryonic resorption rate were decreased, indicating that MALAT1 reduced the occurrence of RSA in mice. Moreover, MALAT1 enhanced proliferation, migration, and invasion of trophoblast cells through recruiting CREBBP to promote MBD4 expression. Silencing of CREBBP or MBD4 increased embryonic resorption rate in RSA mice overexpressing MALAT1. DISCUSSION MALAT1 suppresses APL-positive RSA by promoting MBD4 transcription through recruitment of CREBBP to the MBD4 promoter region.
Collapse
Affiliation(s)
- Yongmei Han
- College of Integrated Traditional Chinese and Western Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, Henan, PR China.
| | - Ying Wang
- Reproductive Center, Nanyang First People's Hospital, Nanyang, 473000, Henan, PR China
| | - Chenyu Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, PR China
| | - Yanru Li
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, PR China
| | - Jing Guo
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, PR China
| | - Chao Tian
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, PR China
| |
Collapse
|
10
|
Chen S, Lin J, Zhao J, Lin Q, Liu J, Wang Q, Mui R, Ma L. FBXW7 attenuates tumor drug resistance and enhances the efficacy of immunotherapy. Front Oncol 2023; 13:1147239. [PMID: 36998461 PMCID: PMC10043335 DOI: 10.3389/fonc.2023.1147239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
FBXW7 (F-box and WD repeat domain containing 7) is a critical subunit of the Skp1-Cullin1-F-box protein (SCF), acting as an E3 ubiquitin ligase by ubiquitinating targeted protein. Through degradation of its substrates, FBXW7 plays a pivotal role in drug resistance in tumor cells and shows the potential to rescue the sensitivity of cancer cells to drug treatment. This explains why patients with higher FBXW7 levels exhibit higher survival times and more favorable prognosis. Furthermore, FBXW7 has been demonstrated to enhance the efficacy of immunotherapy by targeting the degradation of specific proteins, as compared to the inactivated form of FBXW7. Additionally, other F-box proteins have also shown the ability to conquer drug resistance in certain cancers. Overall, this review aims to explore the function of FBXW7 and its specific effects on drug resistance in cancer cells.
Collapse
Affiliation(s)
- Shimin Chen
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jichun Lin
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiaojiao Zhao
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Lin
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qiang Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Ryan Mui
- Department of Gastroenterology, Sparrow Hospital, Lansing, MI, United States
| | - Leina Ma
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Leina Ma,
| |
Collapse
|
11
|
Xia L, Chen J, Huang M, Mei J, Lin M. The functions of long noncoding RNAs on regulation of F-box proteins in tumorigenesis and progression. Front Oncol 2022; 12:963617. [PMID: 35928868 PMCID: PMC9343830 DOI: 10.3389/fonc.2022.963617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
Accumulated evidence has revealed that F-box protein, a subunit of SCF E3 ubiquitin ligase complexes, participates in carcinogenesis and tumor progression via targeting its substrates for ubiquitination and degradation. F-box proteins could be regulated by cellular signaling pathways and noncoding RNAs in tumorigenesis. Long noncoding RNA (lncRNA), one type of noncoding RNAs, has been identified to modulate the expression of F-box proteins and contribute to oncogenesis. In this review, we summarize the role and mechanisms of multiple lncRNAs in regulating F-box proteins in tumorigenesis, including lncRNAs SLC7A11-AS1, MT1JP, TUG1, FER1L4, TTN-AS1, CASC2, MALAT1, TINCR, PCGEM1, linc01436, linc00494, GATA6-AS1, and ODIR1. Moreover, we discuss that targeting these lncRNAs could be helpful for treating cancer via modulating F-box protein expression. We hope our review can stimulate the research on exploration of molecular insight into how F-box proteins are governed in carcinogenesis. Therefore, modulation of lncRNAs is a potential therapeutic strategy for cancer therapy via regulation of F-box proteins.
Collapse
|
12
|
Xing L, Xu L, Zhang Y, Che Y, Wang M, Shao Y, Qiu D, Yu H, Zhao F, Zhang J. Recent Insight on Regulations of FBXW7 and Its Role in Immunotherapy. Front Oncol 2022; 12:925041. [PMID: 35814468 PMCID: PMC9263569 DOI: 10.3389/fonc.2022.925041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
SCFFBXW7 E3 ubiquitin ligase complex is a crucial enzyme of the ubiquitin proteasome system that participates in variant activities of cell process, and its component FBXW7 (F-box and WD repeat domain–containing 7) is responsible for recognizing and binding to substrates. The expression of FBXW7 is controlled by multiple pathways at different levels. FBXW7 facilitates the maturity and function maintenance of immune cells via functioning as a mediator of ubiquitination-dependent degradation of substrate proteins. FBXW7 deficiency or mutation results in the growth disturbance and dysfunction of immune cell, leads to the resistance against immunotherapy, and participates in multiple illnesses. It is likely that FBXW7 coordinating with its regulators and substrates could offer potential targets to improve the sensitivity and effects of immunotherapy. Here, we review the mechanisms of the regulation on FBXW7 and its tumor suppression role in immune filed among various diseases (mostly cancers) to explore novel immune targets and treatments.
Collapse
Affiliation(s)
- Liangliang Xing
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Leidi Xu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yinggang Che
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Min Wang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yongxiang Shao
- Department of Anus and Intestine Surgery, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Dan Qiu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Honglian Yu
- Department of Hemato-Oncology, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Feng Zhao
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| |
Collapse
|
13
|
Li W, Chen Y, Wang Y, Zhao J, Wang Y. Gypsy retrotransposon-derived maize lncRNA GARR2 modulates gibberellin response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1433-1446. [PMID: 35368126 DOI: 10.1111/tpj.15748] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 05/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) mediate diverse biological events mainly through the modulation of transcriptional hierarchy. The phytohormone gibberellin (GA) is essential for various aspects of plant growth and development. However, the roles of lncRNAs in the regulation of the GA response remain largely unknown. Through sequencing multiple strand-specific and ribosomal-depleted RNA libraries, we delineated the landscape of lncRNAs in maize (Zea mays). Out of identified lncRNAs, 445 GIBBERELLIN-RESPONSIVE lncRNAs (GARRs) were differentially expressed upon GA application. By the intersection of GARRs from normal-height and dwarf plants from an advanced backcross population, four shared GARRs (GARR1 to GARR4) were identified. Out of these four shared GARRs, GARR2 was derived from a Gypsy LTR retrotransposon. GA-responsive element P-boxes were identified upstream of GARR2. GARR2-edited lines exhibited a GA-induced phenotype. Editing of GARR2 resulted in changes in the transcriptional abundance of GA pathway components and endogenous GA contents. Besides GA, GARR2 affected the primary auxin response. An RNA pull-down assay revealed the HECT ubiquitin-protein ligase family member ZmUPL1 as a potential interaction target of GARR2. GARR2 influenced the abundance of ZmUPL1 in the GA response. Our study uncovers lncRNA players involved in the modulation of the GA response and guides the development of plant height ideotype driven by knowledge of the phytohormone GA.
Collapse
Affiliation(s)
- Wei Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yudong Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yali Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jia Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yijun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
14
|
Non-Coding RNAs Regulate Spontaneous Abortion: A Global Network and System Perspective. Int J Mol Sci 2022; 23:ijms23084214. [PMID: 35457031 PMCID: PMC9028476 DOI: 10.3390/ijms23084214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/25/2022] Open
Abstract
Spontaneous abortion is a common pregnancy complication that negatively impacts women’s health and commercial pig production. It has been demonstrated that non-coding RNA (ncRNA) is involved in SA by affecting cell proliferation, invasion, apoptosis, epithelial-mesenchymal transformation (EMT), migration, and immune response. Over the last decade, research on ncRNAs in SA has primarily concentrated on micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). In this review, we discuss recent ncRNA studies focused on the function and mechanism of miRNAs, lncRNAs, and circRNAs in regulating SA. Meanwhile, we suggest that a ceRNA regulatory network exists in the onset and development of SA. A deeper understanding of this network will accelerate the process of the quest for potential RNA markers for SA diagnosis and treatment.
Collapse
|
15
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
|