1
|
Li J, Liu Y, Zhang R, Yang Q, Xiong W, He Y, Ye Q. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics. Stem Cell Res Ther 2024; 15:169. [PMID: 38886773 PMCID: PMC11184751 DOI: 10.1186/s13287-024-03774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.
Collapse
Affiliation(s)
- Junyi Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianyu Yang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Wang M, Zhao J, Li J, Meng M, Zhu M. Insights into the role of adipose-derived stem cells and secretome: potential biology and clinical applications in hypertrophic scarring. Stem Cell Res Ther 2024; 15:137. [PMID: 38735979 PMCID: PMC11089711 DOI: 10.1186/s13287-024-03749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Scar tissue is the inevitable result of repairing human skin after it has been subjected to external destructive stimuli. It leads to localized damage to the appearance of the skin, accompanied by symptoms such as itching and pain, which reduces the quality of life of the patient and causes serious medical burdens. With the continuous development of economy and society, there is an increasing demand for beauty. People are looking forward to a safer and more effective method to eliminate pathological scarring. In recent years, adipose-derived stem cells (ADSCs) have received increasing attention from researchers. It can effectively improve pathological scarring by mediating inflammation, regulating fibroblast proliferation and activation, and vascular reconstruction. This review focuses on the pathophysiological mechanisms of hypertrophic scarring, summarizing the therapeutic effects of in vitro, in vivo, and clinical studies on the therapeutic effects of ADSCs in the field of hypertrophic scarring prevention and treatment, the latest application techniques, such as cell-free therapies utilizing ADSCs, and discussing the advantages and limitations of ADSCs. Through this review, we hope to further understand the characterization of ADSC and clarify the effectiveness of its application in hypertrophic scarring treatment, so as to provide clinical guidance.
Collapse
Affiliation(s)
- Menglin Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Jianyu Zhao
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Jiacheng Li
- Department of Plastic Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meng Meng
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| | - Mengru Zhu
- Department of Plastic Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| |
Collapse
|
3
|
Qin Y, Ge G, Yang P, Wang L, Qiao Y, Pan G, Yang H, Bai J, Cui W, Geng D. An Update on Adipose-Derived Stem Cells for Regenerative Medicine: Where Challenge Meets Opportunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207334. [PMID: 37162248 PMCID: PMC10369252 DOI: 10.1002/advs.202207334] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/24/2023] [Indexed: 05/11/2023]
Abstract
Over the last decade, adipose-derived stem cells (ADSCs) have attracted increasing attention in the field of regenerative medicine. ADSCs appear to be the most advantageous cell type for regenerative therapies owing to their easy accessibility, multipotency, and active paracrine activity. This review highlights current challenges in translating ADSC-based therapies into clinical settings and discusses novel strategies to overcome the limitations of ADSCs. To further establish ADSC-based therapies as an emerging platform for regenerative medicine, this review also provides an update on the advancements in this field, including fat grafting, wound healing, bone regeneration, skeletal muscle repair, tendon reconstruction, cartilage regeneration, cardiac repair, and nerve regeneration. ADSC-based therapies are expected to be more tissue-specific and increasingly important in regenerative medicine.
Collapse
Affiliation(s)
- Yi Qin
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Gaoran Ge
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Peng Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Liangliang Wang
- Department of OrthopaedicsThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouJiangsu213000China
| | - Yusen Qiao
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| | - Huilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Jiaxiang Bai
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Dechun Geng
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| |
Collapse
|
4
|
Brembilla NC, Modarressi A, André-Lévigne D, Brioudes E, Lanza F, Vuagnat H, Durual S, Marger L, Boehncke WH, Krause KH, Preynat-Seauve O. Adipose-Derived Stromal Cells within a Gelatin Matrix Acquire Enhanced Regenerative and Angiogenic Properties: A Pre-Clinical Study for Application to Chronic Wounds. Biomedicines 2023; 11:biomedicines11030987. [PMID: 36979966 PMCID: PMC10046849 DOI: 10.3390/biomedicines11030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
This study evaluates the influence of a gelatin sponge on adipose-derived stromal cells (ASC). Transcriptomic data revealed that, compared to ASC in a monolayer, a cross-linked porcine gelatin sponge strongly influences the transcriptome of ASC. Wound healing genes were massively regulated, notably with the inflammatory and angiogenic factors. Proteomics on conditioned media showed that gelatin also acted as a concentrator and reservoir of the regenerative ASC secretome. This secretome promoted fibroblast survival and epithelialization, and significantly increased the migration and tubular assembly of endothelial cells within fibronectin. ASC in gelatin on a chick chorioallantoic membrane were more connected to vessels than an empty sponge, confirming an increased angiogenesis in vivo. No tumor formation was observed in immunodeficient nude mice to which an ASC gelatin sponge was transplanted subcutaneously. Finally, ASC in a gelatin sponge prepared from outbred rats accelerated closure and re-vascularization of ischemic wounds in the footpads of rats. In conclusion, we provide here preclinical evidence that a cross-linked porcine gelatin sponge is an optimal carrier to concentrate and increase the regenerative activity of ASC, notably angiogenic. This formulation of ASC represents an optimal, convenient and clinically compliant option for the delivery of ASC on ischemic wounds.
Collapse
Affiliation(s)
- Nicolo Costantino Brembilla
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Division of Dermatology and Venereology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Ali Modarressi
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Dominik André-Lévigne
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Estelle Brioudes
- Laboratory of Therapy and Stem Cells, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Florian Lanza
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Hubert Vuagnat
- Program for Wounds and Wound Healing, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Stéphane Durual
- Laboratory of Biomaterials, Faculty of Dental Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Laurine Marger
- Laboratory of Biomaterials, Faculty of Dental Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Division of Dermatology and Venereology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Laboratory of Therapy and Stem Cells, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Olivier Preynat-Seauve
- Laboratory of Therapy and Stem Cells, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
5
|
Mi P, Liu JL, Qi BP, Wei BM, Xu CZ, Zhu L. Stem cell-derived exosomes for chronic wound repair. Cell Tissue Res 2023; 391:419-423. [PMID: 36705748 DOI: 10.1007/s00441-023-03742-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023]
Abstract
Stem cells possess the capability of self-renewal and multipotency, which endows them with great application potential in wound repair fields. Yet, several problems including immune concerns, ethical debates, and oncogenicity impede the broad and deep advance of stem cell-based products. Recently, owing to their abundant resources, excellent biocompatibility, and ease of being engineered, stem cell-derived exosomes were proved to be promising nanomedicine for curing chronic wounds. What is more, stem cell-derived exosomes are almost the mini record of their maternal cells, which even equipped them with the unique characteristics of stem cells. Chronic wound healing efficacy is dominated by several complicated factors, especially the excessive inflammation conditions and impaired vessels. Therefore, this review tries to concentrate on the current advances of stem cell-derived exosomes for reducing inflammation and promoting angiogenesis in chronic wound healing processes. Last but not least, the existing limitations and future perspectives of stem cell-derived exosomes for chronic wound treatment are also outlined.
Collapse
Affiliation(s)
- Peng Mi
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023, Hubei, China
| | - Jia-Lin Liu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023, Hubei, China
| | - Bao-Ping Qi
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, 445000, Hubei, China. .,School of Chemistry and Environmental Engineering, Hubei Minzu University, Xueyuan Road, Enshi, 445000, Hubei, China.
| | - Ben-Mei Wei
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023, Hubei, China
| | - Cheng-Zhi Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023, Hubei, China
| | - Lian Zhu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023, Hubei, China.
| |
Collapse
|
6
|
Surowiecka A, Chrapusta A, Klimeczek-Chrapusta M, Korzeniowski T, Drukała J, Strużyna J. Mesenchymal Stem Cells in Burn Wound Management. Int J Mol Sci 2022; 23:ijms232315339. [PMID: 36499664 PMCID: PMC9737138 DOI: 10.3390/ijms232315339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/09/2022] Open
Abstract
Mesenchymal stem cells have a known regenerative potential and are used in many indications. They secrete many growth factors, including for fibroblasts (FGF), endothelium (VEGF), as well as 14 anti-inflammatory cytokines, and they stimulate tissue regeneration, promoting the secretion of proteins and glycosaminoglycans of extracellular matrices, such as collagen I, II, III, and V, elastin, and also metalloproteinases. They secrete exosomes that contain proteins, nucleic acids, lipids, and enzymes. In addition, they show the activity of inactivating free radicals. The aim of this study was an attempt to collect the existing literature on the use of stem cells in the treatment of a burn wound. There were 81 studies included in the analysis. The studies differed in terms of the design, burn wound model, source of stem cells, and methods of cellular therapy application. No major side effects were reported, and cellular therapy reduced the healing time of the burn wound. Few case reports on human models did not report any serious adverse events. However, due to the heterogeneity of the evidence, cellular therapy in burn wound treatment remains an experimental method.
Collapse
Affiliation(s)
- Agnieszka Surowiecka
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Correspondence:
| | - Anna Chrapusta
- Malopolska Burn and Plastic Surgery Center, Ludwik Rydygier Memorial Hospital in Krakow, 31-826 Cracow, Poland
| | - Maria Klimeczek-Chrapusta
- Malopolska Burn and Plastic Surgery Center, Ludwik Rydygier Memorial Hospital in Krakow, 31-826 Cracow, Poland
| | - Tomasz Korzeniowski
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Chair and Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Drukała
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 31-826 Cracow, Poland
| | - Jerzy Strużyna
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Department of Plastic Surgery, Reconstructive Surgery and Burn Treatment, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
7
|
Teng Y, Zou M, Zhou X, Wu J, Liu S, Yuan Z, Jia Y, Zhang K, Li X, Ye J, Yuan F. Novel prospects for scarless wound healing: The roles of myofibroblasts and adipocytes. J Cell Mol Med 2022; 26:5113-5121. [PMID: 36106529 PMCID: PMC9575100 DOI: 10.1111/jcmm.17535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/14/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Disturbances or defects in the process of wound repair can disrupt the delicate balance of cells and molecules necessary for complete wound healing, thus leading to chronic wounds or fibrotic scars. Myofibroblasts are one of the most important cells involved in fibrotic scars, and reprogramming provides a potential avenue to increase myofibroblast clearance. Although myofibroblasts have long been recognized as terminally differentiated cells, recent studies have shown that myofibroblasts have the capacity to be reprogrammed into adipocytes. This review intends to summarize the potential of reprogramming myofibroblasts into adipocytes. We will discuss myofibroblast lineage tracing, as well as the known mechanisms underlying adipocyte regeneration from myofibroblasts. In addition, we investigated different changes in myofibroblast gene expression, transcriptional regulators, signalling pathways and epigenetic regulators during skin wound healing. In the future, myofibroblast reprogramming in wound healing will be better understood and appreciated, which may provide new ideas for the treatment of scarless wound healing.
Collapse
Affiliation(s)
- Ying‐Ying Teng
- Institute of Integrated Chinese and Western Medicine The Hospital Affiliated to Jiangnan University Wuxi China
| | - Ming‐Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine Nanjing University of Chinese Medicine Wuxi China
| | - Xiao‐Jin Zhou
- Institute of Integrated Chinese and Western Medicine The Hospital Affiliated to Jiangnan University Wuxi China
| | - Jun‐Jie Wu
- Institute of Integrated Chinese and Western Medicine The Hospital Affiliated to Jiangnan University Wuxi China
| | - Si‐Yu Liu
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine Nanjing University of Chinese Medicine Wuxi China
| | - Zheng‐Dong Yuan
- Institute of Integrated Chinese and Western Medicine The Hospital Affiliated to Jiangnan University Wuxi China
| | - Yuan Jia
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine Nanjing University of Chinese Medicine Wuxi China
| | - Kai‐Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine Nanjing University of Chinese Medicine Wuxi China
| | - Xia Li
- Institute of Integrated Chinese and Western Medicine The Hospital Affiliated to Jiangnan University Wuxi China
| | - Jun‐Xing Ye
- Institute of Integrated Chinese and Western Medicine The Hospital Affiliated to Jiangnan University Wuxi China
| | - Feng‐Lai Yuan
- Institute of Integrated Chinese and Western Medicine The Hospital Affiliated to Jiangnan University Wuxi China
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine Nanjing University of Chinese Medicine Wuxi China
| |
Collapse
|
8
|
Zhang H, Liu G, Mao X, Yang L, Wang B, Yuan X. LncRNA MEG3 induces endothelial differentiation of mouse derived adipose-derived stem cells by targeting MiR-145-5p/KLF4. Mol Biol Rep 2022; 49:8495-8505. [PMID: 35802277 DOI: 10.1007/s11033-022-07671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The present study aimed to investigate the mechanisms through which long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) affected the endothelial differentiation of mouse derived adipose-derived stem cells (ADSCs). MATERIALS AND METHODS ADSCs were isolated and identified by specific surface marker detection. The effects of lncRNA MEG3 on endothelial differentiation of ADSCs were also detected via quantitative PCR, western blotting, immunofluorescence and Matrigel angiogenesis assays. In addition, using target gene prediction tools and luciferase reporter assays, the downstream target gene was demonstrated. RESULTS LncRNA MEG3 targeted and reduced the expression levels of microRNA-145-5p (miR-145-5p), which upregulated the expression levels of Krüppel like factor 4 (KLF4), promoting endothelial differentiation of ADSCs. CONCLUSION LncRNA MEG3 induced endothelial differentiation of ADSCs by targeting miR-145-5p/KLF4, which may provide novel insights to illustrate the mechanism of endothelial differentiation of ADSCs.
Collapse
Affiliation(s)
- Hailong Zhang
- Department of Dermatology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Gang Liu
- Department of Medicine, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Xu Mao
- Department of Health Center, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Lei Yang
- Department of Medicine, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Bingyu Wang
- Department of Medicine, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China.
| | - Xingxing Yuan
- Department of Medicine, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
9
|
Wang X, Ma Y, Niu X, Su T, Huang X, Lu F, Chang Q. Direct three-dimensional printed egg white hydrogel wound dressing promotes wound healing with hitching adipose stem cells. Front Bioeng Biotechnol 2022; 10:930551. [PMID: 36072289 PMCID: PMC9441893 DOI: 10.3389/fbioe.2022.930551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Current wound dressing based on hydrogel offers a promising way to accelerate the healing process, yet great challenges remain in the development of a highly integrated and efficient platform with the combination of therapeutic biomolecules and stem cells. Herein, a natural hydrogel wound dressing from egg white can be conveniently obtained by feasible physical crosslinking, the prepared hydrogel dressing features interconnected microporous channels, direct 3D printing, cytocompatibility, and intrinsic biomolecules to advance cell behavior. The 3D printed egg white hydrogels promote the adhesion and proliferation of adipose-derived stem cells (ASCs) without obvious cytotoxicity. In addition, this integrated hydrogel platform accompanied with adipose-derived stem cells accelerates wound healing through the enhancement of fibroblast proliferation, angiogenesis, and collagen rearrangement in the wound bed. The egg white hydrogel provides an effective wound caring product possessing low cost, easy availability along with ready manufacturing, and advanced therapeutic effect, which may be extended for the management of chronic or other complicated wounds.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng Lu
- *Correspondence: Feng Lu, ; Qiang Chang,
| | | |
Collapse
|
10
|
He T, Gong L. Clinical Effect of Microneedle Injection Combined with Blood Transfusion in the Treatment of Severe Anemia Complicated with Vitiligo under Regenerative Medical Technology. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7117627. [PMID: 35937386 PMCID: PMC9355759 DOI: 10.1155/2022/7117627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022]
Abstract
To explore the clinical efficacy of microneedle injection combined with blood transfusion in the treatment of severe anemia complicated with vitiligo based on regenerative medical technology and provide the theoretical basis for the adoption of microneedle technology, 60 patients with severe anemia complicated with vitiligo were selected as research objects. With 15 patients in each group, they were randomly assigned to the control group (calcipotriol ointment external application), observation group A (external application of moist exposed burn ointment (MEBO), observation group B (external application of MEBO combined with blood transfusion), and observation group C (microneedle injection of MEBO combined with blood transfusion). Blood indexes and plaque recovery of patients in different periods were detected. The total protein (TP) content in group C (62.3 ± 3.3 g/L and 64.3 ± 2.88 g/L) was remarkably higher than that in the control group (51.3 ± 3.17 g/L and 52.4 ± 3.17 g/L) and group A (52.6 ± 2.91 g/L and 51.8 ± 2.98 g/L)) at the 5th and 7th weeks after the treatment (P < 0.05). The albumin (ALB) content in group C (42.9 ± 3.28 g/L and 45.3 ± 3.1 g/L) was signally higher than that in the control group (41.8 ± 3.44 g/L and 41.9 ± 3.23 g/L) and group A (41.3 ± 2.91 g/L and 42.1 ± 3.02 g/L) at the 5th and 7th weeks after the treatment, and the content was markedly higher than that in group B at 5th week (P < 0.05). The wound healing rates of group C at the 3rd, 5th, and 7th weeks after the treatment (38.44%, 56.6%, and 90.23%) were greatly higher than those of the control group, group A, and group B (P < 0.05). Besides, the wound healing rate of group B was higher than that of the control group and group A (40.3% and 75.8%) at the 5th and 7th weeks after the treatment (P < 0.05). To sum up, based on regenerative medical technology, microneedle injection (microneedling is a derma roller process that pricks the skin with minuscule needles. The goal of the treatment is to develop new collagen and skin tissue, resulting in skin that is smoother, firmer, and more toned) combined with blood transfusion had a good therapeutic effect on patients with severe anemia complicated with vitiligo, which could manifestly improve the blood indexes and skin plaques of patients, with a good clinical adoption effect.
Collapse
Affiliation(s)
- Tao He
- Blood Transfusion Department, Beidahuang Group General Hospital, Harbin, 150088 Heilongjiang, China
| | - Li Gong
- Department of Dermatology, The First Hospital of Heilongjiang Harbin, Harbin, 150010 Heilongjiang, China
| |
Collapse
|
11
|
Comments on 'Effectiveness and safety of ablative fractional CO 2 laser for the treatment of burn scars: A case-control study'. Burns 2022; 48:467-468. [PMID: 34393036 DOI: 10.1016/j.burns.2021.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
|
12
|
Schweich-Adami LDC, Bernardi L, Baranoski A, Rodrigues TDAF, Antoniolli-Silva ACMB, Oliveira RJ. The enzymatic disaggregation by trypsin does not alter cell quality and genomic stability of adipose-derived stem cells cultivated for human cell therapy. Cell Tissue Bank 2021; 23:641-652. [PMID: 34545505 DOI: 10.1007/s10561-021-09958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
There is no consensus between the protocols used for the isolation, maintenance and cultivation of Adipose-derived stem cells (ADSCs) for therapeutic purposes. Thus, was evaluated the maintenance method of ADSCs submitted to enzymatic disaggregation by trypsin. Was made (1st until 10th passage) immunophenotyping, cell differentiation assays, comet assay, differential cell death, apoptosis, cell viability and membrane integrity by flow cytometry.The results showded that trypsinization,did not induce genomic instability, also did not alter the tail moment. The cell death assay, showed that only on the 10th passage there was a significant reduction and was cofirmed by flow cytometry that is apoptosis. The viability showded significant reduction only in 10th passage, this was related to the loss of integrity of membrane, proven by flow cytometry. The quantities varied along the passages (11 × 105 to 2 × 105). Qualitatively, it can be observed that as the number of cells decreases, there is also a reduction in the juxtaposition of ADSCs and increased of the cell size, it is started in 6th passage. In view of the results, it is suggested for more safety, that ADSCs cultured until the 5th passage being used in human transplantation procedures.
Collapse
Affiliation(s)
- Laynna de Carvalho Schweich-Adami
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil
- Graduate Program in Health and Development in the Central-West Region, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Mato Grosso do Sul, MS, Brazil
| | - Luana Bernardi
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil
- Graduate Program in Health and Development in the Central-West Region, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Mato Grosso do Sul, MS, Brazil
| | - Adrivanio Baranoski
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil
- Graduate Program in Health and Development in the Central-West Region, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Mato Grosso do Sul, MS, Brazil
| | - Thais de Andrade Farias Rodrigues
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil
| | - Andréia Conceição Milan Brochado Antoniolli-Silva
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil
- Graduate Program in Health and Development in the Central-West Region, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Mato Grosso do Sul, MS, Brazil
| | - Rodrigo Juliano Oliveira
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil.
- Graduate Program in Health and Development in the Central-West Region, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Mato Grosso do Sul, MS, Brazil.
- Graduate Programme in Genetics and Molecular Biology, Department of General Biology, State University of Londrina (UEL), Londrina, Paraná, Brazil.
| |
Collapse
|