1
|
Sozio SJ, Raynor W, Becker MC, Yudd A, Kempf JS. Carcinoid crisis in Lutetium-177-Dotatate therapy of neuroendocrine tumors: an overview of pathophysiology, risk factors, recognition, and treatment. EJNMMI REPORTS 2024; 8:29. [PMID: 39266864 PMCID: PMC11393224 DOI: 10.1186/s41824-024-00216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/01/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE Lutetium-177-Dotatate (Lutathera®) is a combined radionuclide-peptide that is FDA-approved for the treatment of well-differentiated, somatostatin receptor-positive, gastroenteropancreatic neuroendocrine tumors. Carcinoid crisis is a rare, but potentially life-threatening risk of this radiopharmaceutical, of which prompt recognition and treatment is essential to reducing morbidity. This manuscript provides an overview of the topic to promote awareness of this adverse event, with emphasis on early recognition and management. In addition, we present our institution's experience with Lutetium-177-Dotatate-associated complications across a five-year period. METHODS A literature review of lutetium-177-dotatate therapy and its potential implication of carcinoid crisis was performed. Additionally, a review of our institution's experience is presented. RESULTS The incidence of carcinoid crisis induced by Lutetium-177-Dotatate therapy is estimated to range between 1 and 2% of treatment recipients. Those who have tumors located within the midgut, higher tumor burden, and the presence of metastasis have an increased risk of developing carcinoid crisis, among other risk factors. Carcinoid crisis is most often encountered within 12-48 h of receiving the first treatment dose, with the most common symptoms being nausea/vomiting, flushing, and diarrhea. CONCLUSION Carcinoid crisis is a rare but potentially life-threatening complication of Lutetium-177-Dotatate therapy. Knowledge of risk factors and prompt recognition of symptoms is essential to successful treatment, with early initiation of intravenous octreotide serving a critical step in reducing morbidity of this adverse event.
Collapse
Affiliation(s)
- Stephen J Sozio
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - William Raynor
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Murray C Becker
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Anthony Yudd
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jeffrey S Kempf
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
2
|
Wei YY, Ye JJ, Zhang DW, Hu L, Wu HM, Fei GH. Melatonin Rescues Influenza A Virus-Induced Cellular Energy Exhaustion via OMA1-OPA1-S in Acute Exacerbation of COPD. J Pineal Res 2024; 76:e12991. [PMID: 39039850 DOI: 10.1111/jpi.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/25/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Although rapid progression and a poor prognosis in influenza A virus (IAV) infection-induced acute exacerbation of chronic obstructive pulmonary disease (AECOPD) are frequently associated with metabolic energy disorders, the underlying mechanisms and rescue strategies remain unknown. We herein demonstrated that the level of resting energy expenditure increased significantly in IAV-induced AECOPD patients and that cellular energy exhaustion emerged earlier and more significantly in IAV-infected primary COPD bronchial epithelial (pDHBE) cells. The differentially expressed genes were enriched in the oxidative phosphorylation (OXPHOS) pathway; additionally, we consistently uncovered much earlier ATP exhaustion, more severe mitochondrial structural destruction and dysfunction, and OXPHOS impairment in IAV-inoculated pDHBE cells, and these changes were rescued by melatonin. The level of OMA1-dependent cleavage of OPA1 in the mitochondrial inner membrane and the shift in energy metabolism from OXPHOS to glycolysis were significantly increased in IAV-infected pDHBE cells; however, these changes were rescued by OMA1-siRNA or melatonin further treatment. Collectively, our data revealed that melatonin rescued IAV-induced cellular energy exhaustion via OMA1-OPA1-S to improve the clinical prognosis in COPD. This treatment may serve as a potential therapeutic agent for patients in which AECOPD is induced by IAV.
Collapse
Affiliation(s)
- Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Jing-Jing Ye
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Da-Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Lei Hu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Hui-Mei Wu
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
- Department of Geriatric Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| |
Collapse
|
3
|
Xu MM, Kang JY, Wang QY, Zuo X, Tan YY, Wei YY, Zhang DW, Zhang L, Wu HM, Fei GH. Melatonin improves influenza virus infection-induced acute exacerbation of COPD by suppressing macrophage M1 polarization and apoptosis. Respir Res 2024; 25:186. [PMID: 38678295 PMCID: PMC11056066 DOI: 10.1186/s12931-024-02815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Influenza A viruses (IAV) are extremely common respiratory viruses for the acute exacerbation of chronic obstructive pulmonary disease (AECOPD), in which IAV infection may further evoke abnormal macrophage polarization, amplify cytokine storms. Melatonin exerts potential effects of anti-inflammation and anti-IAV infection, while its effects on IAV infection-induced AECOPD are poorly understood. METHODS COPD mice models were established through cigarette smoke exposure for consecutive 24 weeks, evaluated by the detection of lung function. AECOPD mice models were established through the intratracheal atomization of influenza A/H3N2 stocks in COPD mice, and were injected intraperitoneally with melatonin (Mel). Then, The polarization of alveolar macrophages (AMs) was assayed by flow cytometry of bronchoalveolar lavage (BAL) cells. In vitro, the effects of melatonin on macrophage polarization were analyzed in IAV-infected Cigarette smoking extract (CSE)-stimulated Raw264.7 macrophages. Moreover, the roles of the melatonin receptors (MTs) in regulating macrophage polarization and apoptosis were determined using MTs antagonist luzindole. RESULTS The present results demonstrated that IAV/H3N2 infection deteriorated lung function (reduced FEV20,50/FVC), exacerbated lung damages in COPD mice with higher dual polarization of AMs. Melatonin therapy improved airflow limitation and lung damages of AECOPD mice by decreasing IAV nucleoprotein (IAV-NP) protein levels and the M1 polarization of pulmonary macrophages. Furthermore, in CSE-stimulated Raw264.7 cells, IAV infection further promoted the dual polarization of macrophages accompanied with decreased MT1 expression. Melatonin decreased STAT1 phosphorylation, the levels of M1 markers and IAV-NP via MTs reflected by the addition of luzindole. Recombinant IL-1β attenuated the inhibitory effects of melatonin on IAV infection and STAT1-driven M1 polarization, while its converting enzyme inhibitor VX765 potentiated the inhibitory effects of melatonin on them. Moreover, melatonin inhibited IAV infection-induced apoptosis by suppressing IL-1β/STAT1 signaling via MTs. CONCLUSIONS These findings suggested that melatonin inhibited IAV infection, improved lung function and lung damages of AECOPD via suppressing IL-1β/STAT1-driven macrophage M1 polarization and apoptosis in a MTs-dependent manner. Melatonin may be considered as a potential therapeutic agent for influenza virus infection-induced AECOPD.
Collapse
MESH Headings
- Animals
- Melatonin/pharmacology
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/virology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Mice
- Apoptosis/drug effects
- RAW 264.7 Cells
- Influenza A Virus, H3N2 Subtype/drug effects
- Orthomyxoviridae Infections/drug therapy
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/immunology
- Mice, Inbred C57BL
- Male
- Macrophages/drug effects
- Macrophages/metabolism
- Disease Progression
- Cell Polarity/drug effects
- Disease Models, Animal
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/virology
Collapse
Affiliation(s)
- Meng-Meng Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jia-Ying Kang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Qiu-Yan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Xing Zuo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yuan-Yuan Tan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Emergency Department, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Da-Wei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Hui-Mei Wu
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- Anhui Geriatric Institute, Department of Geriatric Respiratory Critical and Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
4
|
Milewska-Kranc A, Ćwikła JB, Kolasinska-Ćwikła A. The Role of Receptor-Ligand Interaction in Somatostatin Signaling Pathways: Implications for Neuroendocrine Tumors. Cancers (Basel) 2023; 16:116. [PMID: 38201544 PMCID: PMC10778465 DOI: 10.3390/cancers16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Neuroendocrine tumors (NETs) arise from neuroendocrine cells and manifest in diverse organs. Key players in their regulation are somatostatin and its receptors (SSTR1-SSTR5). Understanding receptor-ligand interactions and signaling pathways is vital for elucidating their role in tumor development and therapeutic potential. This review highlights SSTR characteristics, localization, and expression in tissues, impacting physiological functions. Mechanisms of somatostatin and synthetic analogue binding to SSTRs, their selectivity, and their affinity were analyzed. Upon activation, somatostatin initiates intricate intracellular signaling, involving cAMP, PLC, and MAP kinases and influencing growth, differentiation, survival, and hormone secretion in NETs. This review explores SSTR expression in different tumor types, examining receptor activation effects on cancer cells. SSTRs' significance as therapeutic targets is discussed. Additionally, somatostatin and analogues' role in hormone secretion regulation, tumor growth, and survival is emphasized, presenting relevant therapeutic examples. In conclusion, this review advances the knowledge of receptor-ligand interactions and signaling pathways in somatostatin receptors, with potential for improved neuroendocrine tumor treatments.
Collapse
Affiliation(s)
| | - Jarosław B. Ćwikła
- School of Medicine, University of Warmia and Mazury, Aleja Warszawska 30, 10-082 Olsztyn, Poland
- Diagnostic Therapeutic Center–Gammed, Lelechowska 5, 02-351 Warsaw, Poland
| | | |
Collapse
|
5
|
Goutam Mukherjee A, Ramesh Wanjari U, Renu K, Vellingiri B, Valsala Gopalakrishnan A. Heavy metal and metalloid - induced reproductive toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103859. [PMID: 35358731 DOI: 10.1016/j.etap.2022.103859] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/12/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals and metalloid exposure are among the most common factors responsible for reproductive toxicity in human beings. Several studies have indicated that numerous metals and metalloids can display severe adverse properties on the human reproductive system. Metals like lead, silver, cadmium, uranium, vanadium, and mercury and metalloids like arsenic have been known to induce reproductive toxicity. Moderate to minute quantities of lead may affect several reproductive parameters and even affect semen quality. The ecological and industrial exposures to the various heavy metals and metalloids have disastrous effects on the reproductive system ensuing in infertility. This work emphasizes the mechanism and pathophysiology of the aforementioned heavy metals and metalloids in reproductive toxicity. Additionally, this work aims to cover the classical protective mechanisms of zinc, melatonin, chelation therapy, and other trending methods to prevent heavy metal-induced reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kaviyarasi Renu
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India; Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077 Tamil Nadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
6
|
Role of Somatostatin Signalling in Neuroendocrine Tumours. Int J Mol Sci 2022; 23:ijms23031447. [PMID: 35163374 PMCID: PMC8836266 DOI: 10.3390/ijms23031447] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Somatostatin (SST) is a small peptide that exerts inhibitory effects on a wide range of neuroendocrine cells. Due to the fact that somatostatin regulates cell growth and hormone secretion, somatostatin receptors (SSTRs) have become valuable targets for the treatment of different types of neuroendocrine tumours (NETs). NETs are a heterogeneous group of tumours that can develop in various parts of the body, including the digestive system, lungs, and pituitary. NETs are usually slow growing, but they are often diagnosed in advanced stages and can display aggressive behaviour. The mortality rate of NETs is not outstandingly increased compared to other malignant tumours, even in the metastatic setting. One of the intrinsic properties of NETs is the expression of SSTRs that serve as drug targets for SST analogues (SSAs), which can delay tumour progression and downregulate hormone overproduction. Additionally, in many NETs, it has been demonstrated that the SSTR expression level provides a prognostic value in predicting a therapeutic response. Furthermore, higher a SSTR expression correlates with a better survival rate in NET patients. In recent studies, other epigenetic regulators affecting SST signalling or SSA–mTOR inhibitor combination therapy in NETs have been considered as novel strategies for tumour control. In conclusion, SST signalling is a relevant regulator of NET functionality. Alongside classical SSA treatment regimens, future advanced therapies and treatment modalities are expected to improve the disease outcomes and overall health of NET patients.
Collapse
|
7
|
Pohanka M. New uses of Melatonin as a Drug, a Review. Curr Med Chem 2022; 29:3622-3637. [PMID: 34986763 DOI: 10.2174/0929867329666220105115755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/25/2021] [Accepted: 11/21/2021] [Indexed: 11/22/2022]
Abstract
Melatonin is a simple compound with a proper chemical name N-acetyl-5-methoxy tryptamine and known as a hormone controlling circadian rhythm. Humans produce melatonin at night which is the reason for sleeping in the night and awakening over the day. Melatonin interacts with melatonin receptors MT1 and MT2 but it was also revealed that melatonin is a strong antioxidant and it also has a role in regulation of cell cycle. Currently, melatonin is used as a drug for some types of sleep disorder but the recent research points to the fact that melatonin can also serve for the other purposes including prophylaxis or therapy of lifestyle diseases, cancer, neurodegenerative disorders and exposure to chemicals. This review summarizes basic facts and direction of the current research on melatonin. The actual literature was scrutinized for the purpose of this review.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic
| |
Collapse
|