1
|
Truong TT, Huang CC, Chiu WT. Low-intensity pulsed ultrasound reduces oxidative and endoplasmic reticulum stress in motor neuron cells. ULTRASONICS 2024; 146:107499. [PMID: 39467391 DOI: 10.1016/j.ultras.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Endoplasmic reticulum (ER) stress is associated with oxidative stress, which is integral to the development of various pathological conditions, including neurodegenerative disorders. In this study, using NSC-34-a hybrid cell line established by fusing motor neuron-rich embryonic spinal cord cells with mouse neuroblastoma cells-we investigated the effects of low-intensity pulsed ultrasound (LIPUS) stimulation on oxidative (reactive oxygen species)/ER stress-induced neurodegeneration. An ultrasound transducer with a center frequency of 1.15 MHz and a spatial peak temporal average intensity of 357 mW/cm2 was used for delivering ultrasound (for 8 min, via a water-filled tube) to motor neuron cells seeded in a plastic culture dish. LIPUS stimulation significantly increased the level of the antiapoptotic protein B-cell lymphoma 2 (BCL-2) and inhibited the expression of apoptosis-associated proteins such as BCL-2-associated X protein (BAX), CCAAT/enhancer-binding protein-homologous protein (CHOP), and caspase-12, thus extending the survival of motor neurons. LIPUS stimulation also enhanced Ca2+ signaling and activated the Ca2+-dependent transcription factors as nuclear factor of activated T cells (NFAT) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Furthermore, LIPUS stimulation induced the activation of the serine/threonine kinase protein kinase B (AKT). Thus, LIPUS stimulation prevented oxidative/ER stress-mediated mitochondrial dysfunction. In conclusion, as a safe and noninvasive method, LIPUS stimulation can facilitate further development of ultrasound neuromodulation as a tool for neuroscience research.
Collapse
Affiliation(s)
- Thi-Thuyet Truong
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701401, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701401, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 701401, Taiwan.
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701401, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 701401, Taiwan.
| |
Collapse
|
2
|
Lai YS, Hsieh MR, Nguyen TMH, Chen YC, Wang HC, Chiu WT. Optogenetically engineered calcium oscillations promote autophagy-mediated cell death via AMPK activation. Open Biol 2024; 14:240001. [PMID: 38653331 PMCID: PMC11057470 DOI: 10.1098/rsob.240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Autophagy is a double-edged sword for cells; it can lead to both cell survival and death. Calcium (Ca2+) signalling plays a crucial role in regulating various cellular behaviours, including cell migration, proliferation and death. In this study, we investigated the effects of modulating cytosolic Ca2+ levels on autophagy using chemical and optogenetic methods. Our findings revealed that ionomycin and thapsigargin induce Ca2+ influx to promote autophagy, whereas the Ca2+ chelator BAPTA-AM induces Ca2+ depletion and inhibits autophagy. Furthermore, the optogenetic platform allows the manipulation of illumination parameters, including density, frequency, duty cycle and duration, to create different patterns of Ca2+ oscillations. We used the optogenetic tool Ca2+-translocating channelrhodopsin, which is activated and opened by 470 nm blue light to induce Ca2+ influx. These results demonstrated that high-frequency Ca2+ oscillations induce autophagy. In addition, autophagy induction may involve Ca2+-activated adenosine monophosphate (AMP)-activated protein kinases. In conclusion, high-frequency optogenetic Ca2+ oscillations led to cell death mediated by AMP-activated protein kinase-induced autophagy.
Collapse
Affiliation(s)
- Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung
University, Tainan701, Taiwan
| | - Meng-Ru Hsieh
- Department of Biomedical Engineering, National Cheng Kung
University, Tainan701, Taiwan
| | - Thi My Hang Nguyen
- Department of Biomedical Engineering, National Cheng Kung
University, Tainan701, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung
University, Tainan701, Taiwan
| | - Hsueh-Chun Wang
- Department of Biomedical Engineering, National Cheng Kung
University, Tainan701, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung
University, Tainan701, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung
University, Tainan701, Taiwan
- Medical Device Innovation Center, National Cheng Kung
University, Tainan701, Taiwan
| |
Collapse
|
3
|
Lai YS, Chan TW, Nguyen TMH, Lin TC, Chao YY, Wang CY, Hung LY, Tsai SJ, Chiu WT. Store-operated calcium entry inhibits primary ciliogenesis via the activation of Aurora A. FEBS J 2024; 291:1027-1042. [PMID: 38050648 DOI: 10.1111/febs.17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
The primary cilium is an antenna-like organelle protruding from the cell surface that can detect physical and chemical stimuli in the extracellular space to activate specific signaling pathways and downstream gene expressions. Calcium ion (Ca2+ ) signaling regulates a wide spectrum of cellular processes, including fertilization, proliferation, differentiation, muscle contraction, migration, and death. This study investigated the effects of the regulation of cytosolic Ca2+ levels on ciliogenesis using chemical, genetic, and optogenetic approaches. We found that ionomycin-induced Ca2+ influx inhibited ciliogenesis and Ca2+ chelator BATPA-AM-induced Ca2+ depletion promoted ciliogenesis. In addition, store-operated Ca2+ entry and the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) negatively regulated ciliogenesis. Moreover, an optogenetic platform was used to create different Ca2+ oscillation patterns by manipulating lighting parameters, including density, frequency, exposure time, and duration. Light-activated Ca2+ -translocating channelrhodopsin (CatCh) is activated by 470-nm blue light to induce Ca2+ influx. Our results show that high-frequency Ca2+ oscillations decrease ciliogenesis. Furthermore, the inhibition of cilia formation induced by Ca2+ may occur via the activation of Aurora kinase A. Cilia not only induce Ca2+ signaling but also regulate cilia formation by Ca2+ signaling.
Collapse
Affiliation(s)
- Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ta-Wei Chan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Thi My Hang Nguyen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chien Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ying Chao
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Wu C, Su B, Xin N, Tang J, Xiao J, Luo H, Wei D, Luo F, Sun J, Fan H. An upconversion nanoparticle-integrated fibrillar scaffold combined with a NIR-optogenetic strategy to regulate neural cell performance. J Mater Chem B 2023; 11:430-440. [PMID: 36524427 DOI: 10.1039/d2tb02327j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Optogenetics using light-sensitive proteins such as calcium transport channel rhodopsin (CatCh) opens up new possibilities for non-invasive remote manipulation of neural function. However, current optogenetic approaches for neurological disorder therapies rely on visible light excitation and are rarely applied to neurogenesis and nerve regeneration. Herein, we propose a new strategy for tissue engineering which combines optogenetic technology and biomimetic nerve scaffolds. Upconversion nanoparticles (UCNPs) were synthesized and integrated with oriented fibrillar PCL membranes with a collagen coating to establish neuro-matrix interfaces. Benefiting from the excellent bioactivity, oriented fibrillation and NIR-photoresponsivity, the CatCh-transfected PC12 cells on these interfaces exhibited enhanced cell elongation and neurite extension, as well as upregulated neurogenesis upon NIR excitation. Furthermore, a UCNP-integrated scaffold as an optogenetic actuator allowed NIR to penetrate dermal tissues to mediate neural activation, with an efficiency comparable to that of a 470 nm blue light. Compared with current visible light-excited optogenetics, our composite scaffold-mediated NIR stimulation addresses the problem of tissue penetration and will enable less-invasive neurofunctional manipulation, with the potential for remote therapy.
Collapse
Affiliation(s)
- Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China. .,Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Borui Su
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Jiajia Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Jiamei Xiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Fang Luo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
5
|
Maltsev A, Roshchin M, Bezprozvanny I, Smirnov I, Vlasova O, Balaban P, Borodinova A. Bidirectional regulation by "star forces": Ionotropic astrocyte's optical stimulation suppresses synaptic plasticity, metabotropic one strikes back. Hippocampus 2023; 33:18-36. [PMID: 36484471 DOI: 10.1002/hipo.23486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
The role of astrocytes in modulating synaptic plasticity is an important question that until recently was not addressed due to limitations of previously existing technology. In the present study, we took an advantage of optogenetics to specifically activate astrocytes in hippocampal slices in order to study effects on synaptic function. Using the AAV-based delivery strategy, we expressed the ionotropic channelrhodopsin-2 (ChR2) or the metabotropic Gq-coupled Opto-a1AR opsins specifically in hippocampal astrocytes to compare different modalities of astrocyte activation. In electrophysiological experiments, we observed a depression of basal field excitatory postsynaptic potentials (fEPSPs) in the CA1 hippocampal layer following light stimulation of astrocytic ChR2. The ChR2-mediated depression increased under simultaneous light and electrical theta-burst stimulation (TBS). Application of the type 2 purinergic receptor antagonist suramin prevented depression of basal synaptic transmission, and switched the ChR2-dependent depression into potentiation. The GABAB receptor antagonist, phaclofen, did not prevent the depression of basal fEPSPs, but switched the ChR2-dependent depression into potentiation comparable to the values for TBS in control slices. In contrast, light stimulation of Opto-a1AR expressed in astrocytes led to an increase in basal fEPSPs, as well as a potentiation of synaptic responses to TBS significantly. A specific blocker of the Gq protein downstream target, the phospholipase C, U73122, completely prevented the effects of Opto-a1AR stimulation on basal fEPSPs or Opto + TBS responses. To understand molecular basis for the observed effects, we performed an analysis of gene expression in these slices using quantitative PCR approach. We observed a significant upregulation of "immediate-early" gene expression in hippocampal slices after light activation of Opto-a1AR-expressing astrocytes alone (cRel, Arc, Fos, JunB, and Egr1) or paired with TBS (cRel, Fos, and Egr1). Activation of ChR2-expressing hippocampal astrocytes was insufficient to affect expression of these genes in our experimental conditions. Thus, we concluded that optostimulation of astrocytes with ChR2 and Opto-a1AR optogenetic tools enables bidirectional modulation of synaptic plasticity and gene expression in hippocampus.
Collapse
Affiliation(s)
- Alexander Maltsev
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Matvey Roshchin
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.,Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Ivan Smirnov
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Pavel Balaban
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Borodinova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Cheng HF, Chiu WT, Lai YS, Truong TT, Lee PY, Huang CC. High-frequency noncontact low-intensity pulsed ultrasound modulates Ca 2+-dependent transcription factors contributing to cell migration. ULTRASONICS 2023; 127:106852. [PMID: 36201953 DOI: 10.1016/j.ultras.2022.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/02/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Chronic wounds have negative physical and psychological effects on patients and increase the health care burden. Consequently, chronic wound in the elderly population is an important issue. Ultrasound can be a great modality for treating chronic wounds because of its noninvasive and safety characteristics; it can accelerate in vitro and in vivo wound healing. In this study, we developed a novel noncontact ultrasound for wound treatment. We stimulated human epidermal keratinocyte migration using low-intensity pulsed ultrasound (LIPUS) with a noncontact transducer to avoid direct contact with the wound. We also compared the effects of 15-min contact and noncontact transducer stimulation, where a 1-MHz contact transducer (intensity = 40 or 200 mW/cm2) and a 0.45-MHz noncontact transducer (intensity = 30 mW/cm2) were used. Both contact and noncontact LIPUS considerably increased cell migration and activated the calcium (Ca2+)-dependent transcription factors cAMP-responsive element-binding protein (CREB) and nuclear factor of activated T cells (NFAT). Furthermore, noncontact transducer stimulation did not cause cell death or affect cell proliferation but significantly increased the Ca2+ influx-mediated intracellular Ca2+ levels. Ca2+-free medium and Ca2+ channel blockers effectively inhibited LIPUS-induced Ca2+-dependent transcription factor activation and cell migration.
Collapse
Affiliation(s)
- Hsiao-Fan Cheng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Thi-Thuyet Truong
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Po-Yang Lee
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
7
|
Truong TT, Chiu WT, Lai YS, Huang H, Jiang X, Huang CC. Ca 2+ signaling-mediated low-intensity pulsed ultrasound-induced proliferation and activation of motor neuron cells. ULTRASONICS 2022; 124:106739. [PMID: 35367809 DOI: 10.1016/j.ultras.2022.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Motor neuron diseases (MND) including amyotrophic lateral sclerosis and Parkinson disease are commonly neurodegenerative, causing a gradual loss of nerve cells and affecting the mechanisms underlying changes in calcium (Ca2+)-regulated dendritic growth. In this study, the NSC-34 cell line, a population of hybridomas generated using mouse spinal cord cells with neuroblastoma, was used to investigate the effect of low-intensity pulsed ultrasound (LIPUS) as part of an MND treatment model. After NSC-34 cells were seeded for 24 h, LIPUS stimulation was performed on the cells at days 1 and 3 using a non-focused transducer at 1.15 MHz for 8 min. NSC-34 cell proliferation and morphological changes were observed at various LIPUS intensities and different combinations of Ca2+ channel blockers. The nuclear translocation of Ca2+-dependent transcription factors was also examined. We observed that the neurite outgrowth and cell number of NSC-34 significantly increased with LIPUS stimulation at days 2 and 4, which may be associated with the treatment's positive effect on the activation of Ca2+-dependent transcription factors, such as nuclear factor of activated T cells and nuclear factor-kappa B. Our findings suggest that the LIPUS-induced Ca2+ signaling and transcription factor activation facilitate the morphological maturation and proliferation of NSC-34 cells, presenting a promising noninvasive method to improve stimulation therapy for MNDs in the future.
Collapse
Affiliation(s)
- Thi-Thuyet Truong
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Hsien Huang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, USA
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan; Department of Mechanical and Aerospace Engineering, North Carolina State University, USA; Medical Device Innovation Center, National Cheng Kung University, Taiwan.
| |
Collapse
|
8
|
Molecular Research on Oral Diseases and Related Biomaterials: A Journey from Oral Cell Models to Advanced Regenerative Perspectives. Int J Mol Sci 2022; 23:ijms23095288. [PMID: 35563679 PMCID: PMC9105421 DOI: 10.3390/ijms23095288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Oral diseases such as gingivitis, periodontitis, and oral cancer affect millions of people worldwide. Much research has been conducted to understand the pathogenetic mechanisms of these diseases and translate this knowledge into therapeutics. This review aims to take the reader on a journey from the initial molecular discoveries to complex regenerative issues in oral medicine. For this, a semi-systematic literature search was carried out in Medline and Web of Science databases to retrieve the primary literature describing oral cell models and biomaterial applications in oral regenerative medicine. First, an in vitro cell model of gingival keratinocytes is discussed, which illustrates patho- and physiologic principles in the context of oral epithelial homeostasis and carcinogenesis and represents a cellular tool to understand biomaterial-based approaches for periodontal tissue regeneration. Consequently, a layered gradient nonwoven (LGN) is described, which demonstrates that the key features of biomaterials serve as candidates for oral tissue regeneration. LGN supports proper tissue formation and obeys the important principles for molecular mechanotransduction. Furthermore, current biomaterial-based tissue regeneration trends, including polymer modifications, cell-based treatments, antimicrobial peptides and optogenetics, are introduced to represent the full spectrum of current approaches to oral disease mitigation and prevention. Altogether, this review is a foray through established and new concepts in oral regenerative medicine and illustrates the process of knowledge translation from basic molecular and cell biological research to future clinical applications.
Collapse
|
9
|
Lai YS, Chang YH, Chen YY, Xu J, Yu CS, Chang SJ, Chen PS, Tsai SJ, Chiu WT. Ca 2+ -regulated cell migration revealed by optogenetically engineered Ca 2+ oscillations. J Cell Physiol 2020; 236:4681-4693. [PMID: 33244795 PMCID: PMC8048425 DOI: 10.1002/jcp.30190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023]
Abstract
The ability of a single Ca2+ ion to play an important role in cell biology is highlighted by the need for cells to form Ca2+ signals in the dimensions of space, time, and amplitude. Thus, spatial and temporal changes in intracellular Ca2+ concentration are important for determining cell fate. Optogenetic technology has been developed to provide more precise and targeted stimulation of cells. Here, U2OS cells overexpressing Ca2+ translocating channelrhodopsin (CatCh) were used to mediate Ca2+ influx through blue light illumination with various parameters, such as intensity, frequency, duty cycle, and duration. We identified that several Ca2+‐dependent transcription factors and certain kinases can be activated by specific Ca2+ waves. Using a wound‐healing assay, we found that low‐frequency Ca2+ oscillations increased cell migration through the activation of NF‐κB. This study explores the regulation of cell migration by Ca2+ signals. Thus, we can choose optical parameters to modulate Ca2+ waves and achieve activation of specific signaling pathways. This novel methodology can be applied to clarify related cell‐signaling mechanisms in the future.
Collapse
Affiliation(s)
- Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Han Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yong-Yi Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jixuan Xu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Sian Yu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Su-Jing Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Pai-Sheng Chen
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|