1
|
Pereira DA, Pereira DA, Silveira THR, Calmasini FB, Burnett AL, Costa FF, Silva FH. Heme-induced corpus cavernosum relaxation and its implications for priapism in sickle cell disease: a mechanistic insight. Andrology 2024; 12:1857-1864. [PMID: 38231174 DOI: 10.1111/andr.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND Patients with sickle cell disease (SCD) experience intravascular hemolysis, leading to elevated plasma heme levels. This phenomenon has been associated with increased priapism in men with SCD. The heme group can be metabolized by heme oxygenase (HO), generating carbon monoxide (CO), which is known to promote smooth muscle relaxation via soluble guanylyl cyclase (sGC)-cyclic guanosine monophosphate (cGMP). However, the effects of heme on the relaxation responses of corpus cavernosum (CC) have not been investigated. OBJECTIVES To evaluate the functional and biochemical effects of the heme group on mouse CC smooth muscle in vitro. MATERIALS AND METHODS Male C57BL/6 mice were used. CC tissues were mounted in organ baths. Measurement of cGMP in mice CC was evaluated. RESULTS The cumulative addition of heme concentrations promoted the relaxation of CC. HO inhibitor (1J, 100 μM) or sGC inhibitor (ODQ, 10 μM) blocked the relaxing effect of the heme group. Pre-incubation of CC with heme (100 μM) enhanced relaxation induced by acetylcholine, sodium nitroprusside, and nitrergic relaxation (electrical field stimulation), which was abolished by 1J or ODQ. The heme group increased the cGMP production in CC, which was abolished by 1J or ODQ. cGMP levels were significantly higher in CC treated with heme, and pre-incubation with compound 1J or ODQ abolished the effect of heme in raising cGMP levels. DISCUSSION AND CONCLUSION The HO-CO-sGC-cGMP pathway appears to play a crucial role in promoting CC relaxation. Our study provides novel insight into the role of group heme in CC relaxation and its potential contribution to priapism in SCD. Heme may serve as a pharmacological target for new therapies to prevent priapism.
Collapse
Affiliation(s)
- Dalila Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, São Paulo, SP, Brazil
| | - Danillo Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, São Paulo, SP, Brazil
| | | | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Fábio Henrique Silva
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Pereira DA, Calmasini FB, Costa FF, Burnett AL, Silva FH. Nitric Oxide Resistance in Priapism Associated with Sickle Cell Disease: Mechanisms, Therapeutic Challenges, and Future Directions. J Pharmacol Exp Ther 2024; 390:203-212. [PMID: 38262744 DOI: 10.1124/jpet.123.001962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Patients with sickle cell disease (SCD) display priapism, a prolonged penile erection in the absence of sexual arousal. The current pharmacological treatments for SCD-associated priapism are limited and focused on acute interventions rather than prevention. Thus, there is an urgent need for new drug targets and preventive pharmacological therapies for this condition. This review focuses on the molecular mechanisms linked to the dysfunction of the NO-cyclic guanosine monophosphate (cGMP)-phosphodiesterase type 5 (PDE5) pathway implicated in SCD-associated priapism. In murine models of SCD, reduced nitric oxide (NO)-cGMP bioavailability in the corpus cavernosum is associated with elevated plasma hemoglobin levels, increased reactive oxygen species levels that inactive NO, and testosterone deficiency that leads to endothelial nitric oxide synthase downregulation. We discuss the consequences of the reduced cGMP-dependent PDE5 activity in response to these molecular changes, highlighting it as the primary pathophysiological mechanism leading to excessive corpus cavernosum relaxation, culminating in priapism. We also further discuss the impact of intravascular hemolysis on therapeutic approaches, present current pharmacological strategies targeting the NO-cGMP-PDE5 pathway in the penis, and identify potential pharmacological targets for future priapism therapies. In men with SCD and priapism, PDE5 inhibitor therapy and testosterone replacement have shown promising results. Recent preclinical research reported the beneficial effect of treatment with haptoglobin and NO donors. SIGNIFICANCE STATEMENT: This review discusses the molecular changes that reduce NO-cGMP bioavailability in the penis in SCD and highlights pharmacological targets and therapeutic strategies for the treatment of priapism, including PDE5 inhibitors, hormonal modulators, NO donors, hydroxyurea, soluble guanylate cyclase stimulators, haptoglobin, hemopexin, and antioxidants.
Collapse
Affiliation(s)
- Dalila Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| | - Fabiano Beraldi Calmasini
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| | - Fernando Ferreira Costa
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| | - Arthur L Burnett
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| | - Fábio Henrique Silva
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| |
Collapse
|
3
|
Silveira THR, Calmasini FB, de Oliveira MG, Costa FF, Silva FH. Targeting heme in sickle cell disease: new perspectives on priapism treatment. Front Physiol 2024; 15:1435220. [PMID: 39086934 PMCID: PMC11288928 DOI: 10.3389/fphys.2024.1435220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Men with sickle cell disease (SCD) frequently experience priapism, defined as prolonged, painful erections occurring without sexual arousal or desire. This urological emergency can lead to penile fibrosis and permanent erectile dysfunction if not treated adequately. Due to its complex pathophysiology, there is currently no effective preventative treatment for this condition. Recent studies have highlighted the dysfunction of the nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) pathway in erectile tissues as a critical mechanism in developing priapism in SCD. Additionally, further research indicates that intravascular hemolysis promotes increased smooth muscle relaxation in the corpus cavernosum and that excess heme may significantly contribute to priapism in SCD. Pharmacological treatments should ideally target the pathophysiological basis of the disease. Agents that reduce excess free heme in the plasma have emerged as potential therapeutic candidates. This review explores the molecular mechanisms underlying the excess of heme in SCD and its contribution to developing priapism. We discuss pharmacological approaches targeting the excess free heme in the plasma, highlighting it as a potential therapeutic target for future interventions in managing priapism.
Collapse
Affiliation(s)
| | - Fabiano Beraldi Calmasini
- Escola Paulista de Medicina, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Fábio Henrique Silva
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, Brazil
| |
Collapse
|
4
|
Pereira DA, Silveira THR, Calmasini FB, Silva FH. Soluble guanylate cyclase stimulators and activators: new horizons in the treatment of priapism associated with sickle cell disease. Front Pharmacol 2024; 15:1357176. [PMID: 38384294 PMCID: PMC10879333 DOI: 10.3389/fphar.2024.1357176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
Priapism, defined as a prolonged and often painful penile erection occurring without sexual stimulation or desire, is a common complication in sickle cell disease (SCD), affecting up to 48% of male patients. This condition presents significant clinical challenges and can lead to erectile dysfunction if not properly managed. Current pharmacological treatments for SCD-related priapism are primarily reactive rather than preventative, highlighting a gap in effective medical intervention strategies. A critical factor in developing priapism is the reduced basal bioavailability of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) in erectile tissues. New prevention strategies should ideally target the underlying pathophysiology of the disease. Compounds that stimulate and activate soluble guanylate cyclase (sGC) emerge as potential therapeutic candidates since these compounds have the property of inducing cGMP production by sGC. This review explores the potential of sGC stimulators and activators in treating priapism associated with SCD. We discuss the advantages of these agents in the face of the challenging pathophysiology of SCD. Additionally, the review underscores the impact of intravascular hemolysis and oxidative stress on priapism pathophysiology in SCD, areas in which sGC stimulators and activators may also have beneficial therapeutic effects.
Collapse
Affiliation(s)
- Dalila Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | | | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Fábio Henrique Silva
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| |
Collapse
|
5
|
Iacopucci APM, da Silva Pereira P, Pereira DA, Calmasini FB, Pittalà V, Reis LO, Burnett AL, Costa FF, Silva FH. Intravascular hemolysis leads to exaggerated corpus cavernosum relaxation: Implication for priapism in sickle cell disease. FASEB J 2022; 36:e22535. [PMID: 36070139 DOI: 10.1096/fj.202200867r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
Patients with sickle cell disease (SCD) display priapism. Clinical studies have shown a strong positive correlation between priapism and high levels of intravascular hemolysis in men with SCD. However, there are no experimental studies that show that intravascular hemolysis promotes alterations in erectile function. Therefore, we aimed to evaluate the corpus cavernosum smooth muscle relaxant function in a murine model that displays intravascular hemolysis induced by phenylhydrazine (PHZ), as well as the role of intravascular hemolysis in increasing the stress oxidative in the penis. Corpus cavernosum strips were dissected free and placed in organ baths. Acetylcholine and electrical field stimulation (EFS)-induced corpus cavernosum relaxations in vitro were obtained. Increased corpus cavernosum relaxant responses to acetylcholine and EFS were observed in the PHZ group. Protein expression of heme oxygenase-1 increased in the corpus cavernosum of the PHZ group, but PDE5 protein expression was not modified. Preincubation with the heme oxygenase inhibitor 1 J completely reversed the increased relaxant responses to acetylcholine and EFS in PHZ mice. Protein expression of NADPH oxidase subunit gp91phox, 3-nitrotyrosine, and 4-hydroxynonenal increased in the corpus cavernosum of the PHZ group, suggesting a state of oxidative stress. Basal cGMP production was lower in the PHZ group. Our results show that intravascular hemolysis promotes increased corpus cavernosum smooth muscle relaxation associated with increased HO-1 expression, as well as increased oxidative stress associated with upregulation of gp91phox expression. Moreover, our study supports clinical studies that point to a strong positive correlation between priapism and high levels of intravascular hemolysis in men with SCD.
Collapse
Affiliation(s)
- Ana Paula Magrini Iacopucci
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, Brazil
| | | | - Dalila Andrade Pereira
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Fabiano Beraldi Calmasini
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Fábio Henrique Silva
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, Brazil
| |
Collapse
|
6
|
Pereira PDS, Pereira DA, Calmasini FB, Reis LO, Brinkman N, Burnett AL, Costa FF, Silva FH. Haptoglobin treatment contributes to regulating nitric oxide signal and reduces oxidative stress in the penis: A preventive treatment for priapism in sickle cell disease. Front Physiol 2022; 13:961534. [PMID: 36176769 PMCID: PMC9514379 DOI: 10.3389/fphys.2022.961534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Background: In sickle cell disease (SCD), reduced bioavailability of endothelial NO and cGMP results in reduced expression of phosphodiesterase type 5 (PDE5), thus impairing the penile erection control mechanism and resulting in prolonged penile erection (priapism). In SCD, reduced NO bioavailability is associated with excess plasma hemoglobin due to intravascular hemolysis and increased oxidative stress. Haptoglobin is the plasma protein responsible for reducing plasma hemoglobin levels, but in SCD, haptoglobin levels are reduced, which favors the accumulation of hemoglobin in plasma. Therefore, we aimed to evaluate the effects of haptoglobin treatment on functional and molecular alterations of erectile function, focusing on the contractile and relaxant mechanisms of corpus cavernosum (CC), as well as oxidative stress. Methods: SCD mice were treated with haptoglobin (400 mg/kg, subcutaneous) or vehicle of Monday, Wednesday and Friday for a period of 1 month. Corpus cavernosum strips were dissected free and placed in organ baths. Cumulative concentration-response curves to the acetylcholine, sodium nitroprusside, phenylephrine and KCL, as well as to electrical field stimulation (EFS), were obtained in CC. Protein expressions of eNOS, phosphorylation of eNOS at Ser-1177, nNOS, PDE5, ROCK1, ROCK2, gp91phox, 3-nitrotyrosine, and 4-HNE were measured by western blot in CC. Results: Increased CC relaxant responses to acetylcholine, sodium nitroprusside and electrical-field stimulation were reduced by haptoglobin in SCD mice. Reduced CC contractile responses to phenylephrine and KCl were increased by haptoglobin in SCD mice. Haptoglobin prevented downregulated eNOS, p-eNOS (Ser-1177), PDE5, and ROCK2 protein expressions and reduced protein expressions of reactive oxygen species markers, NADPH oxidase subunit gp91phox, 3-nitrotyrosine and 4-HNE in penises from SCD mice. Haptoglobin treatment did not affect ROCK1 and nNOS protein expressions in penises from SCD mice. Basal cGMP production was lower in the SCD group, which was normalized by haptoglobin treatment. Conclusion: Treatment with haptoglobin improved erectile function due to up-regulation of eNOS-PDE5 expression and down-regulation of the gp91phox subunit of NADPH oxidase and oxidative/nitrosative stress in the penises of SCD mice. Treatment with haptoglobin also increased contractile activity due to up-regulation of ROCK2. Therefore, haptoglobin treatment may be an additional strategy to prevent priapism in SCD.
Collapse
Affiliation(s)
| | - Dalila Andrade Pereira
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Fabiano Beraldi Calmasini
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Leonardo O. Reis
- UroScience, Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, Brazil
| | | | - Arthur L. Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | | - Fábio Henrique Silva
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, Brazil
- *Correspondence: Fábio Henrique Silva,
| |
Collapse
|
7
|
Musicki B, Burnett AL. Testosterone Deficiency in Sickle Cell Disease: Recognition and Remediation. Front Endocrinol (Lausanne) 2022; 13:892184. [PMID: 35592776 PMCID: PMC9113536 DOI: 10.3389/fendo.2022.892184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Hypogonadism is common in men with sickle cell disease (SCD) with prevalence rates as high as 25%. Testicular failure (primary hypogonadism) is established as the principal cause for this hormonal abnormality, although secondary hypogonadism and compensated hypogonadism have also been observed. The underlying mechanism for primary hypogonadism was elucidated in a mouse model of SCD, and involves increased NADPH oxidase-derived oxidative stress in the testis, which reduces protein expression of a steroidogenic acute regulatory protein and cholesterol transport to the mitochondria in Leydig cells. In all men including those with SCD, hypogonadism affects physical growth and development, cognition and mental health, sexual function, as well as fertility. However, it is not understood whether declines in physical, psychological, and social domains of health in SCD patients are related to low testosterone, or are consequences of other abnormalities of SCD. Priapism is one of only a few complications of SCD that has been studied in the context of hypogonadism. In this pathologic condition of prolonged penile erection in the absence of sexual excitement or stimulation, hypogonadism exacerbates already impaired endothelial nitric oxide synthase/cGMP/phosphodiesterase-5 molecular signaling in the penis. While exogenous testosterone alleviates priapism, it disadvantageously decreases intratesticular testosterone production. In contrast to treatment with exogenous testosterone, a novel approach is to target the mechanisms of testosterone deficiency in the SCD testis to drive endogenous testosterone production, which potentially decreases further oxidative stress and damage in the testis, and preserves sperm quality. Stimulation of translocator protein within the transduceosome of the testis of SCD mice reverses both hypogonadism and priapism, without affecting intratesticular testosterone production and consequently fertility. Ongoing research is needed to define and develop therapies that restore endogenous testosterone production in a physiologic, mechanism-specific fashion without affecting fertility in SCD men.
Collapse
|
8
|
Advances in stem cell research for the treatment of primary hypogonadism. Nat Rev Urol 2021; 18:487-507. [PMID: 34188209 DOI: 10.1038/s41585-021-00480-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
In Leydig cell dysfunction, cells respond weakly to stimulation by pituitary luteinizing hormone, and, therefore, produce less testosterone, leading to primary hypogonadism. The most widely used treatment for primary hypogonadism is testosterone replacement therapy (TRT). However, TRT causes infertility and has been associated with other adverse effects, such as causing erythrocytosis and gynaecomastia, worsening obstructive sleep apnoea and increasing cardiovascular morbidity and mortality risks. Stem-cell-based therapy that re-establishes testosterone-producing cell lineages in the body has, therefore, become a promising prospect for treating primary hypogonadism. Over the past two decades, substantial advances have been made in the identification of Leydig cell sources for use in transplantation surgery, including the artificial induction of Leydig-like cells from different types of stem cells, for example, stem Leydig cells, mesenchymal stem cells, and pluripotent stem cells (PSCs). PSC-derived Leydig-like cells have already provided a powerful in vitro model to study the molecular mechanisms underlying Leydig cell differentiation and could be used to treat men with primary hypogonadism in a more specific and personalized approach.
Collapse
|